1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43 struct device_node *ports, *port;
44
45 ports = of_get_child_by_name(node, name: "ports");
46 if (ports)
47 node = ports;
48
49 port = of_get_child_by_name(node, name: "port");
50 of_node_put(node: ports);
51 of_node_put(node: port);
52
53 return !!port;
54}
55EXPORT_SYMBOL(of_graph_is_present);
56
57/**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np: device node from which the property value is to be read.
61 * @propname: name of the property to be searched.
62 * @elem_size: size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
70 */
71int of_property_count_elems_of_size(const struct device_node *np,
72 const char *propname, int elem_size)
73{
74 struct property *prop = of_find_property(np, name: propname, NULL);
75
76 if (!prop)
77 return -EINVAL;
78 if (!prop->value)
79 return -ENODATA;
80
81 if (prop->length % elem_size != 0) {
82 pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 propname, np, elem_size);
84 return -EINVAL;
85 }
86
87 return prop->length / elem_size;
88}
89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91/**
92 * of_find_property_value_of_size
93 *
94 * @np: device node from which the property value is to be read.
95 * @propname: name of the property to be searched.
96 * @min: minimum allowed length of property value
97 * @max: maximum allowed length of property value (0 means unlimited)
98 * @len: if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104 * property data is too small or too large.
105 *
106 */
107static void *of_find_property_value_of_size(const struct device_node *np,
108 const char *propname, u32 min, u32 max, size_t *len)
109{
110 struct property *prop = of_find_property(np, name: propname, NULL);
111
112 if (!prop)
113 return ERR_PTR(error: -EINVAL);
114 if (!prop->value)
115 return ERR_PTR(error: -ENODATA);
116 if (prop->length < min)
117 return ERR_PTR(error: -EOVERFLOW);
118 if (max && prop->length > max)
119 return ERR_PTR(error: -EOVERFLOW);
120
121 if (len)
122 *len = prop->length;
123
124 return prop->value;
125}
126
127/**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np: device node from which the property value is to be read.
131 * @propname: name of the property to be searched.
132 * @index: index of the u32 in the list of values
133 * @out_value: pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
144int of_property_read_u32_index(const struct device_node *np,
145 const char *propname,
146 u32 index, u32 *out_value)
147{
148 const u32 *val = of_find_property_value_of_size(np, propname,
149 min: ((index + 1) * sizeof(*out_value)),
150 max: 0,
151 NULL);
152
153 if (IS_ERR(ptr: val))
154 return PTR_ERR(ptr: val);
155
156 *out_value = be32_to_cpup(p: ((__be32 *)val) + index);
157 return 0;
158}
159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161/**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np: device node from which the property value is to be read.
165 * @propname: name of the property to be searched.
166 * @index: index of the u64 in the list of values
167 * @out_value: pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
178int of_property_read_u64_index(const struct device_node *np,
179 const char *propname,
180 u32 index, u64 *out_value)
181{
182 const u64 *val = of_find_property_value_of_size(np, propname,
183 min: ((index + 1) * sizeof(*out_value)),
184 max: 0, NULL);
185
186 if (IS_ERR(ptr: val))
187 return PTR_ERR(ptr: val);
188
189 *out_value = be64_to_cpup(p: ((__be64 *)val) + index);
190 return 0;
191}
192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194/**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np: device node from which the property value is to be read.
199 * @propname: name of the property to be searched.
200 * @out_values: pointer to found values.
201 * @sz_min: minimum number of array elements to read
202 * @sz_max: maximum number of array elements to read, if zero there is no
203 * upper limit on the number of elements in the dts entry but only
204 * sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
207 * it.
208 *
209 * dts entry of array should be like:
210 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
218int of_property_read_variable_u8_array(const struct device_node *np,
219 const char *propname, u8 *out_values,
220 size_t sz_min, size_t sz_max)
221{
222 size_t sz, count;
223 const u8 *val = of_find_property_value_of_size(np, propname,
224 min: (sz_min * sizeof(*out_values)),
225 max: (sz_max * sizeof(*out_values)),
226 len: &sz);
227
228 if (IS_ERR(ptr: val))
229 return PTR_ERR(ptr: val);
230
231 if (!sz_max)
232 sz = sz_min;
233 else
234 sz /= sizeof(*out_values);
235
236 count = sz;
237 while (count--)
238 *out_values++ = *val++;
239
240 return sz;
241}
242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244/**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np: device node from which the property value is to be read.
249 * @propname: name of the property to be searched.
250 * @out_values: pointer to found values.
251 * @sz_min: minimum number of array elements to read
252 * @sz_max: maximum number of array elements to read, if zero there is no
253 * upper limit on the number of elements in the dts entry but only
254 * sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
257 * it.
258 *
259 * dts entry of array should be like:
260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
268int of_property_read_variable_u16_array(const struct device_node *np,
269 const char *propname, u16 *out_values,
270 size_t sz_min, size_t sz_max)
271{
272 size_t sz, count;
273 const __be16 *val = of_find_property_value_of_size(np, propname,
274 min: (sz_min * sizeof(*out_values)),
275 max: (sz_max * sizeof(*out_values)),
276 len: &sz);
277
278 if (IS_ERR(ptr: val))
279 return PTR_ERR(ptr: val);
280
281 if (!sz_max)
282 sz = sz_min;
283 else
284 sz /= sizeof(*out_values);
285
286 count = sz;
287 while (count--)
288 *out_values++ = be16_to_cpup(p: val++);
289
290 return sz;
291}
292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294/**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np: device node from which the property value is to be read.
299 * @propname: name of the property to be searched.
300 * @out_values: pointer to return found values.
301 * @sz_min: minimum number of array elements to read
302 * @sz_max: maximum number of array elements to read, if zero there is no
303 * upper limit on the number of elements in the dts entry but only
304 * sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
315int of_property_read_variable_u32_array(const struct device_node *np,
316 const char *propname, u32 *out_values,
317 size_t sz_min, size_t sz_max)
318{
319 size_t sz, count;
320 const __be32 *val = of_find_property_value_of_size(np, propname,
321 min: (sz_min * sizeof(*out_values)),
322 max: (sz_max * sizeof(*out_values)),
323 len: &sz);
324
325 if (IS_ERR(ptr: val))
326 return PTR_ERR(ptr: val);
327
328 if (!sz_max)
329 sz = sz_min;
330 else
331 sz /= sizeof(*out_values);
332
333 count = sz;
334 while (count--)
335 *out_values++ = be32_to_cpup(p: val++);
336
337 return sz;
338}
339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341/**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np: device node from which the property value is to be read.
344 * @propname: name of the property to be searched.
345 * @out_value: pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
356int of_property_read_u64(const struct device_node *np, const char *propname,
357 u64 *out_value)
358{
359 const __be32 *val = of_find_property_value_of_size(np, propname,
360 min: sizeof(*out_value),
361 max: 0,
362 NULL);
363
364 if (IS_ERR(ptr: val))
365 return PTR_ERR(ptr: val);
366
367 *out_value = of_read_number(cell: val, size: 2);
368 return 0;
369}
370EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372/**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np: device node from which the property value is to be read.
377 * @propname: name of the property to be searched.
378 * @out_values: pointer to found values.
379 * @sz_min: minimum number of array elements to read
380 * @sz_max: maximum number of array elements to read, if zero there is no
381 * upper limit on the number of elements in the dts entry but only
382 * sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
393int of_property_read_variable_u64_array(const struct device_node *np,
394 const char *propname, u64 *out_values,
395 size_t sz_min, size_t sz_max)
396{
397 size_t sz, count;
398 const __be32 *val = of_find_property_value_of_size(np, propname,
399 min: (sz_min * sizeof(*out_values)),
400 max: (sz_max * sizeof(*out_values)),
401 len: &sz);
402
403 if (IS_ERR(ptr: val))
404 return PTR_ERR(ptr: val);
405
406 if (!sz_max)
407 sz = sz_min;
408 else
409 sz /= sizeof(*out_values);
410
411 count = sz;
412 while (count--) {
413 *out_values++ = of_read_number(cell: val, size: 2);
414 val += 2;
415 }
416
417 return sz;
418}
419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421/**
422 * of_property_read_string - Find and read a string from a property
423 * @np: device node from which the property value is to be read.
424 * @propname: name of the property to be searched.
425 * @out_string: pointer to null terminated return string, modified only if
426 * return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
434 *
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
440int of_property_read_string(const struct device_node *np, const char *propname,
441 const char **out_string)
442{
443 const struct property *prop = of_find_property(np, name: propname, NULL);
444
445 if (!prop)
446 return -EINVAL;
447 if (!prop->length)
448 return -ENODATA;
449 if (strnlen(p: prop->value, maxlen: prop->length) >= prop->length)
450 return -EILSEQ;
451 *out_string = prop->value;
452 return 0;
453}
454EXPORT_SYMBOL_GPL(of_property_read_string);
455
456/**
457 * of_property_match_string() - Find string in a list and return index
458 * @np: pointer to node containing string list property
459 * @propname: string list property name
460 * @string: pointer to string to search for in string list
461 *
462 * This function searches a string list property and returns the index
463 * of a specific string value.
464 */
465int of_property_match_string(const struct device_node *np, const char *propname,
466 const char *string)
467{
468 const struct property *prop = of_find_property(np, name: propname, NULL);
469 size_t l;
470 int i;
471 const char *p, *end;
472
473 if (!prop)
474 return -EINVAL;
475 if (!prop->value)
476 return -ENODATA;
477
478 p = prop->value;
479 end = p + prop->length;
480
481 for (i = 0; p < end; i++, p += l) {
482 l = strnlen(p, maxlen: end - p) + 1;
483 if (p + l > end)
484 return -EILSEQ;
485 pr_debug("comparing %s with %s\n", string, p);
486 if (strcmp(string, p) == 0)
487 return i; /* Found it; return index */
488 }
489 return -ENODATA;
490}
491EXPORT_SYMBOL_GPL(of_property_match_string);
492
493/**
494 * of_property_read_string_helper() - Utility helper for parsing string properties
495 * @np: device node from which the property value is to be read.
496 * @propname: name of the property to be searched.
497 * @out_strs: output array of string pointers.
498 * @sz: number of array elements to read.
499 * @skip: Number of strings to skip over at beginning of list.
500 *
501 * Don't call this function directly. It is a utility helper for the
502 * of_property_read_string*() family of functions.
503 */
504int of_property_read_string_helper(const struct device_node *np,
505 const char *propname, const char **out_strs,
506 size_t sz, int skip)
507{
508 const struct property *prop = of_find_property(np, name: propname, NULL);
509 int l = 0, i = 0;
510 const char *p, *end;
511
512 if (!prop)
513 return -EINVAL;
514 if (!prop->value)
515 return -ENODATA;
516 p = prop->value;
517 end = p + prop->length;
518
519 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
520 l = strnlen(p, maxlen: end - p) + 1;
521 if (p + l > end)
522 return -EILSEQ;
523 if (out_strs && i >= skip)
524 *out_strs++ = p;
525 }
526 i -= skip;
527 return i <= 0 ? -ENODATA : i;
528}
529EXPORT_SYMBOL_GPL(of_property_read_string_helper);
530
531const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
532 u32 *pu)
533{
534 const void *curv = cur;
535
536 if (!prop)
537 return NULL;
538
539 if (!cur) {
540 curv = prop->value;
541 goto out_val;
542 }
543
544 curv += sizeof(*cur);
545 if (curv >= prop->value + prop->length)
546 return NULL;
547
548out_val:
549 *pu = be32_to_cpup(p: curv);
550 return curv;
551}
552EXPORT_SYMBOL_GPL(of_prop_next_u32);
553
554const char *of_prop_next_string(struct property *prop, const char *cur)
555{
556 const void *curv = cur;
557
558 if (!prop)
559 return NULL;
560
561 if (!cur)
562 return prop->value;
563
564 curv += strlen(cur) + 1;
565 if (curv >= prop->value + prop->length)
566 return NULL;
567
568 return curv;
569}
570EXPORT_SYMBOL_GPL(of_prop_next_string);
571
572/**
573 * of_graph_parse_endpoint() - parse common endpoint node properties
574 * @node: pointer to endpoint device_node
575 * @endpoint: pointer to the OF endpoint data structure
576 *
577 * The caller should hold a reference to @node.
578 */
579int of_graph_parse_endpoint(const struct device_node *node,
580 struct of_endpoint *endpoint)
581{
582 struct device_node *port_node = of_get_parent(node);
583
584 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
585 __func__, node);
586
587 memset(endpoint, 0, sizeof(*endpoint));
588
589 endpoint->local_node = node;
590 /*
591 * It doesn't matter whether the two calls below succeed.
592 * If they don't then the default value 0 is used.
593 */
594 of_property_read_u32(np: port_node, propname: "reg", out_value: &endpoint->port);
595 of_property_read_u32(np: node, propname: "reg", out_value: &endpoint->id);
596
597 of_node_put(node: port_node);
598
599 return 0;
600}
601EXPORT_SYMBOL(of_graph_parse_endpoint);
602
603/**
604 * of_graph_get_port_by_id() - get the port matching a given id
605 * @parent: pointer to the parent device node
606 * @id: id of the port
607 *
608 * Return: A 'port' node pointer with refcount incremented. The caller
609 * has to use of_node_put() on it when done.
610 */
611struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
612{
613 struct device_node *node, *port;
614
615 node = of_get_child_by_name(node: parent, name: "ports");
616 if (node)
617 parent = node;
618
619 for_each_child_of_node(parent, port) {
620 u32 port_id = 0;
621
622 if (!of_node_name_eq(np: port, name: "port"))
623 continue;
624 of_property_read_u32(np: port, propname: "reg", out_value: &port_id);
625 if (id == port_id)
626 break;
627 }
628
629 of_node_put(node);
630
631 return port;
632}
633EXPORT_SYMBOL(of_graph_get_port_by_id);
634
635/**
636 * of_graph_get_next_endpoint() - get next endpoint node
637 * @parent: pointer to the parent device node
638 * @prev: previous endpoint node, or NULL to get first
639 *
640 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
641 * of the passed @prev node is decremented.
642 */
643struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
644 struct device_node *prev)
645{
646 struct device_node *endpoint;
647 struct device_node *port;
648
649 if (!parent)
650 return NULL;
651
652 /*
653 * Start by locating the port node. If no previous endpoint is specified
654 * search for the first port node, otherwise get the previous endpoint
655 * parent port node.
656 */
657 if (!prev) {
658 struct device_node *node;
659
660 node = of_get_child_by_name(node: parent, name: "ports");
661 if (node)
662 parent = node;
663
664 port = of_get_child_by_name(node: parent, name: "port");
665 of_node_put(node);
666
667 if (!port) {
668 pr_debug("graph: no port node found in %pOF\n", parent);
669 return NULL;
670 }
671 } else {
672 port = of_get_parent(node: prev);
673 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
674 __func__, prev))
675 return NULL;
676 }
677
678 while (1) {
679 /*
680 * Now that we have a port node, get the next endpoint by
681 * getting the next child. If the previous endpoint is NULL this
682 * will return the first child.
683 */
684 endpoint = of_get_next_child(node: port, prev);
685 if (endpoint) {
686 of_node_put(node: port);
687 return endpoint;
688 }
689
690 /* No more endpoints under this port, try the next one. */
691 prev = NULL;
692
693 do {
694 port = of_get_next_child(node: parent, prev: port);
695 if (!port)
696 return NULL;
697 } while (!of_node_name_eq(np: port, name: "port"));
698 }
699}
700EXPORT_SYMBOL(of_graph_get_next_endpoint);
701
702/**
703 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
704 * @parent: pointer to the parent device node
705 * @port_reg: identifier (value of reg property) of the parent port node
706 * @reg: identifier (value of reg property) of the endpoint node
707 *
708 * Return: An 'endpoint' node pointer which is identified by reg and at the same
709 * is the child of a port node identified by port_reg. reg and port_reg are
710 * ignored when they are -1. Use of_node_put() on the pointer when done.
711 */
712struct device_node *of_graph_get_endpoint_by_regs(
713 const struct device_node *parent, int port_reg, int reg)
714{
715 struct of_endpoint endpoint;
716 struct device_node *node = NULL;
717
718 for_each_endpoint_of_node(parent, node) {
719 of_graph_parse_endpoint(node, &endpoint);
720 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
721 ((reg == -1) || (endpoint.id == reg)))
722 return node;
723 }
724
725 return NULL;
726}
727EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
728
729/**
730 * of_graph_get_remote_endpoint() - get remote endpoint node
731 * @node: pointer to a local endpoint device_node
732 *
733 * Return: Remote endpoint node associated with remote endpoint node linked
734 * to @node. Use of_node_put() on it when done.
735 */
736struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
737{
738 /* Get remote endpoint node. */
739 return of_parse_phandle(np: node, phandle_name: "remote-endpoint", index: 0);
740}
741EXPORT_SYMBOL(of_graph_get_remote_endpoint);
742
743/**
744 * of_graph_get_port_parent() - get port's parent node
745 * @node: pointer to a local endpoint device_node
746 *
747 * Return: device node associated with endpoint node linked
748 * to @node. Use of_node_put() on it when done.
749 */
750struct device_node *of_graph_get_port_parent(struct device_node *node)
751{
752 unsigned int depth;
753
754 if (!node)
755 return NULL;
756
757 /*
758 * Preserve usecount for passed in node as of_get_next_parent()
759 * will do of_node_put() on it.
760 */
761 of_node_get(node);
762
763 /* Walk 3 levels up only if there is 'ports' node. */
764 for (depth = 3; depth && node; depth--) {
765 node = of_get_next_parent(node);
766 if (depth == 2 && !of_node_name_eq(np: node, name: "ports") &&
767 !of_node_name_eq(np: node, name: "in-ports") &&
768 !of_node_name_eq(np: node, name: "out-ports"))
769 break;
770 }
771 return node;
772}
773EXPORT_SYMBOL(of_graph_get_port_parent);
774
775/**
776 * of_graph_get_remote_port_parent() - get remote port's parent node
777 * @node: pointer to a local endpoint device_node
778 *
779 * Return: Remote device node associated with remote endpoint node linked
780 * to @node. Use of_node_put() on it when done.
781 */
782struct device_node *of_graph_get_remote_port_parent(
783 const struct device_node *node)
784{
785 struct device_node *np, *pp;
786
787 /* Get remote endpoint node. */
788 np = of_graph_get_remote_endpoint(node);
789
790 pp = of_graph_get_port_parent(np);
791
792 of_node_put(node: np);
793
794 return pp;
795}
796EXPORT_SYMBOL(of_graph_get_remote_port_parent);
797
798/**
799 * of_graph_get_remote_port() - get remote port node
800 * @node: pointer to a local endpoint device_node
801 *
802 * Return: Remote port node associated with remote endpoint node linked
803 * to @node. Use of_node_put() on it when done.
804 */
805struct device_node *of_graph_get_remote_port(const struct device_node *node)
806{
807 struct device_node *np;
808
809 /* Get remote endpoint node. */
810 np = of_graph_get_remote_endpoint(node);
811 if (!np)
812 return NULL;
813 return of_get_next_parent(node: np);
814}
815EXPORT_SYMBOL(of_graph_get_remote_port);
816
817/**
818 * of_graph_get_endpoint_count() - get the number of endpoints in a device node
819 * @np: parent device node containing ports and endpoints
820 *
821 * Return: count of endpoint of this device node
822 */
823unsigned int of_graph_get_endpoint_count(const struct device_node *np)
824{
825 struct device_node *endpoint;
826 unsigned int num = 0;
827
828 for_each_endpoint_of_node(np, endpoint)
829 num++;
830
831 return num;
832}
833EXPORT_SYMBOL(of_graph_get_endpoint_count);
834
835/**
836 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
837 * @node: pointer to parent device_node containing graph port/endpoint
838 * @port: identifier (value of reg property) of the parent port node
839 * @endpoint: identifier (value of reg property) of the endpoint node
840 *
841 * Return: Remote device node associated with remote endpoint node linked
842 * to @node. Use of_node_put() on it when done.
843 */
844struct device_node *of_graph_get_remote_node(const struct device_node *node,
845 u32 port, u32 endpoint)
846{
847 struct device_node *endpoint_node, *remote;
848
849 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
850 if (!endpoint_node) {
851 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
852 port, endpoint, node);
853 return NULL;
854 }
855
856 remote = of_graph_get_remote_port_parent(endpoint_node);
857 of_node_put(node: endpoint_node);
858 if (!remote) {
859 pr_debug("no valid remote node\n");
860 return NULL;
861 }
862
863 if (!of_device_is_available(device: remote)) {
864 pr_debug("not available for remote node\n");
865 of_node_put(node: remote);
866 return NULL;
867 }
868
869 return remote;
870}
871EXPORT_SYMBOL(of_graph_get_remote_node);
872
873static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
874{
875 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
876}
877
878static void of_fwnode_put(struct fwnode_handle *fwnode)
879{
880 of_node_put(to_of_node(fwnode));
881}
882
883static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
884{
885 return of_device_is_available(to_of_node(fwnode));
886}
887
888static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
889{
890 return true;
891}
892
893static enum dev_dma_attr
894of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
895{
896 if (of_dma_is_coherent(to_of_node(fwnode)))
897 return DEV_DMA_COHERENT;
898 else
899 return DEV_DMA_NON_COHERENT;
900}
901
902static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
903 const char *propname)
904{
905 return of_property_read_bool(to_of_node(fwnode), propname);
906}
907
908static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
909 const char *propname,
910 unsigned int elem_size, void *val,
911 size_t nval)
912{
913 const struct device_node *node = to_of_node(fwnode);
914
915 if (!val)
916 return of_property_count_elems_of_size(node, propname,
917 elem_size);
918
919 switch (elem_size) {
920 case sizeof(u8):
921 return of_property_read_u8_array(np: node, propname, out_values: val, sz: nval);
922 case sizeof(u16):
923 return of_property_read_u16_array(np: node, propname, out_values: val, sz: nval);
924 case sizeof(u32):
925 return of_property_read_u32_array(np: node, propname, out_values: val, sz: nval);
926 case sizeof(u64):
927 return of_property_read_u64_array(np: node, propname, out_values: val, sz: nval);
928 }
929
930 return -ENXIO;
931}
932
933static int
934of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
935 const char *propname, const char **val,
936 size_t nval)
937{
938 const struct device_node *node = to_of_node(fwnode);
939
940 return val ?
941 of_property_read_string_array(np: node, propname, out_strs: val, sz: nval) :
942 of_property_count_strings(np: node, propname);
943}
944
945static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
946{
947 return kbasename(to_of_node(fwnode)->full_name);
948}
949
950static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
951{
952 /* Root needs no prefix here (its name is "/"). */
953 if (!to_of_node(fwnode)->parent)
954 return "";
955
956 return "/";
957}
958
959static struct fwnode_handle *
960of_fwnode_get_parent(const struct fwnode_handle *fwnode)
961{
962 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
963}
964
965static struct fwnode_handle *
966of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
967 struct fwnode_handle *child)
968{
969 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
970 to_of_node(child)));
971}
972
973static struct fwnode_handle *
974of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
975 const char *childname)
976{
977 const struct device_node *node = to_of_node(fwnode);
978 struct device_node *child;
979
980 for_each_available_child_of_node(node, child)
981 if (of_node_name_eq(np: child, name: childname))
982 return of_fwnode_handle(child);
983
984 return NULL;
985}
986
987static int
988of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
989 const char *prop, const char *nargs_prop,
990 unsigned int nargs, unsigned int index,
991 struct fwnode_reference_args *args)
992{
993 struct of_phandle_args of_args;
994 unsigned int i;
995 int ret;
996
997 if (nargs_prop)
998 ret = of_parse_phandle_with_args(to_of_node(fwnode), list_name: prop,
999 cells_name: nargs_prop, index, out_args: &of_args);
1000 else
1001 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), list_name: prop,
1002 cell_count: nargs, index, out_args: &of_args);
1003 if (ret < 0)
1004 return ret;
1005 if (!args) {
1006 of_node_put(node: of_args.np);
1007 return 0;
1008 }
1009
1010 args->nargs = of_args.args_count;
1011 args->fwnode = of_fwnode_handle(of_args.np);
1012
1013 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1014 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1015
1016 return 0;
1017}
1018
1019static struct fwnode_handle *
1020of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1021 struct fwnode_handle *prev)
1022{
1023 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1024 to_of_node(prev)));
1025}
1026
1027static struct fwnode_handle *
1028of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1029{
1030 return of_fwnode_handle(
1031 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1032}
1033
1034static struct fwnode_handle *
1035of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1036{
1037 struct device_node *np;
1038
1039 /* Get the parent of the port */
1040 np = of_get_parent(to_of_node(fwnode));
1041 if (!np)
1042 return NULL;
1043
1044 /* Is this the "ports" node? If not, it's the port parent. */
1045 if (!of_node_name_eq(np, name: "ports"))
1046 return of_fwnode_handle(np);
1047
1048 return of_fwnode_handle(of_get_next_parent(np));
1049}
1050
1051static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1052 struct fwnode_endpoint *endpoint)
1053{
1054 const struct device_node *node = to_of_node(fwnode);
1055 struct device_node *port_node = of_get_parent(node);
1056
1057 endpoint->local_fwnode = fwnode;
1058
1059 of_property_read_u32(np: port_node, propname: "reg", out_value: &endpoint->port);
1060 of_property_read_u32(np: node, propname: "reg", out_value: &endpoint->id);
1061
1062 of_node_put(node: port_node);
1063
1064 return 0;
1065}
1066
1067static const void *
1068of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1069 const struct device *dev)
1070{
1071 return of_device_get_match_data(dev);
1072}
1073
1074static void of_link_to_phandle(struct device_node *con_np,
1075 struct device_node *sup_np,
1076 u8 flags)
1077{
1078 struct device_node *tmp_np = of_node_get(node: sup_np);
1079
1080 /* Check that sup_np and its ancestors are available. */
1081 while (tmp_np) {
1082 if (of_fwnode_handle(tmp_np)->dev) {
1083 of_node_put(node: tmp_np);
1084 break;
1085 }
1086
1087 if (!of_device_is_available(device: tmp_np)) {
1088 of_node_put(node: tmp_np);
1089 return;
1090 }
1091
1092 tmp_np = of_get_next_parent(node: tmp_np);
1093 }
1094
1095 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1096}
1097
1098/**
1099 * parse_prop_cells - Property parsing function for suppliers
1100 *
1101 * @np: Pointer to device tree node containing a list
1102 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1103 * @index: For properties holding a list of phandles, this is the index
1104 * into the list.
1105 * @list_name: Property name that is known to contain list of phandle(s) to
1106 * supplier(s)
1107 * @cells_name: property name that specifies phandles' arguments count
1108 *
1109 * This is a helper function to parse properties that have a known fixed name
1110 * and are a list of phandles and phandle arguments.
1111 *
1112 * Returns:
1113 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1114 * on it when done.
1115 * - NULL if no phandle found at index
1116 */
1117static struct device_node *parse_prop_cells(struct device_node *np,
1118 const char *prop_name, int index,
1119 const char *list_name,
1120 const char *cells_name)
1121{
1122 struct of_phandle_args sup_args;
1123
1124 if (strcmp(prop_name, list_name))
1125 return NULL;
1126
1127 if (__of_parse_phandle_with_args(np, list_name, cells_name, cell_count: 0, index,
1128 out_args: &sup_args))
1129 return NULL;
1130
1131 return sup_args.np;
1132}
1133
1134#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1135static struct device_node *parse_##fname(struct device_node *np, \
1136 const char *prop_name, int index) \
1137{ \
1138 return parse_prop_cells(np, prop_name, index, name, cells); \
1139}
1140
1141static int strcmp_suffix(const char *str, const char *suffix)
1142{
1143 unsigned int len, suffix_len;
1144
1145 len = strlen(str);
1146 suffix_len = strlen(suffix);
1147 if (len <= suffix_len)
1148 return -1;
1149 return strcmp(str + len - suffix_len, suffix);
1150}
1151
1152/**
1153 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1154 *
1155 * @np: Pointer to device tree node containing a list
1156 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1157 * @index: For properties holding a list of phandles, this is the index
1158 * into the list.
1159 * @suffix: Property suffix that is known to contain list of phandle(s) to
1160 * supplier(s)
1161 * @cells_name: property name that specifies phandles' arguments count
1162 *
1163 * This is a helper function to parse properties that have a known fixed suffix
1164 * and are a list of phandles and phandle arguments.
1165 *
1166 * Returns:
1167 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1168 * on it when done.
1169 * - NULL if no phandle found at index
1170 */
1171static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1172 const char *prop_name, int index,
1173 const char *suffix,
1174 const char *cells_name)
1175{
1176 struct of_phandle_args sup_args;
1177
1178 if (strcmp_suffix(str: prop_name, suffix))
1179 return NULL;
1180
1181 if (of_parse_phandle_with_args(np, list_name: prop_name, cells_name, index,
1182 out_args: &sup_args))
1183 return NULL;
1184
1185 return sup_args.np;
1186}
1187
1188#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1189static struct device_node *parse_##fname(struct device_node *np, \
1190 const char *prop_name, int index) \
1191{ \
1192 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1193}
1194
1195/**
1196 * struct supplier_bindings - Property parsing functions for suppliers
1197 *
1198 * @parse_prop: function name
1199 * parse_prop() finds the node corresponding to a supplier phandle
1200 * parse_prop.np: Pointer to device node holding supplier phandle property
1201 * parse_prop.prop_name: Name of property holding a phandle value
1202 * parse_prop.index: For properties holding a list of phandles, this is the
1203 * index into the list
1204 * @get_con_dev: If the consumer node containing the property is never converted
1205 * to a struct device, implement this ops so fw_devlink can use it
1206 * to find the true consumer.
1207 * @optional: Describes whether a supplier is mandatory or not
1208 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1209 * for this property.
1210 *
1211 * Returns:
1212 * parse_prop() return values are
1213 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1214 * on it when done.
1215 * - NULL if no phandle found at index
1216 */
1217struct supplier_bindings {
1218 struct device_node *(*parse_prop)(struct device_node *np,
1219 const char *prop_name, int index);
1220 struct device_node *(*get_con_dev)(struct device_node *np);
1221 bool optional;
1222 u8 fwlink_flags;
1223};
1224
1225DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1226DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1227DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1228DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1229DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1230DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1231DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1232DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1233DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1234DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1235DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1236DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1237DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1238DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1239DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1240DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1241DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1242DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1243DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1244DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1245DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1246DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1247DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1248DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1249DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1250DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1251DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1252DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1253DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1254DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1255DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1256DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1257
1258static struct device_node *parse_gpios(struct device_node *np,
1259 const char *prop_name, int index)
1260{
1261 if (!strcmp_suffix(str: prop_name, suffix: ",nr-gpios"))
1262 return NULL;
1263
1264 return parse_suffix_prop_cells(np, prop_name, index, suffix: "-gpios",
1265 cells_name: "#gpio-cells");
1266}
1267
1268static struct device_node *parse_iommu_maps(struct device_node *np,
1269 const char *prop_name, int index)
1270{
1271 if (strcmp(prop_name, "iommu-map"))
1272 return NULL;
1273
1274 return of_parse_phandle(np, phandle_name: prop_name, index: (index * 4) + 1);
1275}
1276
1277static struct device_node *parse_gpio_compat(struct device_node *np,
1278 const char *prop_name, int index)
1279{
1280 struct of_phandle_args sup_args;
1281
1282 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1283 return NULL;
1284
1285 /*
1286 * Ignore node with gpio-hog property since its gpios are all provided
1287 * by its parent.
1288 */
1289 if (of_property_read_bool(np, propname: "gpio-hog"))
1290 return NULL;
1291
1292 if (of_parse_phandle_with_args(np, list_name: prop_name, cells_name: "#gpio-cells", index,
1293 out_args: &sup_args))
1294 return NULL;
1295
1296 return sup_args.np;
1297}
1298
1299static struct device_node *parse_interrupts(struct device_node *np,
1300 const char *prop_name, int index)
1301{
1302 struct of_phandle_args sup_args;
1303
1304 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1305 return NULL;
1306
1307 if (strcmp(prop_name, "interrupts") &&
1308 strcmp(prop_name, "interrupts-extended"))
1309 return NULL;
1310
1311 return of_irq_parse_one(device: np, index, out_irq: &sup_args) ? NULL : sup_args.np;
1312}
1313
1314static struct device_node *parse_remote_endpoint(struct device_node *np,
1315 const char *prop_name,
1316 int index)
1317{
1318 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1319 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1320 return NULL;
1321
1322 return of_graph_get_remote_port_parent(np);
1323}
1324
1325static const struct supplier_bindings of_supplier_bindings[] = {
1326 { .parse_prop = parse_clocks, },
1327 { .parse_prop = parse_interconnects, },
1328 { .parse_prop = parse_iommus, .optional = true, },
1329 { .parse_prop = parse_iommu_maps, .optional = true, },
1330 { .parse_prop = parse_mboxes, },
1331 { .parse_prop = parse_io_channels, },
1332 { .parse_prop = parse_io_backends, },
1333 { .parse_prop = parse_interrupt_parent, },
1334 { .parse_prop = parse_dmas, .optional = true, },
1335 { .parse_prop = parse_power_domains, },
1336 { .parse_prop = parse_hwlocks, },
1337 { .parse_prop = parse_extcon, },
1338 { .parse_prop = parse_nvmem_cells, },
1339 { .parse_prop = parse_phys, },
1340 { .parse_prop = parse_wakeup_parent, },
1341 { .parse_prop = parse_pinctrl0, },
1342 { .parse_prop = parse_pinctrl1, },
1343 { .parse_prop = parse_pinctrl2, },
1344 { .parse_prop = parse_pinctrl3, },
1345 { .parse_prop = parse_pinctrl4, },
1346 { .parse_prop = parse_pinctrl5, },
1347 { .parse_prop = parse_pinctrl6, },
1348 { .parse_prop = parse_pinctrl7, },
1349 { .parse_prop = parse_pinctrl8, },
1350 {
1351 .parse_prop = parse_remote_endpoint,
1352 .get_con_dev = of_graph_get_port_parent,
1353 },
1354 { .parse_prop = parse_pwms, },
1355 { .parse_prop = parse_resets, },
1356 { .parse_prop = parse_leds, },
1357 { .parse_prop = parse_backlight, },
1358 { .parse_prop = parse_panel, },
1359 { .parse_prop = parse_msi_parent, },
1360 { .parse_prop = parse_gpio_compat, },
1361 { .parse_prop = parse_interrupts, },
1362 { .parse_prop = parse_regulators, },
1363 { .parse_prop = parse_gpio, },
1364 { .parse_prop = parse_gpios, },
1365 {
1366 .parse_prop = parse_post_init_providers,
1367 .fwlink_flags = FWLINK_FLAG_IGNORE,
1368 },
1369 {}
1370};
1371
1372/**
1373 * of_link_property - Create device links to suppliers listed in a property
1374 * @con_np: The consumer device tree node which contains the property
1375 * @prop_name: Name of property to be parsed
1376 *
1377 * This function checks if the property @prop_name that is present in the
1378 * @con_np device tree node is one of the known common device tree bindings
1379 * that list phandles to suppliers. If @prop_name isn't one, this function
1380 * doesn't do anything.
1381 *
1382 * If @prop_name is one, this function attempts to create fwnode links from the
1383 * consumer device tree node @con_np to all the suppliers device tree nodes
1384 * listed in @prop_name.
1385 *
1386 * Any failed attempt to create a fwnode link will NOT result in an immediate
1387 * return. of_link_property() must create links to all the available supplier
1388 * device tree nodes even when attempts to create a link to one or more
1389 * suppliers fail.
1390 */
1391static int of_link_property(struct device_node *con_np, const char *prop_name)
1392{
1393 struct device_node *phandle;
1394 const struct supplier_bindings *s = of_supplier_bindings;
1395 unsigned int i = 0;
1396 bool matched = false;
1397
1398 /* Do not stop at first failed link, link all available suppliers. */
1399 while (!matched && s->parse_prop) {
1400 if (s->optional && !fw_devlink_is_strict()) {
1401 s++;
1402 continue;
1403 }
1404
1405 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1406 struct device_node *con_dev_np;
1407
1408 con_dev_np = s->get_con_dev
1409 ? s->get_con_dev(con_np)
1410 : of_node_get(node: con_np);
1411 matched = true;
1412 i++;
1413 of_link_to_phandle(con_np: con_dev_np, sup_np: phandle, flags: s->fwlink_flags);
1414 of_node_put(node: phandle);
1415 of_node_put(node: con_dev_np);
1416 }
1417 s++;
1418 }
1419 return 0;
1420}
1421
1422static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1423{
1424#ifdef CONFIG_OF_ADDRESS
1425 return of_iomap(to_of_node(fwnode), index);
1426#else
1427 return NULL;
1428#endif
1429}
1430
1431static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1432 unsigned int index)
1433{
1434 return of_irq_get(to_of_node(fwnode), index);
1435}
1436
1437static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1438{
1439 struct property *p;
1440 struct device_node *con_np = to_of_node(fwnode);
1441
1442 if (IS_ENABLED(CONFIG_X86))
1443 return 0;
1444
1445 if (!con_np)
1446 return -EINVAL;
1447
1448 for_each_property_of_node(con_np, p)
1449 of_link_property(con_np, prop_name: p->name);
1450
1451 return 0;
1452}
1453
1454const struct fwnode_operations of_fwnode_ops = {
1455 .get = of_fwnode_get,
1456 .put = of_fwnode_put,
1457 .device_is_available = of_fwnode_device_is_available,
1458 .device_get_match_data = of_fwnode_device_get_match_data,
1459 .device_dma_supported = of_fwnode_device_dma_supported,
1460 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1461 .property_present = of_fwnode_property_present,
1462 .property_read_int_array = of_fwnode_property_read_int_array,
1463 .property_read_string_array = of_fwnode_property_read_string_array,
1464 .get_name = of_fwnode_get_name,
1465 .get_name_prefix = of_fwnode_get_name_prefix,
1466 .get_parent = of_fwnode_get_parent,
1467 .get_next_child_node = of_fwnode_get_next_child_node,
1468 .get_named_child_node = of_fwnode_get_named_child_node,
1469 .get_reference_args = of_fwnode_get_reference_args,
1470 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1471 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1472 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1473 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1474 .iomap = of_fwnode_iomap,
1475 .irq_get = of_fwnode_irq_get,
1476 .add_links = of_fwnode_add_links,
1477};
1478EXPORT_SYMBOL_GPL(of_fwnode_ops);
1479

source code of linux/drivers/of/property.c