1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Virtual Channel support
4 *
5 * Copyright (C) 2013 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 */
8
9#include <linux/bitfield.h>
10#include <linux/device.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/pci.h>
14#include <linux/pci_regs.h>
15#include <linux/types.h>
16
17#include "pci.h"
18
19/**
20 * pci_vc_save_restore_dwords - Save or restore a series of dwords
21 * @dev: device
22 * @pos: starting config space position
23 * @buf: buffer to save to or restore from
24 * @dwords: number of dwords to save/restore
25 * @save: whether to save or restore
26 */
27static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
28 u32 *buf, int dwords, bool save)
29{
30 int i;
31
32 for (i = 0; i < dwords; i++, buf++) {
33 if (save)
34 pci_read_config_dword(dev, where: pos + (i * 4), val: buf);
35 else
36 pci_write_config_dword(dev, where: pos + (i * 4), val: *buf);
37 }
38}
39
40/**
41 * pci_vc_load_arb_table - load and wait for VC arbitration table
42 * @dev: device
43 * @pos: starting position of VC capability (VC/VC9/MFVC)
44 *
45 * Set Load VC Arbitration Table bit requesting hardware to apply the VC
46 * Arbitration Table (previously loaded). When the VC Arbitration Table
47 * Status clears, hardware has latched the table into VC arbitration logic.
48 */
49static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
50{
51 u16 ctrl;
52
53 pci_read_config_word(dev, where: pos + PCI_VC_PORT_CTRL, val: &ctrl);
54 pci_write_config_word(dev, where: pos + PCI_VC_PORT_CTRL,
55 val: ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
56 if (pci_wait_for_pending(dev, pos: pos + PCI_VC_PORT_STATUS,
57 PCI_VC_PORT_STATUS_TABLE))
58 return;
59
60 pci_err(dev, "VC arbitration table failed to load\n");
61}
62
63/**
64 * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
65 * @dev: device
66 * @pos: starting position of VC capability (VC/VC9/MFVC)
67 * @res: VC resource number, ie. VCn (0-7)
68 *
69 * Set Load Port Arbitration Table bit requesting hardware to apply the Port
70 * Arbitration Table (previously loaded). When the Port Arbitration Table
71 * Status clears, hardware has latched the table into port arbitration logic.
72 */
73static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
74{
75 int ctrl_pos, status_pos;
76 u32 ctrl;
77
78 ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
79 status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
80
81 pci_read_config_dword(dev, where: ctrl_pos, val: &ctrl);
82 pci_write_config_dword(dev, where: ctrl_pos,
83 val: ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
84
85 if (pci_wait_for_pending(dev, pos: status_pos, PCI_VC_RES_STATUS_TABLE))
86 return;
87
88 pci_err(dev, "VC%d port arbitration table failed to load\n", res);
89}
90
91/**
92 * pci_vc_enable - Enable virtual channel
93 * @dev: device
94 * @pos: starting position of VC capability (VC/VC9/MFVC)
95 * @res: VC res number, ie. VCn (0-7)
96 *
97 * A VC is enabled by setting the enable bit in matching resource control
98 * registers on both sides of a link. We therefore need to find the opposite
99 * end of the link. To keep this simple we enable from the downstream device.
100 * RC devices do not have an upstream device, nor does it seem that VC9 do
101 * (spec is unclear). Once we find the upstream device, match the VC ID to
102 * get the correct resource, disable and enable on both ends.
103 */
104static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
105{
106 int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
107 u32 ctrl, header, cap1, ctrl2;
108 struct pci_dev *link = NULL;
109
110 /* Enable VCs from the downstream device */
111 if (!pci_is_pcie(dev) || !pcie_downstream_port(dev))
112 return;
113
114 ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
115 status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
116
117 pci_read_config_dword(dev, where: ctrl_pos, val: &ctrl);
118 id = ctrl & PCI_VC_RES_CTRL_ID;
119
120 pci_read_config_dword(dev, where: pos, val: &header);
121
122 /* If there is no opposite end of the link, skip to enable */
123 if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
124 pci_is_root_bus(pbus: dev->bus))
125 goto enable;
126
127 pos2 = pci_find_ext_capability(dev: dev->bus->self, PCI_EXT_CAP_ID_VC);
128 if (!pos2)
129 goto enable;
130
131 pci_read_config_dword(dev: dev->bus->self, where: pos2 + PCI_VC_PORT_CAP1, val: &cap1);
132 evcc = cap1 & PCI_VC_CAP1_EVCC;
133
134 /* VC0 is hardwired enabled, so we can start with 1 */
135 for (i = 1; i < evcc + 1; i++) {
136 ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
137 (i * PCI_CAP_VC_PER_VC_SIZEOF);
138 status_pos2 = pos2 + PCI_VC_RES_STATUS +
139 (i * PCI_CAP_VC_PER_VC_SIZEOF);
140 pci_read_config_dword(dev: dev->bus->self, where: ctrl_pos2, val: &ctrl2);
141 if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
142 link = dev->bus->self;
143 break;
144 }
145 }
146
147 if (!link)
148 goto enable;
149
150 /* Disable if enabled */
151 if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
152 ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
153 pci_write_config_dword(dev: link, where: ctrl_pos2, val: ctrl2);
154 }
155
156 /* Enable on both ends */
157 ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
158 pci_write_config_dword(dev: link, where: ctrl_pos2, val: ctrl2);
159enable:
160 ctrl |= PCI_VC_RES_CTRL_ENABLE;
161 pci_write_config_dword(dev, where: ctrl_pos, val: ctrl);
162
163 if (!pci_wait_for_pending(dev, pos: status_pos, PCI_VC_RES_STATUS_NEGO))
164 pci_err(dev, "VC%d negotiation stuck pending\n", id);
165
166 if (link && !pci_wait_for_pending(dev: link, pos: status_pos2,
167 PCI_VC_RES_STATUS_NEGO))
168 pci_err(link, "VC%d negotiation stuck pending\n", id);
169}
170
171/**
172 * pci_vc_do_save_buffer - Size, save, or restore VC state
173 * @dev: device
174 * @pos: starting position of VC capability (VC/VC9/MFVC)
175 * @save_state: buffer for save/restore
176 * @save: if provided a buffer, this indicates what to do with it
177 *
178 * Walking Virtual Channel config space to size, save, or restore it
179 * is complicated, so we do it all from one function to reduce code and
180 * guarantee ordering matches in the buffer. When called with NULL
181 * @save_state, return the size of the necessary save buffer. When called
182 * with a non-NULL @save_state, @save determines whether we save to the
183 * buffer or restore from it.
184 */
185static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
186 struct pci_cap_saved_state *save_state,
187 bool save)
188{
189 u32 cap1;
190 char evcc, lpevcc, parb_size;
191 int i, len = 0;
192 u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
193
194 /* Sanity check buffer size for save/restore */
195 if (buf && save_state->cap.size !=
196 pci_vc_do_save_buffer(dev, pos, NULL, save)) {
197 pci_err(dev, "VC save buffer size does not match @0x%x\n", pos);
198 return -ENOMEM;
199 }
200
201 pci_read_config_dword(dev, where: pos + PCI_VC_PORT_CAP1, val: &cap1);
202 /* Extended VC Count (not counting VC0) */
203 evcc = cap1 & PCI_VC_CAP1_EVCC;
204 /* Low Priority Extended VC Count (not counting VC0) */
205 lpevcc = FIELD_GET(PCI_VC_CAP1_LPEVCC, cap1);
206 /* Port Arbitration Table Entry Size (bits) */
207 parb_size = 1 << FIELD_GET(PCI_VC_CAP1_ARB_SIZE, cap1);
208
209 /*
210 * Port VC Control Register contains VC Arbitration Select, which
211 * cannot be modified when more than one LPVC is in operation. We
212 * therefore save/restore it first, as only VC0 should be enabled
213 * after device reset.
214 */
215 if (buf) {
216 if (save)
217 pci_read_config_word(dev, where: pos + PCI_VC_PORT_CTRL,
218 val: (u16 *)buf);
219 else
220 pci_write_config_word(dev, where: pos + PCI_VC_PORT_CTRL,
221 val: *(u16 *)buf);
222 buf += 4;
223 }
224 len += 4;
225
226 /*
227 * If we have any Low Priority VCs and a VC Arbitration Table Offset
228 * in Port VC Capability Register 2 then save/restore it next.
229 */
230 if (lpevcc) {
231 u32 cap2;
232 int vcarb_offset;
233
234 pci_read_config_dword(dev, where: pos + PCI_VC_PORT_CAP2, val: &cap2);
235 vcarb_offset = FIELD_GET(PCI_VC_CAP2_ARB_OFF, cap2) * 16;
236
237 if (vcarb_offset) {
238 int size, vcarb_phases = 0;
239
240 if (cap2 & PCI_VC_CAP2_128_PHASE)
241 vcarb_phases = 128;
242 else if (cap2 & PCI_VC_CAP2_64_PHASE)
243 vcarb_phases = 64;
244 else if (cap2 & PCI_VC_CAP2_32_PHASE)
245 vcarb_phases = 32;
246
247 /* Fixed 4 bits per phase per lpevcc (plus VC0) */
248 size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
249
250 if (size && buf) {
251 pci_vc_save_restore_dwords(dev,
252 pos: pos + vcarb_offset,
253 buf: (u32 *)buf,
254 dwords: size / 4, save);
255 /*
256 * On restore, we need to signal hardware to
257 * re-load the VC Arbitration Table.
258 */
259 if (!save)
260 pci_vc_load_arb_table(dev, pos);
261
262 buf += size;
263 }
264 len += size;
265 }
266 }
267
268 /*
269 * In addition to each VC Resource Control Register, we may have a
270 * Port Arbitration Table attached to each VC. The Port Arbitration
271 * Table Offset in each VC Resource Capability Register tells us if
272 * it exists. The entry size is global from the Port VC Capability
273 * Register1 above. The number of phases is determined per VC.
274 */
275 for (i = 0; i < evcc + 1; i++) {
276 u32 cap;
277 int parb_offset;
278
279 pci_read_config_dword(dev, where: pos + PCI_VC_RES_CAP +
280 (i * PCI_CAP_VC_PER_VC_SIZEOF), val: &cap);
281 parb_offset = FIELD_GET(PCI_VC_RES_CAP_ARB_OFF, cap) * 16;
282 if (parb_offset) {
283 int size, parb_phases = 0;
284
285 if (cap & PCI_VC_RES_CAP_256_PHASE)
286 parb_phases = 256;
287 else if (cap & (PCI_VC_RES_CAP_128_PHASE |
288 PCI_VC_RES_CAP_128_PHASE_TB))
289 parb_phases = 128;
290 else if (cap & PCI_VC_RES_CAP_64_PHASE)
291 parb_phases = 64;
292 else if (cap & PCI_VC_RES_CAP_32_PHASE)
293 parb_phases = 32;
294
295 size = (parb_size * parb_phases) / 8;
296
297 if (size && buf) {
298 pci_vc_save_restore_dwords(dev,
299 pos: pos + parb_offset,
300 buf: (u32 *)buf,
301 dwords: size / 4, save);
302 buf += size;
303 }
304 len += size;
305 }
306
307 /* VC Resource Control Register */
308 if (buf) {
309 int ctrl_pos = pos + PCI_VC_RES_CTRL +
310 (i * PCI_CAP_VC_PER_VC_SIZEOF);
311 if (save)
312 pci_read_config_dword(dev, where: ctrl_pos,
313 val: (u32 *)buf);
314 else {
315 u32 tmp, ctrl = *(u32 *)buf;
316 /*
317 * For an FLR case, the VC config may remain.
318 * Preserve enable bit, restore the rest.
319 */
320 pci_read_config_dword(dev, where: ctrl_pos, val: &tmp);
321 tmp &= PCI_VC_RES_CTRL_ENABLE;
322 tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
323 pci_write_config_dword(dev, where: ctrl_pos, val: tmp);
324 /* Load port arbitration table if used */
325 if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
326 pci_vc_load_port_arb_table(dev, pos, res: i);
327 /* Re-enable if needed */
328 if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
329 pci_vc_enable(dev, pos, res: i);
330 }
331 buf += 4;
332 }
333 len += 4;
334 }
335
336 return buf ? 0 : len;
337}
338
339static struct {
340 u16 id;
341 const char *name;
342} vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
343 { PCI_EXT_CAP_ID_VC, "VC" },
344 { PCI_EXT_CAP_ID_VC9, "VC9" } };
345
346/**
347 * pci_save_vc_state - Save VC state to pre-allocate save buffer
348 * @dev: device
349 *
350 * For each type of VC capability, VC/VC9/MFVC, find the capability and
351 * save it to the pre-allocated save buffer.
352 */
353int pci_save_vc_state(struct pci_dev *dev)
354{
355 int i;
356
357 for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
358 int pos, ret;
359 struct pci_cap_saved_state *save_state;
360
361 pos = pci_find_ext_capability(dev, cap: vc_caps[i].id);
362 if (!pos)
363 continue;
364
365 save_state = pci_find_saved_ext_cap(dev, cap: vc_caps[i].id);
366 if (!save_state) {
367 pci_err(dev, "%s buffer not found in %s\n",
368 vc_caps[i].name, __func__);
369 return -ENOMEM;
370 }
371
372 ret = pci_vc_do_save_buffer(dev, pos, save_state, save: true);
373 if (ret) {
374 pci_err(dev, "%s save unsuccessful %s\n",
375 vc_caps[i].name, __func__);
376 return ret;
377 }
378 }
379
380 return 0;
381}
382
383/**
384 * pci_restore_vc_state - Restore VC state from save buffer
385 * @dev: device
386 *
387 * For each type of VC capability, VC/VC9/MFVC, find the capability and
388 * restore it from the previously saved buffer.
389 */
390void pci_restore_vc_state(struct pci_dev *dev)
391{
392 int i;
393
394 for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
395 int pos;
396 struct pci_cap_saved_state *save_state;
397
398 pos = pci_find_ext_capability(dev, cap: vc_caps[i].id);
399 save_state = pci_find_saved_ext_cap(dev, cap: vc_caps[i].id);
400 if (!save_state || !pos)
401 continue;
402
403 pci_vc_do_save_buffer(dev, pos, save_state, save: false);
404 }
405}
406
407/**
408 * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
409 * @dev: device
410 *
411 * For each type of VC capability, VC/VC9/MFVC, find the capability, size
412 * it, and allocate a buffer for save/restore.
413 */
414void pci_allocate_vc_save_buffers(struct pci_dev *dev)
415{
416 int i;
417
418 for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
419 int len, pos = pci_find_ext_capability(dev, cap: vc_caps[i].id);
420
421 if (!pos)
422 continue;
423
424 len = pci_vc_do_save_buffer(dev, pos, NULL, save: false);
425 if (pci_add_ext_cap_save_buffer(dev, cap: vc_caps[i].id, size: len))
426 pci_err(dev, "unable to preallocate %s save buffer\n",
427 vc_caps[i].name);
428 }
429}
430

source code of linux/drivers/pci/vc.c