| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | // |
| 3 | // helpers.c -- Voltage/Current Regulator framework helper functions. |
| 4 | // |
| 5 | // Copyright 2007, 2008 Wolfson Microelectronics PLC. |
| 6 | // Copyright 2008 SlimLogic Ltd. |
| 7 | |
| 8 | #include <linux/bitops.h> |
| 9 | #include <linux/delay.h> |
| 10 | #include <linux/err.h> |
| 11 | #include <linux/export.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/regmap.h> |
| 14 | #include <linux/regulator/consumer.h> |
| 15 | #include <linux/regulator/driver.h> |
| 16 | |
| 17 | #include "internal.h" |
| 18 | |
| 19 | /** |
| 20 | * regulator_is_enabled_regmap - standard is_enabled() for regmap users |
| 21 | * |
| 22 | * @rdev: regulator to operate on |
| 23 | * |
| 24 | * Regulators that use regmap for their register I/O can set the |
| 25 | * enable_reg and enable_mask fields in their descriptor and then use |
| 26 | * this as their is_enabled operation, saving some code. |
| 27 | */ |
| 28 | int regulator_is_enabled_regmap(struct regulator_dev *rdev) |
| 29 | { |
| 30 | unsigned int val; |
| 31 | int ret; |
| 32 | |
| 33 | ret = regmap_read(map: rdev->regmap, reg: rdev->desc->enable_reg, val: &val); |
| 34 | if (ret != 0) |
| 35 | return ret; |
| 36 | |
| 37 | val &= rdev->desc->enable_mask; |
| 38 | |
| 39 | if (rdev->desc->enable_is_inverted) { |
| 40 | if (rdev->desc->enable_val) |
| 41 | return val != rdev->desc->enable_val; |
| 42 | return val == 0; |
| 43 | } else { |
| 44 | if (rdev->desc->enable_val) |
| 45 | return val == rdev->desc->enable_val; |
| 46 | return val != 0; |
| 47 | } |
| 48 | } |
| 49 | EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); |
| 50 | |
| 51 | /** |
| 52 | * regulator_enable_regmap - standard enable() for regmap users |
| 53 | * |
| 54 | * @rdev: regulator to operate on |
| 55 | * |
| 56 | * Regulators that use regmap for their register I/O can set the |
| 57 | * enable_reg and enable_mask fields in their descriptor and then use |
| 58 | * this as their enable() operation, saving some code. |
| 59 | */ |
| 60 | int regulator_enable_regmap(struct regulator_dev *rdev) |
| 61 | { |
| 62 | unsigned int val; |
| 63 | |
| 64 | if (rdev->desc->enable_is_inverted) { |
| 65 | val = rdev->desc->disable_val; |
| 66 | } else { |
| 67 | val = rdev->desc->enable_val; |
| 68 | if (!val) |
| 69 | val = rdev->desc->enable_mask; |
| 70 | } |
| 71 | |
| 72 | return regmap_update_bits(map: rdev->regmap, reg: rdev->desc->enable_reg, |
| 73 | mask: rdev->desc->enable_mask, val); |
| 74 | } |
| 75 | EXPORT_SYMBOL_GPL(regulator_enable_regmap); |
| 76 | |
| 77 | /** |
| 78 | * regulator_disable_regmap - standard disable() for regmap users |
| 79 | * |
| 80 | * @rdev: regulator to operate on |
| 81 | * |
| 82 | * Regulators that use regmap for their register I/O can set the |
| 83 | * enable_reg and enable_mask fields in their descriptor and then use |
| 84 | * this as their disable() operation, saving some code. |
| 85 | */ |
| 86 | int regulator_disable_regmap(struct regulator_dev *rdev) |
| 87 | { |
| 88 | unsigned int val; |
| 89 | |
| 90 | if (rdev->desc->enable_is_inverted) { |
| 91 | val = rdev->desc->enable_val; |
| 92 | if (!val) |
| 93 | val = rdev->desc->enable_mask; |
| 94 | } else { |
| 95 | val = rdev->desc->disable_val; |
| 96 | } |
| 97 | |
| 98 | return regmap_update_bits(map: rdev->regmap, reg: rdev->desc->enable_reg, |
| 99 | mask: rdev->desc->enable_mask, val); |
| 100 | } |
| 101 | EXPORT_SYMBOL_GPL(regulator_disable_regmap); |
| 102 | |
| 103 | static int regulator_range_selector_to_index(struct regulator_dev *rdev, |
| 104 | unsigned int rval) |
| 105 | { |
| 106 | int i; |
| 107 | |
| 108 | if (!rdev->desc->linear_range_selectors_bitfield) |
| 109 | return -EINVAL; |
| 110 | |
| 111 | rval &= rdev->desc->vsel_range_mask; |
| 112 | rval >>= ffs(rdev->desc->vsel_range_mask) - 1; |
| 113 | |
| 114 | for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| 115 | if (rdev->desc->linear_range_selectors_bitfield[i] == rval) |
| 116 | return i; |
| 117 | } |
| 118 | return -EINVAL; |
| 119 | } |
| 120 | |
| 121 | /** |
| 122 | * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel |
| 123 | * |
| 124 | * @rdev: regulator to operate on |
| 125 | * |
| 126 | * Regulators that use regmap for their register I/O and use pickable |
| 127 | * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask |
| 128 | * fields in their descriptor and then use this as their get_voltage_sel |
| 129 | * operation, saving some code. |
| 130 | */ |
| 131 | int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev) |
| 132 | { |
| 133 | unsigned int r_val; |
| 134 | int range; |
| 135 | unsigned int val; |
| 136 | int ret; |
| 137 | unsigned int voltages = 0; |
| 138 | const struct linear_range *r = rdev->desc->linear_ranges; |
| 139 | |
| 140 | if (!r) |
| 141 | return -EINVAL; |
| 142 | |
| 143 | ret = regmap_read(map: rdev->regmap, reg: rdev->desc->vsel_reg, val: &val); |
| 144 | if (ret != 0) |
| 145 | return ret; |
| 146 | |
| 147 | ret = regmap_read(map: rdev->regmap, reg: rdev->desc->vsel_range_reg, val: &r_val); |
| 148 | if (ret != 0) |
| 149 | return ret; |
| 150 | |
| 151 | val &= rdev->desc->vsel_mask; |
| 152 | val >>= ffs(rdev->desc->vsel_mask) - 1; |
| 153 | |
| 154 | range = regulator_range_selector_to_index(rdev, rval: r_val); |
| 155 | if (range < 0) |
| 156 | return -EINVAL; |
| 157 | |
| 158 | voltages = linear_range_values_in_range_array(r, ranges: range); |
| 159 | |
| 160 | return val + voltages; |
| 161 | } |
| 162 | EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap); |
| 163 | |
| 164 | static int write_separate_vsel_and_range(struct regulator_dev *rdev, |
| 165 | unsigned int sel, unsigned int range) |
| 166 | { |
| 167 | bool range_updated; |
| 168 | int ret; |
| 169 | |
| 170 | ret = regmap_update_bits_base(map: rdev->regmap, reg: rdev->desc->vsel_range_reg, |
| 171 | mask: rdev->desc->vsel_range_mask, |
| 172 | val: range, change: &range_updated, async: false, force: false); |
| 173 | if (ret) |
| 174 | return ret; |
| 175 | |
| 176 | /* |
| 177 | * Some PMICs treat the vsel_reg same as apply-bit. Force it to be |
| 178 | * written if the range changed, even if the old selector was same as |
| 179 | * the new one |
| 180 | */ |
| 181 | if (rdev->desc->range_applied_by_vsel && range_updated) |
| 182 | return regmap_write_bits(map: rdev->regmap, |
| 183 | reg: rdev->desc->vsel_reg, |
| 184 | mask: rdev->desc->vsel_mask, val: sel); |
| 185 | |
| 186 | return regmap_update_bits(map: rdev->regmap, reg: rdev->desc->vsel_reg, |
| 187 | mask: rdev->desc->vsel_mask, val: sel); |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel |
| 192 | * |
| 193 | * @rdev: regulator to operate on |
| 194 | * @sel: Selector to set |
| 195 | * |
| 196 | * Regulators that use regmap for their register I/O and use pickable |
| 197 | * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask |
| 198 | * fields in their descriptor and then use this as their set_voltage_sel |
| 199 | * operation, saving some code. |
| 200 | */ |
| 201 | int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev, |
| 202 | unsigned int sel) |
| 203 | { |
| 204 | unsigned int range; |
| 205 | int ret, i; |
| 206 | unsigned int voltages_in_range = 0; |
| 207 | |
| 208 | for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| 209 | const struct linear_range *r; |
| 210 | |
| 211 | r = &rdev->desc->linear_ranges[i]; |
| 212 | voltages_in_range = linear_range_values_in_range(r); |
| 213 | |
| 214 | if (sel < voltages_in_range) |
| 215 | break; |
| 216 | sel -= voltages_in_range; |
| 217 | } |
| 218 | |
| 219 | if (i == rdev->desc->n_linear_ranges) |
| 220 | return -EINVAL; |
| 221 | |
| 222 | sel <<= ffs(rdev->desc->vsel_mask) - 1; |
| 223 | sel += rdev->desc->linear_ranges[i].min_sel; |
| 224 | |
| 225 | range = rdev->desc->linear_range_selectors_bitfield[i]; |
| 226 | range <<= ffs(rdev->desc->vsel_range_mask) - 1; |
| 227 | |
| 228 | if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) |
| 229 | ret = regmap_update_bits(map: rdev->regmap, reg: rdev->desc->vsel_reg, |
| 230 | mask: rdev->desc->vsel_range_mask | |
| 231 | rdev->desc->vsel_mask, val: sel | range); |
| 232 | else |
| 233 | ret = write_separate_vsel_and_range(rdev, sel, range); |
| 234 | |
| 235 | if (ret) |
| 236 | return ret; |
| 237 | |
| 238 | if (rdev->desc->apply_bit) |
| 239 | ret = regmap_update_bits(map: rdev->regmap, reg: rdev->desc->apply_reg, |
| 240 | mask: rdev->desc->apply_bit, |
| 241 | val: rdev->desc->apply_bit); |
| 242 | return ret; |
| 243 | } |
| 244 | EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap); |
| 245 | |
| 246 | /** |
| 247 | * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users |
| 248 | * |
| 249 | * @rdev: regulator to operate on |
| 250 | * |
| 251 | * Regulators that use regmap for their register I/O can set the |
| 252 | * vsel_reg and vsel_mask fields in their descriptor and then use this |
| 253 | * as their get_voltage_sel operation, saving some code. |
| 254 | */ |
| 255 | int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) |
| 256 | { |
| 257 | unsigned int val; |
| 258 | int ret; |
| 259 | |
| 260 | ret = regmap_read(map: rdev->regmap, reg: rdev->desc->vsel_reg, val: &val); |
| 261 | if (ret != 0) |
| 262 | return ret; |
| 263 | |
| 264 | val &= rdev->desc->vsel_mask; |
| 265 | val >>= ffs(rdev->desc->vsel_mask) - 1; |
| 266 | |
| 267 | return val; |
| 268 | } |
| 269 | EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); |
| 270 | |
| 271 | /** |
| 272 | * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users |
| 273 | * |
| 274 | * @rdev: regulator to operate on |
| 275 | * @sel: Selector to set |
| 276 | * |
| 277 | * Regulators that use regmap for their register I/O can set the |
| 278 | * vsel_reg and vsel_mask fields in their descriptor and then use this |
| 279 | * as their set_voltage_sel operation, saving some code. |
| 280 | */ |
| 281 | int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) |
| 282 | { |
| 283 | int ret; |
| 284 | |
| 285 | sel <<= ffs(rdev->desc->vsel_mask) - 1; |
| 286 | |
| 287 | ret = regmap_update_bits(map: rdev->regmap, reg: rdev->desc->vsel_reg, |
| 288 | mask: rdev->desc->vsel_mask, val: sel); |
| 289 | if (ret) |
| 290 | return ret; |
| 291 | |
| 292 | if (rdev->desc->apply_bit) |
| 293 | ret = regmap_update_bits(map: rdev->regmap, reg: rdev->desc->apply_reg, |
| 294 | mask: rdev->desc->apply_bit, |
| 295 | val: rdev->desc->apply_bit); |
| 296 | return ret; |
| 297 | } |
| 298 | EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); |
| 299 | |
| 300 | /** |
| 301 | * regulator_map_voltage_iterate - map_voltage() based on list_voltage() |
| 302 | * |
| 303 | * @rdev: Regulator to operate on |
| 304 | * @min_uV: Lower bound for voltage |
| 305 | * @max_uV: Upper bound for voltage |
| 306 | * |
| 307 | * Drivers implementing set_voltage_sel() and list_voltage() can use |
| 308 | * this as their map_voltage() operation. It will find a suitable |
| 309 | * voltage by calling list_voltage() until it gets something in bounds |
| 310 | * for the requested voltages. |
| 311 | */ |
| 312 | int regulator_map_voltage_iterate(struct regulator_dev *rdev, |
| 313 | int min_uV, int max_uV) |
| 314 | { |
| 315 | int best_val = INT_MAX; |
| 316 | int selector = 0; |
| 317 | int i, ret; |
| 318 | |
| 319 | /* Find the smallest voltage that falls within the specified |
| 320 | * range. |
| 321 | */ |
| 322 | for (i = 0; i < rdev->desc->n_voltages; i++) { |
| 323 | ret = rdev->desc->ops->list_voltage(rdev, i); |
| 324 | if (ret < 0) |
| 325 | continue; |
| 326 | |
| 327 | if (ret < best_val && ret >= min_uV && ret <= max_uV) { |
| 328 | best_val = ret; |
| 329 | selector = i; |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | if (best_val != INT_MAX) |
| 334 | return selector; |
| 335 | else |
| 336 | return -EINVAL; |
| 337 | } |
| 338 | EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); |
| 339 | |
| 340 | /** |
| 341 | * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list |
| 342 | * |
| 343 | * @rdev: Regulator to operate on |
| 344 | * @min_uV: Lower bound for voltage |
| 345 | * @max_uV: Upper bound for voltage |
| 346 | * |
| 347 | * Drivers that have ascendant voltage list can use this as their |
| 348 | * map_voltage() operation. |
| 349 | */ |
| 350 | int regulator_map_voltage_ascend(struct regulator_dev *rdev, |
| 351 | int min_uV, int max_uV) |
| 352 | { |
| 353 | int i, ret; |
| 354 | |
| 355 | for (i = 0; i < rdev->desc->n_voltages; i++) { |
| 356 | ret = rdev->desc->ops->list_voltage(rdev, i); |
| 357 | if (ret < 0) |
| 358 | continue; |
| 359 | |
| 360 | if (ret > max_uV) |
| 361 | break; |
| 362 | |
| 363 | if (ret >= min_uV && ret <= max_uV) |
| 364 | return i; |
| 365 | } |
| 366 | |
| 367 | return -EINVAL; |
| 368 | } |
| 369 | EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend); |
| 370 | |
| 371 | /** |
| 372 | * regulator_map_voltage_linear - map_voltage() for simple linear mappings |
| 373 | * |
| 374 | * @rdev: Regulator to operate on |
| 375 | * @min_uV: Lower bound for voltage |
| 376 | * @max_uV: Upper bound for voltage |
| 377 | * |
| 378 | * Drivers providing min_uV and uV_step in their regulator_desc can |
| 379 | * use this as their map_voltage() operation. |
| 380 | */ |
| 381 | int regulator_map_voltage_linear(struct regulator_dev *rdev, |
| 382 | int min_uV, int max_uV) |
| 383 | { |
| 384 | int ret, voltage; |
| 385 | |
| 386 | /* Allow uV_step to be 0 for fixed voltage */ |
| 387 | if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { |
| 388 | if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) |
| 389 | return 0; |
| 390 | else |
| 391 | return -EINVAL; |
| 392 | } |
| 393 | |
| 394 | if (!rdev->desc->uV_step) { |
| 395 | BUG_ON(!rdev->desc->uV_step); |
| 396 | return -EINVAL; |
| 397 | } |
| 398 | |
| 399 | if (min_uV < rdev->desc->min_uV) |
| 400 | min_uV = rdev->desc->min_uV; |
| 401 | |
| 402 | ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); |
| 403 | if (ret < 0) |
| 404 | return ret; |
| 405 | |
| 406 | ret += rdev->desc->linear_min_sel; |
| 407 | |
| 408 | /* Map back into a voltage to verify we're still in bounds */ |
| 409 | voltage = rdev->desc->ops->list_voltage(rdev, ret); |
| 410 | if (voltage < min_uV || voltage > max_uV) |
| 411 | return -EINVAL; |
| 412 | |
| 413 | return ret; |
| 414 | } |
| 415 | EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); |
| 416 | |
| 417 | /** |
| 418 | * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges |
| 419 | * |
| 420 | * @rdev: Regulator to operate on |
| 421 | * @min_uV: Lower bound for voltage |
| 422 | * @max_uV: Upper bound for voltage |
| 423 | * |
| 424 | * Drivers providing linear_ranges in their descriptor can use this as |
| 425 | * their map_voltage() callback. |
| 426 | */ |
| 427 | int regulator_map_voltage_linear_range(struct regulator_dev *rdev, |
| 428 | int min_uV, int max_uV) |
| 429 | { |
| 430 | const struct linear_range *range; |
| 431 | int ret = -EINVAL; |
| 432 | unsigned int sel; |
| 433 | bool found; |
| 434 | int voltage, i; |
| 435 | |
| 436 | if (!rdev->desc->n_linear_ranges) { |
| 437 | BUG_ON(!rdev->desc->n_linear_ranges); |
| 438 | return -EINVAL; |
| 439 | } |
| 440 | |
| 441 | for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| 442 | range = &rdev->desc->linear_ranges[i]; |
| 443 | |
| 444 | ret = linear_range_get_selector_high(r: range, val: min_uV, selector: &sel, |
| 445 | found: &found); |
| 446 | if (ret) |
| 447 | continue; |
| 448 | ret = sel; |
| 449 | |
| 450 | /* |
| 451 | * Map back into a voltage to verify we're still in bounds. |
| 452 | * If we are not, then continue checking rest of the ranges. |
| 453 | */ |
| 454 | voltage = rdev->desc->ops->list_voltage(rdev, sel); |
| 455 | if (voltage >= min_uV && voltage <= max_uV) |
| 456 | break; |
| 457 | } |
| 458 | |
| 459 | if (i == rdev->desc->n_linear_ranges) |
| 460 | return -EINVAL; |
| 461 | |
| 462 | return ret; |
| 463 | } |
| 464 | EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range); |
| 465 | |
| 466 | /** |
| 467 | * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges |
| 468 | * |
| 469 | * @rdev: Regulator to operate on |
| 470 | * @min_uV: Lower bound for voltage |
| 471 | * @max_uV: Upper bound for voltage |
| 472 | * |
| 473 | * Drivers providing pickable linear_ranges in their descriptor can use |
| 474 | * this as their map_voltage() callback. |
| 475 | */ |
| 476 | int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev, |
| 477 | int min_uV, int max_uV) |
| 478 | { |
| 479 | const struct linear_range *range; |
| 480 | int ret = -EINVAL; |
| 481 | int voltage, i; |
| 482 | unsigned int selector = 0; |
| 483 | |
| 484 | if (!rdev->desc->n_linear_ranges) { |
| 485 | BUG_ON(!rdev->desc->n_linear_ranges); |
| 486 | return -EINVAL; |
| 487 | } |
| 488 | |
| 489 | for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| 490 | int linear_max_uV; |
| 491 | bool found; |
| 492 | unsigned int sel; |
| 493 | |
| 494 | range = &rdev->desc->linear_ranges[i]; |
| 495 | linear_max_uV = linear_range_get_max_value(r: range); |
| 496 | |
| 497 | if (!(min_uV <= linear_max_uV && max_uV >= range->min)) { |
| 498 | selector += linear_range_values_in_range(r: range); |
| 499 | continue; |
| 500 | } |
| 501 | |
| 502 | ret = linear_range_get_selector_high(r: range, val: min_uV, selector: &sel, |
| 503 | found: &found); |
| 504 | if (ret) { |
| 505 | selector += linear_range_values_in_range(r: range); |
| 506 | continue; |
| 507 | } |
| 508 | |
| 509 | ret = selector + sel - range->min_sel; |
| 510 | |
| 511 | voltage = rdev->desc->ops->list_voltage(rdev, ret); |
| 512 | |
| 513 | /* |
| 514 | * Map back into a voltage to verify we're still in bounds. |
| 515 | * We may have overlapping voltage ranges. Hence we don't |
| 516 | * exit but retry until we have checked all ranges. |
| 517 | */ |
| 518 | if (voltage < min_uV || voltage > max_uV) |
| 519 | selector += linear_range_values_in_range(r: range); |
| 520 | else |
| 521 | break; |
| 522 | } |
| 523 | |
| 524 | if (i == rdev->desc->n_linear_ranges) |
| 525 | return -EINVAL; |
| 526 | |
| 527 | return ret; |
| 528 | } |
| 529 | EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range); |
| 530 | |
| 531 | /** |
| 532 | * regulator_desc_list_voltage_linear - List voltages with simple calculation |
| 533 | * |
| 534 | * @desc: Regulator desc for regulator which volatges are to be listed |
| 535 | * @selector: Selector to convert into a voltage |
| 536 | * |
| 537 | * Regulators with a simple linear mapping between voltages and |
| 538 | * selectors can set min_uV and uV_step in the regulator descriptor |
| 539 | * and then use this function prior regulator registration to list |
| 540 | * the voltages. This is useful when voltages need to be listed during |
| 541 | * device-tree parsing. |
| 542 | */ |
| 543 | int regulator_desc_list_voltage_linear(const struct regulator_desc *desc, |
| 544 | unsigned int selector) |
| 545 | { |
| 546 | if (selector >= desc->n_voltages) |
| 547 | return -EINVAL; |
| 548 | |
| 549 | if (selector < desc->linear_min_sel) |
| 550 | return 0; |
| 551 | |
| 552 | selector -= desc->linear_min_sel; |
| 553 | |
| 554 | return desc->min_uV + (desc->uV_step * selector); |
| 555 | } |
| 556 | EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear); |
| 557 | |
| 558 | /** |
| 559 | * regulator_list_voltage_linear - List voltages with simple calculation |
| 560 | * |
| 561 | * @rdev: Regulator device |
| 562 | * @selector: Selector to convert into a voltage |
| 563 | * |
| 564 | * Regulators with a simple linear mapping between voltages and |
| 565 | * selectors can set min_uV and uV_step in the regulator descriptor |
| 566 | * and then use this function as their list_voltage() operation, |
| 567 | */ |
| 568 | int regulator_list_voltage_linear(struct regulator_dev *rdev, |
| 569 | unsigned int selector) |
| 570 | { |
| 571 | return regulator_desc_list_voltage_linear(rdev->desc, selector); |
| 572 | } |
| 573 | EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); |
| 574 | |
| 575 | /** |
| 576 | * regulator_list_voltage_pickable_linear_range - pickable range list voltages |
| 577 | * |
| 578 | * @rdev: Regulator device |
| 579 | * @selector: Selector to convert into a voltage |
| 580 | * |
| 581 | * list_voltage() operation, intended to be used by drivers utilizing pickable |
| 582 | * ranges helpers. |
| 583 | */ |
| 584 | int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev, |
| 585 | unsigned int selector) |
| 586 | { |
| 587 | const struct linear_range *range; |
| 588 | int i; |
| 589 | unsigned int all_sels = 0; |
| 590 | |
| 591 | if (!rdev->desc->n_linear_ranges) { |
| 592 | BUG_ON(!rdev->desc->n_linear_ranges); |
| 593 | return -EINVAL; |
| 594 | } |
| 595 | |
| 596 | for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| 597 | unsigned int sel_indexes; |
| 598 | |
| 599 | range = &rdev->desc->linear_ranges[i]; |
| 600 | |
| 601 | sel_indexes = linear_range_values_in_range(r: range) - 1; |
| 602 | |
| 603 | if (all_sels + sel_indexes >= selector) { |
| 604 | selector -= all_sels; |
| 605 | /* |
| 606 | * As we see here, pickable ranges work only as |
| 607 | * long as the first selector for each pickable |
| 608 | * range is 0, and the each subsequent range for |
| 609 | * this 'pick' follow immediately at next unused |
| 610 | * selector (Eg. there is no gaps between ranges). |
| 611 | * I think this is fine but it probably should be |
| 612 | * documented. OTOH, whole pickable range stuff |
| 613 | * might benefit from some documentation |
| 614 | */ |
| 615 | return range->min + (range->step * selector); |
| 616 | } |
| 617 | |
| 618 | all_sels += (sel_indexes + 1); |
| 619 | } |
| 620 | |
| 621 | return -EINVAL; |
| 622 | } |
| 623 | EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range); |
| 624 | |
| 625 | /** |
| 626 | * regulator_desc_list_voltage_linear_range - List voltages for linear ranges |
| 627 | * |
| 628 | * @desc: Regulator desc for regulator which volatges are to be listed |
| 629 | * @selector: Selector to convert into a voltage |
| 630 | * |
| 631 | * Regulators with a series of simple linear mappings between voltages |
| 632 | * and selectors who have set linear_ranges in the regulator descriptor |
| 633 | * can use this function prior regulator registration to list voltages. |
| 634 | * This is useful when voltages need to be listed during device-tree |
| 635 | * parsing. |
| 636 | */ |
| 637 | int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc, |
| 638 | unsigned int selector) |
| 639 | { |
| 640 | unsigned int val; |
| 641 | int ret; |
| 642 | |
| 643 | BUG_ON(!desc->n_linear_ranges); |
| 644 | |
| 645 | ret = linear_range_get_value_array(r: desc->linear_ranges, |
| 646 | ranges: desc->n_linear_ranges, selector, |
| 647 | val: &val); |
| 648 | if (ret) |
| 649 | return ret; |
| 650 | |
| 651 | return val; |
| 652 | } |
| 653 | EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range); |
| 654 | |
| 655 | /** |
| 656 | * regulator_list_voltage_linear_range - List voltages for linear ranges |
| 657 | * |
| 658 | * @rdev: Regulator device |
| 659 | * @selector: Selector to convert into a voltage |
| 660 | * |
| 661 | * Regulators with a series of simple linear mappings between voltages |
| 662 | * and selectors can set linear_ranges in the regulator descriptor and |
| 663 | * then use this function as their list_voltage() operation, |
| 664 | */ |
| 665 | int regulator_list_voltage_linear_range(struct regulator_dev *rdev, |
| 666 | unsigned int selector) |
| 667 | { |
| 668 | return regulator_desc_list_voltage_linear_range(rdev->desc, selector); |
| 669 | } |
| 670 | EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range); |
| 671 | |
| 672 | /** |
| 673 | * regulator_list_voltage_table - List voltages with table based mapping |
| 674 | * |
| 675 | * @rdev: Regulator device |
| 676 | * @selector: Selector to convert into a voltage |
| 677 | * |
| 678 | * Regulators with table based mapping between voltages and |
| 679 | * selectors can set volt_table in the regulator descriptor |
| 680 | * and then use this function as their list_voltage() operation. |
| 681 | */ |
| 682 | int regulator_list_voltage_table(struct regulator_dev *rdev, |
| 683 | unsigned int selector) |
| 684 | { |
| 685 | if (!rdev->desc->volt_table) { |
| 686 | BUG_ON(!rdev->desc->volt_table); |
| 687 | return -EINVAL; |
| 688 | } |
| 689 | |
| 690 | if (selector >= rdev->desc->n_voltages) |
| 691 | return -EINVAL; |
| 692 | if (selector < rdev->desc->linear_min_sel) |
| 693 | return 0; |
| 694 | |
| 695 | return rdev->desc->volt_table[selector]; |
| 696 | } |
| 697 | EXPORT_SYMBOL_GPL(regulator_list_voltage_table); |
| 698 | |
| 699 | /** |
| 700 | * regulator_set_bypass_regmap - Default set_bypass() using regmap |
| 701 | * |
| 702 | * @rdev: device to operate on. |
| 703 | * @enable: state to set. |
| 704 | */ |
| 705 | int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) |
| 706 | { |
| 707 | unsigned int val; |
| 708 | |
| 709 | if (enable) { |
| 710 | val = rdev->desc->bypass_val_on; |
| 711 | if (!val) |
| 712 | val = rdev->desc->bypass_mask; |
| 713 | } else { |
| 714 | val = rdev->desc->bypass_val_off; |
| 715 | } |
| 716 | |
| 717 | return regmap_update_bits(map: rdev->regmap, reg: rdev->desc->bypass_reg, |
| 718 | mask: rdev->desc->bypass_mask, val); |
| 719 | } |
| 720 | EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); |
| 721 | |
| 722 | /** |
| 723 | * regulator_set_soft_start_regmap - Default set_soft_start() using regmap |
| 724 | * |
| 725 | * @rdev: device to operate on. |
| 726 | */ |
| 727 | int regulator_set_soft_start_regmap(struct regulator_dev *rdev) |
| 728 | { |
| 729 | unsigned int val; |
| 730 | |
| 731 | val = rdev->desc->soft_start_val_on; |
| 732 | if (!val) |
| 733 | val = rdev->desc->soft_start_mask; |
| 734 | |
| 735 | return regmap_update_bits(map: rdev->regmap, reg: rdev->desc->soft_start_reg, |
| 736 | mask: rdev->desc->soft_start_mask, val); |
| 737 | } |
| 738 | EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap); |
| 739 | |
| 740 | /** |
| 741 | * regulator_set_pull_down_regmap - Default set_pull_down() using regmap |
| 742 | * |
| 743 | * @rdev: device to operate on. |
| 744 | */ |
| 745 | int regulator_set_pull_down_regmap(struct regulator_dev *rdev) |
| 746 | { |
| 747 | unsigned int val; |
| 748 | |
| 749 | val = rdev->desc->pull_down_val_on; |
| 750 | if (!val) |
| 751 | val = rdev->desc->pull_down_mask; |
| 752 | |
| 753 | return regmap_update_bits(map: rdev->regmap, reg: rdev->desc->pull_down_reg, |
| 754 | mask: rdev->desc->pull_down_mask, val); |
| 755 | } |
| 756 | EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap); |
| 757 | |
| 758 | /** |
| 759 | * regulator_get_bypass_regmap - Default get_bypass() using regmap |
| 760 | * |
| 761 | * @rdev: device to operate on. |
| 762 | * @enable: current state. |
| 763 | */ |
| 764 | int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) |
| 765 | { |
| 766 | unsigned int val; |
| 767 | unsigned int val_on = rdev->desc->bypass_val_on; |
| 768 | int ret; |
| 769 | |
| 770 | ret = regmap_read(map: rdev->regmap, reg: rdev->desc->bypass_reg, val: &val); |
| 771 | if (ret != 0) |
| 772 | return ret; |
| 773 | |
| 774 | if (!val_on) |
| 775 | val_on = rdev->desc->bypass_mask; |
| 776 | |
| 777 | *enable = (val & rdev->desc->bypass_mask) == val_on; |
| 778 | |
| 779 | return 0; |
| 780 | } |
| 781 | EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); |
| 782 | |
| 783 | /** |
| 784 | * regulator_set_active_discharge_regmap - Default set_active_discharge() |
| 785 | * using regmap |
| 786 | * |
| 787 | * @rdev: device to operate on. |
| 788 | * @enable: state to set, 0 to disable and 1 to enable. |
| 789 | */ |
| 790 | int regulator_set_active_discharge_regmap(struct regulator_dev *rdev, |
| 791 | bool enable) |
| 792 | { |
| 793 | unsigned int val; |
| 794 | |
| 795 | if (enable) |
| 796 | val = rdev->desc->active_discharge_on; |
| 797 | else |
| 798 | val = rdev->desc->active_discharge_off; |
| 799 | |
| 800 | return regmap_update_bits(map: rdev->regmap, |
| 801 | reg: rdev->desc->active_discharge_reg, |
| 802 | mask: rdev->desc->active_discharge_mask, val); |
| 803 | } |
| 804 | EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap); |
| 805 | |
| 806 | /** |
| 807 | * regulator_set_current_limit_regmap - set_current_limit for regmap users |
| 808 | * |
| 809 | * @rdev: regulator to operate on |
| 810 | * @min_uA: Lower bound for current limit |
| 811 | * @max_uA: Upper bound for current limit |
| 812 | * |
| 813 | * Regulators that use regmap for their register I/O can set curr_table, |
| 814 | * csel_reg and csel_mask fields in their descriptor and then use this |
| 815 | * as their set_current_limit operation, saving some code. |
| 816 | */ |
| 817 | int regulator_set_current_limit_regmap(struct regulator_dev *rdev, |
| 818 | int min_uA, int max_uA) |
| 819 | { |
| 820 | unsigned int n_currents = rdev->desc->n_current_limits; |
| 821 | int i, sel = -1; |
| 822 | |
| 823 | if (n_currents == 0) |
| 824 | return -EINVAL; |
| 825 | |
| 826 | if (rdev->desc->curr_table) { |
| 827 | const unsigned int *curr_table = rdev->desc->curr_table; |
| 828 | bool ascend = curr_table[n_currents - 1] > curr_table[0]; |
| 829 | |
| 830 | /* search for closest to maximum */ |
| 831 | if (ascend) { |
| 832 | for (i = n_currents - 1; i >= 0; i--) { |
| 833 | if (min_uA <= curr_table[i] && |
| 834 | curr_table[i] <= max_uA) { |
| 835 | sel = i; |
| 836 | break; |
| 837 | } |
| 838 | } |
| 839 | } else { |
| 840 | for (i = 0; i < n_currents; i++) { |
| 841 | if (min_uA <= curr_table[i] && |
| 842 | curr_table[i] <= max_uA) { |
| 843 | sel = i; |
| 844 | break; |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | if (sel < 0) |
| 851 | return -EINVAL; |
| 852 | |
| 853 | sel <<= ffs(rdev->desc->csel_mask) - 1; |
| 854 | |
| 855 | return regmap_update_bits(map: rdev->regmap, reg: rdev->desc->csel_reg, |
| 856 | mask: rdev->desc->csel_mask, val: sel); |
| 857 | } |
| 858 | EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap); |
| 859 | |
| 860 | /** |
| 861 | * regulator_get_current_limit_regmap - get_current_limit for regmap users |
| 862 | * |
| 863 | * @rdev: regulator to operate on |
| 864 | * |
| 865 | * Regulators that use regmap for their register I/O can set the |
| 866 | * csel_reg and csel_mask fields in their descriptor and then use this |
| 867 | * as their get_current_limit operation, saving some code. |
| 868 | */ |
| 869 | int regulator_get_current_limit_regmap(struct regulator_dev *rdev) |
| 870 | { |
| 871 | unsigned int val; |
| 872 | int ret; |
| 873 | |
| 874 | ret = regmap_read(map: rdev->regmap, reg: rdev->desc->csel_reg, val: &val); |
| 875 | if (ret != 0) |
| 876 | return ret; |
| 877 | |
| 878 | val &= rdev->desc->csel_mask; |
| 879 | val >>= ffs(rdev->desc->csel_mask) - 1; |
| 880 | |
| 881 | if (rdev->desc->curr_table) { |
| 882 | if (val >= rdev->desc->n_current_limits) |
| 883 | return -EINVAL; |
| 884 | |
| 885 | return rdev->desc->curr_table[val]; |
| 886 | } |
| 887 | |
| 888 | return -EINVAL; |
| 889 | } |
| 890 | EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap); |
| 891 | |
| 892 | /** |
| 893 | * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array |
| 894 | * of regulator_bulk_data structs |
| 895 | * |
| 896 | * @consumers: array of regulator_bulk_data entries to initialize |
| 897 | * @supply_names: array of supply name strings |
| 898 | * @num_supplies: number of supply names to initialize |
| 899 | * |
| 900 | * Note: the 'consumers' array must be the size of 'num_supplies'. |
| 901 | */ |
| 902 | void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers, |
| 903 | const char *const *supply_names, |
| 904 | unsigned int num_supplies) |
| 905 | { |
| 906 | unsigned int i; |
| 907 | |
| 908 | for (i = 0; i < num_supplies; i++) |
| 909 | consumers[i].supply = supply_names[i]; |
| 910 | } |
| 911 | EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names); |
| 912 | |
| 913 | /** |
| 914 | * regulator_is_equal - test whether two regulators are the same |
| 915 | * |
| 916 | * @reg1: first regulator to operate on |
| 917 | * @reg2: second regulator to operate on |
| 918 | */ |
| 919 | bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2) |
| 920 | { |
| 921 | return reg1->rdev == reg2->rdev; |
| 922 | } |
| 923 | EXPORT_SYMBOL_GPL(regulator_is_equal); |
| 924 | |
| 925 | /** |
| 926 | * regulator_find_closest_bigger - helper to find offset in ramp delay table |
| 927 | * |
| 928 | * @target: targeted ramp_delay |
| 929 | * @table: table with supported ramp delays |
| 930 | * @num_sel: number of entries in the table |
| 931 | * @sel: Pointer to store table offset |
| 932 | * |
| 933 | * This is the internal helper used by regulator_set_ramp_delay_regmap to |
| 934 | * map ramp delay to register value. It should only be used directly if |
| 935 | * regulator_set_ramp_delay_regmap cannot handle a specific device setup |
| 936 | * (e.g. because the value is split over multiple registers). |
| 937 | */ |
| 938 | int regulator_find_closest_bigger(unsigned int target, const unsigned int *table, |
| 939 | unsigned int num_sel, unsigned int *sel) |
| 940 | { |
| 941 | unsigned int s, tmp, max, maxsel = 0; |
| 942 | bool found = false; |
| 943 | |
| 944 | max = table[0]; |
| 945 | |
| 946 | for (s = 0; s < num_sel; s++) { |
| 947 | if (table[s] > max) { |
| 948 | max = table[s]; |
| 949 | maxsel = s; |
| 950 | } |
| 951 | if (table[s] >= target) { |
| 952 | if (!found || table[s] - target < tmp - target) { |
| 953 | tmp = table[s]; |
| 954 | *sel = s; |
| 955 | found = true; |
| 956 | if (tmp == target) |
| 957 | break; |
| 958 | } |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | if (!found) { |
| 963 | *sel = maxsel; |
| 964 | return -EINVAL; |
| 965 | } |
| 966 | |
| 967 | return 0; |
| 968 | } |
| 969 | EXPORT_SYMBOL_GPL(regulator_find_closest_bigger); |
| 970 | |
| 971 | /** |
| 972 | * regulator_set_ramp_delay_regmap - set_ramp_delay() helper |
| 973 | * |
| 974 | * @rdev: regulator to operate on |
| 975 | * @ramp_delay: ramp-rate value given in units V/S (uV/uS) |
| 976 | * |
| 977 | * Regulators that use regmap for their register I/O can set the ramp_reg |
| 978 | * and ramp_mask fields in their descriptor and then use this as their |
| 979 | * set_ramp_delay operation, saving some code. |
| 980 | */ |
| 981 | int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay) |
| 982 | { |
| 983 | int ret; |
| 984 | unsigned int sel; |
| 985 | |
| 986 | if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table)) |
| 987 | return -EINVAL; |
| 988 | |
| 989 | ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table, |
| 990 | rdev->desc->n_ramp_values, &sel); |
| 991 | |
| 992 | if (ret) { |
| 993 | dev_warn(rdev_get_dev(rdev), |
| 994 | "Can't set ramp-delay %u, setting %u\n" , ramp_delay, |
| 995 | rdev->desc->ramp_delay_table[sel]); |
| 996 | } |
| 997 | |
| 998 | sel <<= ffs(rdev->desc->ramp_mask) - 1; |
| 999 | |
| 1000 | return regmap_update_bits(map: rdev->regmap, reg: rdev->desc->ramp_reg, |
| 1001 | mask: rdev->desc->ramp_mask, val: sel); |
| 1002 | } |
| 1003 | EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap); |
| 1004 | |