| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * USB4 specific functionality |
| 4 | * |
| 5 | * Copyright (C) 2019, Intel Corporation |
| 6 | * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> |
| 7 | * Rajmohan Mani <rajmohan.mani@intel.com> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/delay.h> |
| 11 | #include <linux/ktime.h> |
| 12 | #include <linux/units.h> |
| 13 | |
| 14 | #include "sb_regs.h" |
| 15 | #include "tb.h" |
| 16 | |
| 17 | #define USB4_DATA_RETRIES 3 |
| 18 | #define USB4_DATA_DWORDS 16 |
| 19 | |
| 20 | #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2) |
| 21 | #define USB4_NVM_READ_OFFSET_SHIFT 2 |
| 22 | #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24) |
| 23 | #define USB4_NVM_READ_LENGTH_SHIFT 24 |
| 24 | |
| 25 | #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK |
| 26 | #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT |
| 27 | |
| 28 | #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2) |
| 29 | #define USB4_DROM_ADDRESS_SHIFT 2 |
| 30 | #define USB4_DROM_SIZE_MASK GENMASK(19, 15) |
| 31 | #define USB4_DROM_SIZE_SHIFT 15 |
| 32 | |
| 33 | #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0) |
| 34 | |
| 35 | #define USB4_BA_LENGTH_MASK GENMASK(7, 0) |
| 36 | #define USB4_BA_INDEX_MASK GENMASK(15, 0) |
| 37 | |
| 38 | enum usb4_ba_index { |
| 39 | USB4_BA_MAX_USB3 = 0x1, |
| 40 | USB4_BA_MIN_DP_AUX = 0x2, |
| 41 | USB4_BA_MIN_DP_MAIN = 0x3, |
| 42 | USB4_BA_MAX_PCIE = 0x4, |
| 43 | USB4_BA_MAX_HI = 0x5, |
| 44 | }; |
| 45 | |
| 46 | #define USB4_BA_VALUE_MASK GENMASK(31, 16) |
| 47 | #define USB4_BA_VALUE_SHIFT 16 |
| 48 | |
| 49 | /* Delays in us used with usb4_port_wait_for_bit() */ |
| 50 | #define USB4_PORT_DELAY 50 |
| 51 | #define USB4_PORT_SB_DELAY 1000 |
| 52 | |
| 53 | static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode, |
| 54 | u32 *metadata, u8 *status, |
| 55 | const void *tx_data, size_t tx_dwords, |
| 56 | void *rx_data, size_t rx_dwords) |
| 57 | { |
| 58 | u32 val; |
| 59 | int ret; |
| 60 | |
| 61 | if (metadata) { |
| 62 | ret = tb_sw_write(sw, buffer: metadata, space: TB_CFG_SWITCH, ROUTER_CS_25, length: 1); |
| 63 | if (ret) |
| 64 | return ret; |
| 65 | } |
| 66 | if (tx_dwords) { |
| 67 | ret = tb_sw_write(sw, buffer: tx_data, space: TB_CFG_SWITCH, ROUTER_CS_9, |
| 68 | length: tx_dwords); |
| 69 | if (ret) |
| 70 | return ret; |
| 71 | } |
| 72 | |
| 73 | val = opcode | ROUTER_CS_26_OV; |
| 74 | ret = tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_26, length: 1); |
| 75 | if (ret) |
| 76 | return ret; |
| 77 | |
| 78 | ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, value: 0, timeout_msec: 500); |
| 79 | if (ret) |
| 80 | return ret; |
| 81 | |
| 82 | ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_26, length: 1); |
| 83 | if (ret) |
| 84 | return ret; |
| 85 | |
| 86 | if (val & ROUTER_CS_26_ONS) |
| 87 | return -EOPNOTSUPP; |
| 88 | |
| 89 | if (status) |
| 90 | *status = (val & ROUTER_CS_26_STATUS_MASK) >> |
| 91 | ROUTER_CS_26_STATUS_SHIFT; |
| 92 | |
| 93 | if (metadata) { |
| 94 | ret = tb_sw_read(sw, buffer: metadata, space: TB_CFG_SWITCH, ROUTER_CS_25, length: 1); |
| 95 | if (ret) |
| 96 | return ret; |
| 97 | } |
| 98 | if (rx_dwords) { |
| 99 | ret = tb_sw_read(sw, buffer: rx_data, space: TB_CFG_SWITCH, ROUTER_CS_9, |
| 100 | length: rx_dwords); |
| 101 | if (ret) |
| 102 | return ret; |
| 103 | } |
| 104 | |
| 105 | return 0; |
| 106 | } |
| 107 | |
| 108 | static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata, |
| 109 | u8 *status, const void *tx_data, size_t tx_dwords, |
| 110 | void *rx_data, size_t rx_dwords) |
| 111 | { |
| 112 | const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; |
| 113 | |
| 114 | if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS) |
| 115 | return -EINVAL; |
| 116 | |
| 117 | /* |
| 118 | * If the connection manager implementation provides USB4 router |
| 119 | * operation proxy callback, call it here instead of running the |
| 120 | * operation natively. |
| 121 | */ |
| 122 | if (cm_ops->usb4_switch_op) { |
| 123 | int ret; |
| 124 | |
| 125 | ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status, |
| 126 | tx_data, tx_dwords, rx_data, |
| 127 | rx_dwords); |
| 128 | if (ret != -EOPNOTSUPP) |
| 129 | return ret; |
| 130 | |
| 131 | /* |
| 132 | * If the proxy was not supported then run the native |
| 133 | * router operation instead. |
| 134 | */ |
| 135 | } |
| 136 | |
| 137 | return usb4_native_switch_op(sw, opcode, metadata, status, tx_data, |
| 138 | tx_dwords, rx_data, rx_dwords); |
| 139 | } |
| 140 | |
| 141 | static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode, |
| 142 | u32 *metadata, u8 *status) |
| 143 | { |
| 144 | return __usb4_switch_op(sw, opcode, metadata, status, NULL, tx_dwords: 0, NULL, rx_dwords: 0); |
| 145 | } |
| 146 | |
| 147 | static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode, |
| 148 | u32 *metadata, u8 *status, |
| 149 | const void *tx_data, size_t tx_dwords, |
| 150 | void *rx_data, size_t rx_dwords) |
| 151 | { |
| 152 | return __usb4_switch_op(sw, opcode, metadata, status, tx_data, |
| 153 | tx_dwords, rx_data, rx_dwords); |
| 154 | } |
| 155 | |
| 156 | /** |
| 157 | * usb4_switch_check_wakes() - Check for wakes and notify PM core about them |
| 158 | * @sw: Router whose wakes to check |
| 159 | * |
| 160 | * Checks wakes occurred during suspend and notify the PM core about them. |
| 161 | */ |
| 162 | void usb4_switch_check_wakes(struct tb_switch *sw) |
| 163 | { |
| 164 | bool wakeup_usb4 = false; |
| 165 | struct usb4_port *usb4; |
| 166 | struct tb_port *port; |
| 167 | bool wakeup = false; |
| 168 | u32 val; |
| 169 | |
| 170 | if (tb_route(sw)) { |
| 171 | if (tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_6, length: 1)) |
| 172 | return; |
| 173 | |
| 174 | tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n" , |
| 175 | (val & ROUTER_CS_6_WOPS) ? "yes" : "no" , |
| 176 | (val & ROUTER_CS_6_WOUS) ? "yes" : "no" ); |
| 177 | |
| 178 | wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS); |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * Check for any downstream ports for USB4 wake, |
| 183 | * connection wake and disconnection wake. |
| 184 | */ |
| 185 | tb_switch_for_each_port(sw, port) { |
| 186 | if (!port->cap_usb4) |
| 187 | continue; |
| 188 | |
| 189 | if (tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 190 | offset: port->cap_usb4 + PORT_CS_18, length: 1)) |
| 191 | break; |
| 192 | |
| 193 | tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n" , |
| 194 | (val & PORT_CS_18_WOU4S) ? "yes" : "no" , |
| 195 | (val & PORT_CS_18_WOCS) ? "yes" : "no" , |
| 196 | (val & PORT_CS_18_WODS) ? "yes" : "no" ); |
| 197 | |
| 198 | wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS | |
| 199 | PORT_CS_18_WODS); |
| 200 | |
| 201 | usb4 = port->usb4; |
| 202 | if (device_may_wakeup(dev: &usb4->dev) && wakeup_usb4) |
| 203 | pm_wakeup_event(dev: &usb4->dev, msec: 0); |
| 204 | |
| 205 | wakeup |= wakeup_usb4; |
| 206 | } |
| 207 | |
| 208 | if (wakeup) |
| 209 | pm_wakeup_event(dev: &sw->dev, msec: 0); |
| 210 | } |
| 211 | |
| 212 | static bool link_is_usb4(struct tb_port *port) |
| 213 | { |
| 214 | u32 val; |
| 215 | |
| 216 | if (!port->cap_usb4) |
| 217 | return false; |
| 218 | |
| 219 | if (tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 220 | offset: port->cap_usb4 + PORT_CS_18, length: 1)) |
| 221 | return false; |
| 222 | |
| 223 | return !(val & PORT_CS_18_TCM); |
| 224 | } |
| 225 | |
| 226 | /** |
| 227 | * usb4_switch_setup() - Additional setup for USB4 device |
| 228 | * @sw: USB4 router to setup |
| 229 | * |
| 230 | * USB4 routers need additional settings in order to enable all the |
| 231 | * tunneling. This function enables USB and PCIe tunneling if it can be |
| 232 | * enabled (e.g the parent switch also supports them). If USB tunneling |
| 233 | * is not available for some reason (like that there is Thunderbolt 3 |
| 234 | * switch upstream) then the internal xHCI controller is enabled |
| 235 | * instead. |
| 236 | * |
| 237 | * This does not set the configuration valid bit of the router. To do |
| 238 | * that call usb4_switch_configuration_valid(). |
| 239 | */ |
| 240 | int usb4_switch_setup(struct tb_switch *sw) |
| 241 | { |
| 242 | struct tb_switch *parent = tb_switch_parent(sw); |
| 243 | struct tb_port *down; |
| 244 | bool tbt3, xhci; |
| 245 | u32 val = 0; |
| 246 | int ret; |
| 247 | |
| 248 | if (!tb_route(sw)) |
| 249 | return 0; |
| 250 | |
| 251 | ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_6, length: 1); |
| 252 | if (ret) |
| 253 | return ret; |
| 254 | |
| 255 | down = tb_switch_downstream_port(sw); |
| 256 | sw->link_usb4 = link_is_usb4(port: down); |
| 257 | tb_sw_dbg(sw, "link: %s\n" , sw->link_usb4 ? "USB4" : "TBT" ); |
| 258 | |
| 259 | xhci = val & ROUTER_CS_6_HCI; |
| 260 | tbt3 = !(val & ROUTER_CS_6_TNS); |
| 261 | |
| 262 | tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n" , |
| 263 | tbt3 ? "yes" : "no" , xhci ? "yes" : "no" ); |
| 264 | |
| 265 | ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1); |
| 266 | if (ret) |
| 267 | return ret; |
| 268 | |
| 269 | if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 && |
| 270 | tb_switch_find_port(sw: parent, type: TB_TYPE_USB3_DOWN)) { |
| 271 | val |= ROUTER_CS_5_UTO; |
| 272 | xhci = false; |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * Only enable PCIe tunneling if the parent router supports it |
| 277 | * and it is not disabled. |
| 278 | */ |
| 279 | if (tb_acpi_may_tunnel_pcie() && |
| 280 | tb_switch_find_port(sw: parent, type: TB_TYPE_PCIE_DOWN)) { |
| 281 | val |= ROUTER_CS_5_PTO; |
| 282 | /* |
| 283 | * xHCI can be enabled if PCIe tunneling is supported |
| 284 | * and the parent does not have any USB3 dowstream |
| 285 | * adapters (so we cannot do USB 3.x tunneling). |
| 286 | */ |
| 287 | if (xhci) |
| 288 | val |= ROUTER_CS_5_HCO; |
| 289 | } |
| 290 | |
| 291 | /* TBT3 supported by the CM */ |
| 292 | val &= ~ROUTER_CS_5_CNS; |
| 293 | |
| 294 | return tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1); |
| 295 | } |
| 296 | |
| 297 | /** |
| 298 | * usb4_switch_configuration_valid() - Set tunneling configuration to be valid |
| 299 | * @sw: USB4 router |
| 300 | * |
| 301 | * Sets configuration valid bit for the router. Must be called before |
| 302 | * any tunnels can be set through the router and after |
| 303 | * usb4_switch_setup() has been called. Can be called to host and device |
| 304 | * routers (does nothing for the latter). |
| 305 | * |
| 306 | * Returns %0 in success and negative errno otherwise. |
| 307 | */ |
| 308 | int usb4_switch_configuration_valid(struct tb_switch *sw) |
| 309 | { |
| 310 | u32 val; |
| 311 | int ret; |
| 312 | |
| 313 | if (!tb_route(sw)) |
| 314 | return 0; |
| 315 | |
| 316 | ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1); |
| 317 | if (ret) |
| 318 | return ret; |
| 319 | |
| 320 | val |= ROUTER_CS_5_CV; |
| 321 | |
| 322 | ret = tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1); |
| 323 | if (ret) |
| 324 | return ret; |
| 325 | |
| 326 | return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR, |
| 327 | ROUTER_CS_6_CR, timeout_msec: 50); |
| 328 | } |
| 329 | |
| 330 | /** |
| 331 | * usb4_switch_read_uid() - Read UID from USB4 router |
| 332 | * @sw: USB4 router |
| 333 | * @uid: UID is stored here |
| 334 | * |
| 335 | * Reads 64-bit UID from USB4 router config space. |
| 336 | */ |
| 337 | int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid) |
| 338 | { |
| 339 | return tb_sw_read(sw, buffer: uid, space: TB_CFG_SWITCH, ROUTER_CS_7, length: 2); |
| 340 | } |
| 341 | |
| 342 | static int usb4_switch_drom_read_block(void *data, |
| 343 | unsigned int dwaddress, void *buf, |
| 344 | size_t dwords) |
| 345 | { |
| 346 | struct tb_switch *sw = data; |
| 347 | u8 status = 0; |
| 348 | u32 metadata; |
| 349 | int ret; |
| 350 | |
| 351 | metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK; |
| 352 | metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) & |
| 353 | USB4_DROM_ADDRESS_MASK; |
| 354 | |
| 355 | ret = usb4_switch_op_data(sw, opcode: USB4_SWITCH_OP_DROM_READ, metadata: &metadata, |
| 356 | status: &status, NULL, tx_dwords: 0, rx_data: buf, rx_dwords: dwords); |
| 357 | if (ret) |
| 358 | return ret; |
| 359 | |
| 360 | return status ? -EIO : 0; |
| 361 | } |
| 362 | |
| 363 | /** |
| 364 | * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM |
| 365 | * @sw: USB4 router |
| 366 | * @address: Byte address inside DROM to start reading |
| 367 | * @buf: Buffer where the DROM content is stored |
| 368 | * @size: Number of bytes to read from DROM |
| 369 | * |
| 370 | * Uses USB4 router operations to read router DROM. For devices this |
| 371 | * should always work but for hosts it may return %-EOPNOTSUPP in which |
| 372 | * case the host router does not have DROM. |
| 373 | */ |
| 374 | int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, |
| 375 | size_t size) |
| 376 | { |
| 377 | return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, |
| 378 | read_block: usb4_switch_drom_read_block, read_block_data: sw); |
| 379 | } |
| 380 | |
| 381 | /** |
| 382 | * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding |
| 383 | * @sw: USB4 router |
| 384 | * |
| 385 | * Checks whether conditions are met so that lane bonding can be |
| 386 | * established with the upstream router. Call only for device routers. |
| 387 | */ |
| 388 | bool usb4_switch_lane_bonding_possible(struct tb_switch *sw) |
| 389 | { |
| 390 | struct tb_port *up; |
| 391 | int ret; |
| 392 | u32 val; |
| 393 | |
| 394 | up = tb_upstream_port(sw); |
| 395 | ret = tb_port_read(port: up, buffer: &val, space: TB_CFG_PORT, offset: up->cap_usb4 + PORT_CS_18, length: 1); |
| 396 | if (ret) |
| 397 | return false; |
| 398 | |
| 399 | return !!(val & PORT_CS_18_BE); |
| 400 | } |
| 401 | |
| 402 | /** |
| 403 | * usb4_switch_set_wake() - Enabled/disable wake |
| 404 | * @sw: USB4 router |
| 405 | * @flags: Wakeup flags (%0 to disable) |
| 406 | * |
| 407 | * Enables/disables router to wake up from sleep. |
| 408 | */ |
| 409 | int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags) |
| 410 | { |
| 411 | struct usb4_port *usb4; |
| 412 | struct tb_port *port; |
| 413 | u64 route = tb_route(sw); |
| 414 | u32 val; |
| 415 | int ret; |
| 416 | |
| 417 | /* |
| 418 | * Enable wakes coming from all USB4 downstream ports (from |
| 419 | * child routers). For device routers do this also for the |
| 420 | * upstream USB4 port. |
| 421 | */ |
| 422 | tb_switch_for_each_port(sw, port) { |
| 423 | if (!tb_port_is_null(port)) |
| 424 | continue; |
| 425 | if (!route && tb_is_upstream_port(port)) |
| 426 | continue; |
| 427 | if (!port->cap_usb4) |
| 428 | continue; |
| 429 | |
| 430 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 431 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 432 | if (ret) |
| 433 | return ret; |
| 434 | |
| 435 | val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4); |
| 436 | |
| 437 | if (tb_is_upstream_port(port)) { |
| 438 | val |= PORT_CS_19_WOU4; |
| 439 | } else { |
| 440 | bool configured = val & PORT_CS_19_PC; |
| 441 | usb4 = port->usb4; |
| 442 | |
| 443 | if (((flags & TB_WAKE_ON_CONNECT) && |
| 444 | device_may_wakeup(dev: &usb4->dev)) && !configured) |
| 445 | val |= PORT_CS_19_WOC; |
| 446 | if (((flags & TB_WAKE_ON_DISCONNECT) && |
| 447 | device_may_wakeup(dev: &usb4->dev)) && configured) |
| 448 | val |= PORT_CS_19_WOD; |
| 449 | if ((flags & TB_WAKE_ON_USB4) && configured) |
| 450 | val |= PORT_CS_19_WOU4; |
| 451 | } |
| 452 | |
| 453 | ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 454 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 455 | if (ret) |
| 456 | return ret; |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * Enable wakes from PCIe, USB 3.x and DP on this router. Only |
| 461 | * needed for device routers. |
| 462 | */ |
| 463 | if (route) { |
| 464 | ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1); |
| 465 | if (ret) |
| 466 | return ret; |
| 467 | |
| 468 | val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD); |
| 469 | if (flags & TB_WAKE_ON_USB3) |
| 470 | val |= ROUTER_CS_5_WOU; |
| 471 | if (flags & TB_WAKE_ON_PCIE) |
| 472 | val |= ROUTER_CS_5_WOP; |
| 473 | if (flags & TB_WAKE_ON_DP) |
| 474 | val |= ROUTER_CS_5_WOD; |
| 475 | |
| 476 | ret = tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1); |
| 477 | if (ret) |
| 478 | return ret; |
| 479 | } |
| 480 | |
| 481 | return 0; |
| 482 | } |
| 483 | |
| 484 | /** |
| 485 | * usb4_switch_set_sleep() - Prepare the router to enter sleep |
| 486 | * @sw: USB4 router |
| 487 | * |
| 488 | * Sets sleep bit for the router. Returns when the router sleep ready |
| 489 | * bit has been asserted. |
| 490 | */ |
| 491 | int usb4_switch_set_sleep(struct tb_switch *sw) |
| 492 | { |
| 493 | int ret; |
| 494 | u32 val; |
| 495 | |
| 496 | /* Set sleep bit and wait for sleep ready to be asserted */ |
| 497 | ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1); |
| 498 | if (ret) |
| 499 | return ret; |
| 500 | |
| 501 | val |= ROUTER_CS_5_SLP; |
| 502 | |
| 503 | ret = tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1); |
| 504 | if (ret) |
| 505 | return ret; |
| 506 | |
| 507 | return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR, |
| 508 | ROUTER_CS_6_SLPR, timeout_msec: 500); |
| 509 | } |
| 510 | |
| 511 | /** |
| 512 | * usb4_switch_nvm_sector_size() - Return router NVM sector size |
| 513 | * @sw: USB4 router |
| 514 | * |
| 515 | * If the router supports NVM operations this function returns the NVM |
| 516 | * sector size in bytes. If NVM operations are not supported returns |
| 517 | * %-EOPNOTSUPP. |
| 518 | */ |
| 519 | int usb4_switch_nvm_sector_size(struct tb_switch *sw) |
| 520 | { |
| 521 | u32 metadata; |
| 522 | u8 status; |
| 523 | int ret; |
| 524 | |
| 525 | ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_NVM_SECTOR_SIZE, metadata: &metadata, |
| 526 | status: &status); |
| 527 | if (ret) |
| 528 | return ret; |
| 529 | |
| 530 | if (status) |
| 531 | return status == 0x2 ? -EOPNOTSUPP : -EIO; |
| 532 | |
| 533 | return metadata & USB4_NVM_SECTOR_SIZE_MASK; |
| 534 | } |
| 535 | |
| 536 | static int usb4_switch_nvm_read_block(void *data, |
| 537 | unsigned int dwaddress, void *buf, size_t dwords) |
| 538 | { |
| 539 | struct tb_switch *sw = data; |
| 540 | u8 status = 0; |
| 541 | u32 metadata; |
| 542 | int ret; |
| 543 | |
| 544 | metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) & |
| 545 | USB4_NVM_READ_LENGTH_MASK; |
| 546 | metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) & |
| 547 | USB4_NVM_READ_OFFSET_MASK; |
| 548 | |
| 549 | ret = usb4_switch_op_data(sw, opcode: USB4_SWITCH_OP_NVM_READ, metadata: &metadata, |
| 550 | status: &status, NULL, tx_dwords: 0, rx_data: buf, rx_dwords: dwords); |
| 551 | if (ret) |
| 552 | return ret; |
| 553 | |
| 554 | return status ? -EIO : 0; |
| 555 | } |
| 556 | |
| 557 | /** |
| 558 | * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM |
| 559 | * @sw: USB4 router |
| 560 | * @address: Starting address in bytes |
| 561 | * @buf: Read data is placed here |
| 562 | * @size: How many bytes to read |
| 563 | * |
| 564 | * Reads NVM contents of the router. If NVM is not supported returns |
| 565 | * %-EOPNOTSUPP. |
| 566 | */ |
| 567 | int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, |
| 568 | size_t size) |
| 569 | { |
| 570 | return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, |
| 571 | read_block: usb4_switch_nvm_read_block, read_block_data: sw); |
| 572 | } |
| 573 | |
| 574 | /** |
| 575 | * usb4_switch_nvm_set_offset() - Set NVM write offset |
| 576 | * @sw: USB4 router |
| 577 | * @address: Start offset |
| 578 | * |
| 579 | * Explicitly sets NVM write offset. Normally when writing to NVM this |
| 580 | * is done automatically by usb4_switch_nvm_write(). |
| 581 | * |
| 582 | * Returns %0 in success and negative errno if there was a failure. |
| 583 | */ |
| 584 | int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address) |
| 585 | { |
| 586 | u32 metadata, dwaddress; |
| 587 | u8 status = 0; |
| 588 | int ret; |
| 589 | |
| 590 | dwaddress = address / 4; |
| 591 | metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & |
| 592 | USB4_NVM_SET_OFFSET_MASK; |
| 593 | |
| 594 | ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_NVM_SET_OFFSET, metadata: &metadata, |
| 595 | status: &status); |
| 596 | if (ret) |
| 597 | return ret; |
| 598 | |
| 599 | return status ? -EIO : 0; |
| 600 | } |
| 601 | |
| 602 | static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress, |
| 603 | const void *buf, size_t dwords) |
| 604 | { |
| 605 | struct tb_switch *sw = data; |
| 606 | u8 status; |
| 607 | int ret; |
| 608 | |
| 609 | ret = usb4_switch_op_data(sw, opcode: USB4_SWITCH_OP_NVM_WRITE, NULL, status: &status, |
| 610 | tx_data: buf, tx_dwords: dwords, NULL, rx_dwords: 0); |
| 611 | if (ret) |
| 612 | return ret; |
| 613 | |
| 614 | return status ? -EIO : 0; |
| 615 | } |
| 616 | |
| 617 | /** |
| 618 | * usb4_switch_nvm_write() - Write to the router NVM |
| 619 | * @sw: USB4 router |
| 620 | * @address: Start address where to write in bytes |
| 621 | * @buf: Pointer to the data to write |
| 622 | * @size: Size of @buf in bytes |
| 623 | * |
| 624 | * Writes @buf to the router NVM using USB4 router operations. If NVM |
| 625 | * write is not supported returns %-EOPNOTSUPP. |
| 626 | */ |
| 627 | int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, |
| 628 | const void *buf, size_t size) |
| 629 | { |
| 630 | int ret; |
| 631 | |
| 632 | ret = usb4_switch_nvm_set_offset(sw, address); |
| 633 | if (ret) |
| 634 | return ret; |
| 635 | |
| 636 | return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES, |
| 637 | write_next_block: usb4_switch_nvm_write_next_block, write_block_data: sw); |
| 638 | } |
| 639 | |
| 640 | /** |
| 641 | * usb4_switch_nvm_authenticate() - Authenticate new NVM |
| 642 | * @sw: USB4 router |
| 643 | * |
| 644 | * After the new NVM has been written via usb4_switch_nvm_write(), this |
| 645 | * function triggers NVM authentication process. The router gets power |
| 646 | * cycled and if the authentication is successful the new NVM starts |
| 647 | * running. In case of failure returns negative errno. |
| 648 | * |
| 649 | * The caller should call usb4_switch_nvm_authenticate_status() to read |
| 650 | * the status of the authentication after power cycle. It should be the |
| 651 | * first router operation to avoid the status being lost. |
| 652 | */ |
| 653 | int usb4_switch_nvm_authenticate(struct tb_switch *sw) |
| 654 | { |
| 655 | int ret; |
| 656 | |
| 657 | ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_NVM_AUTH, NULL, NULL); |
| 658 | switch (ret) { |
| 659 | /* |
| 660 | * The router is power cycled once NVM_AUTH is started so it is |
| 661 | * expected to get any of the following errors back. |
| 662 | */ |
| 663 | case -EACCES: |
| 664 | case -ENOTCONN: |
| 665 | case -ETIMEDOUT: |
| 666 | return 0; |
| 667 | |
| 668 | default: |
| 669 | return ret; |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | /** |
| 674 | * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate |
| 675 | * @sw: USB4 router |
| 676 | * @status: Status code of the operation |
| 677 | * |
| 678 | * The function checks if there is status available from the last NVM |
| 679 | * authenticate router operation. If there is status then %0 is returned |
| 680 | * and the status code is placed in @status. Returns negative errno in case |
| 681 | * of failure. |
| 682 | * |
| 683 | * Must be called before any other router operation. |
| 684 | */ |
| 685 | int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status) |
| 686 | { |
| 687 | const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; |
| 688 | u16 opcode; |
| 689 | u32 val; |
| 690 | int ret; |
| 691 | |
| 692 | if (cm_ops->usb4_switch_nvm_authenticate_status) { |
| 693 | ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status); |
| 694 | if (ret != -EOPNOTSUPP) |
| 695 | return ret; |
| 696 | } |
| 697 | |
| 698 | ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_26, length: 1); |
| 699 | if (ret) |
| 700 | return ret; |
| 701 | |
| 702 | /* Check that the opcode is correct */ |
| 703 | opcode = val & ROUTER_CS_26_OPCODE_MASK; |
| 704 | if (opcode == USB4_SWITCH_OP_NVM_AUTH) { |
| 705 | if (val & ROUTER_CS_26_OV) |
| 706 | return -EBUSY; |
| 707 | if (val & ROUTER_CS_26_ONS) |
| 708 | return -EOPNOTSUPP; |
| 709 | |
| 710 | *status = (val & ROUTER_CS_26_STATUS_MASK) >> |
| 711 | ROUTER_CS_26_STATUS_SHIFT; |
| 712 | } else { |
| 713 | *status = 0; |
| 714 | } |
| 715 | |
| 716 | return 0; |
| 717 | } |
| 718 | |
| 719 | /** |
| 720 | * usb4_switch_credits_init() - Read buffer allocation parameters |
| 721 | * @sw: USB4 router |
| 722 | * |
| 723 | * Reads @sw buffer allocation parameters and initializes @sw buffer |
| 724 | * allocation fields accordingly. Specifically @sw->credits_allocation |
| 725 | * is set to %true if these parameters can be used in tunneling. |
| 726 | * |
| 727 | * Returns %0 on success and negative errno otherwise. |
| 728 | */ |
| 729 | int usb4_switch_credits_init(struct tb_switch *sw) |
| 730 | { |
| 731 | int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma; |
| 732 | int ret, length, i, nports; |
| 733 | const struct tb_port *port; |
| 734 | u32 data[USB4_DATA_DWORDS]; |
| 735 | u32 metadata = 0; |
| 736 | u8 status = 0; |
| 737 | |
| 738 | memset(data, 0, sizeof(data)); |
| 739 | ret = usb4_switch_op_data(sw, opcode: USB4_SWITCH_OP_BUFFER_ALLOC, metadata: &metadata, |
| 740 | status: &status, NULL, tx_dwords: 0, rx_data: data, ARRAY_SIZE(data)); |
| 741 | if (ret) |
| 742 | return ret; |
| 743 | if (status) |
| 744 | return -EIO; |
| 745 | |
| 746 | length = metadata & USB4_BA_LENGTH_MASK; |
| 747 | if (WARN_ON(length > ARRAY_SIZE(data))) |
| 748 | return -EMSGSIZE; |
| 749 | |
| 750 | max_usb3 = -1; |
| 751 | min_dp_aux = -1; |
| 752 | min_dp_main = -1; |
| 753 | max_pcie = -1; |
| 754 | max_dma = -1; |
| 755 | |
| 756 | tb_sw_dbg(sw, "credit allocation parameters:\n" ); |
| 757 | |
| 758 | for (i = 0; i < length; i++) { |
| 759 | u16 index, value; |
| 760 | |
| 761 | index = data[i] & USB4_BA_INDEX_MASK; |
| 762 | value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT; |
| 763 | |
| 764 | switch (index) { |
| 765 | case USB4_BA_MAX_USB3: |
| 766 | tb_sw_dbg(sw, " USB3: %u\n" , value); |
| 767 | max_usb3 = value; |
| 768 | break; |
| 769 | case USB4_BA_MIN_DP_AUX: |
| 770 | tb_sw_dbg(sw, " DP AUX: %u\n" , value); |
| 771 | min_dp_aux = value; |
| 772 | break; |
| 773 | case USB4_BA_MIN_DP_MAIN: |
| 774 | tb_sw_dbg(sw, " DP main: %u\n" , value); |
| 775 | min_dp_main = value; |
| 776 | break; |
| 777 | case USB4_BA_MAX_PCIE: |
| 778 | tb_sw_dbg(sw, " PCIe: %u\n" , value); |
| 779 | max_pcie = value; |
| 780 | break; |
| 781 | case USB4_BA_MAX_HI: |
| 782 | tb_sw_dbg(sw, " DMA: %u\n" , value); |
| 783 | max_dma = value; |
| 784 | break; |
| 785 | default: |
| 786 | tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n" , |
| 787 | index); |
| 788 | break; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /* |
| 793 | * Validate the buffer allocation preferences. If we find |
| 794 | * issues, log a warning and fall back using the hard-coded |
| 795 | * values. |
| 796 | */ |
| 797 | |
| 798 | /* Host router must report baMaxHI */ |
| 799 | if (!tb_route(sw) && max_dma < 0) { |
| 800 | tb_sw_warn(sw, "host router is missing baMaxHI\n" ); |
| 801 | goto err_invalid; |
| 802 | } |
| 803 | |
| 804 | nports = 0; |
| 805 | tb_switch_for_each_port(sw, port) { |
| 806 | if (tb_port_is_null(port)) |
| 807 | nports++; |
| 808 | } |
| 809 | |
| 810 | /* Must have DP buffer allocation (multiple USB4 ports) */ |
| 811 | if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) { |
| 812 | tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n" ); |
| 813 | goto err_invalid; |
| 814 | } |
| 815 | |
| 816 | tb_switch_for_each_port(sw, port) { |
| 817 | if (tb_port_is_dpout(port) && min_dp_main < 0) { |
| 818 | tb_sw_warn(sw, "missing baMinDPmain" ); |
| 819 | goto err_invalid; |
| 820 | } |
| 821 | if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) && |
| 822 | min_dp_aux < 0) { |
| 823 | tb_sw_warn(sw, "missing baMinDPaux" ); |
| 824 | goto err_invalid; |
| 825 | } |
| 826 | if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) && |
| 827 | max_usb3 < 0) { |
| 828 | tb_sw_warn(sw, "missing baMaxUSB3" ); |
| 829 | goto err_invalid; |
| 830 | } |
| 831 | if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) && |
| 832 | max_pcie < 0) { |
| 833 | tb_sw_warn(sw, "missing baMaxPCIe" ); |
| 834 | goto err_invalid; |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * Buffer allocation passed the validation so we can use it in |
| 840 | * path creation. |
| 841 | */ |
| 842 | sw->credit_allocation = true; |
| 843 | if (max_usb3 > 0) |
| 844 | sw->max_usb3_credits = max_usb3; |
| 845 | if (min_dp_aux > 0) |
| 846 | sw->min_dp_aux_credits = min_dp_aux; |
| 847 | if (min_dp_main > 0) |
| 848 | sw->min_dp_main_credits = min_dp_main; |
| 849 | if (max_pcie > 0) |
| 850 | sw->max_pcie_credits = max_pcie; |
| 851 | if (max_dma > 0) |
| 852 | sw->max_dma_credits = max_dma; |
| 853 | |
| 854 | return 0; |
| 855 | |
| 856 | err_invalid: |
| 857 | return -EINVAL; |
| 858 | } |
| 859 | |
| 860 | /** |
| 861 | * usb4_switch_query_dp_resource() - Query availability of DP IN resource |
| 862 | * @sw: USB4 router |
| 863 | * @in: DP IN adapter |
| 864 | * |
| 865 | * For DP tunneling this function can be used to query availability of |
| 866 | * DP IN resource. Returns true if the resource is available for DP |
| 867 | * tunneling, false otherwise. |
| 868 | */ |
| 869 | bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| 870 | { |
| 871 | u32 metadata = in->port; |
| 872 | u8 status; |
| 873 | int ret; |
| 874 | |
| 875 | ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_QUERY_DP_RESOURCE, metadata: &metadata, |
| 876 | status: &status); |
| 877 | /* |
| 878 | * If DP resource allocation is not supported assume it is |
| 879 | * always available. |
| 880 | */ |
| 881 | if (ret == -EOPNOTSUPP) |
| 882 | return true; |
| 883 | if (ret) |
| 884 | return false; |
| 885 | |
| 886 | return !status; |
| 887 | } |
| 888 | |
| 889 | /** |
| 890 | * usb4_switch_alloc_dp_resource() - Allocate DP IN resource |
| 891 | * @sw: USB4 router |
| 892 | * @in: DP IN adapter |
| 893 | * |
| 894 | * Allocates DP IN resource for DP tunneling using USB4 router |
| 895 | * operations. If the resource was allocated returns %0. Otherwise |
| 896 | * returns negative errno, in particular %-EBUSY if the resource is |
| 897 | * already allocated. |
| 898 | */ |
| 899 | int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| 900 | { |
| 901 | u32 metadata = in->port; |
| 902 | u8 status; |
| 903 | int ret; |
| 904 | |
| 905 | ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_ALLOC_DP_RESOURCE, metadata: &metadata, |
| 906 | status: &status); |
| 907 | if (ret == -EOPNOTSUPP) |
| 908 | return 0; |
| 909 | if (ret) |
| 910 | return ret; |
| 911 | |
| 912 | return status ? -EBUSY : 0; |
| 913 | } |
| 914 | |
| 915 | /** |
| 916 | * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource |
| 917 | * @sw: USB4 router |
| 918 | * @in: DP IN adapter |
| 919 | * |
| 920 | * Releases the previously allocated DP IN resource. |
| 921 | */ |
| 922 | int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| 923 | { |
| 924 | u32 metadata = in->port; |
| 925 | u8 status; |
| 926 | int ret; |
| 927 | |
| 928 | ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, metadata: &metadata, |
| 929 | status: &status); |
| 930 | if (ret == -EOPNOTSUPP) |
| 931 | return 0; |
| 932 | if (ret) |
| 933 | return ret; |
| 934 | |
| 935 | return status ? -EIO : 0; |
| 936 | } |
| 937 | |
| 938 | /** |
| 939 | * usb4_port_index() - Finds matching USB4 port index |
| 940 | * @sw: USB4 router |
| 941 | * @port: USB4 protocol or lane adapter |
| 942 | * |
| 943 | * Finds matching USB4 port index (starting from %0) that given @port goes |
| 944 | * through. |
| 945 | */ |
| 946 | int usb4_port_index(const struct tb_switch *sw, const struct tb_port *port) |
| 947 | { |
| 948 | struct tb_port *p; |
| 949 | int usb4_idx = 0; |
| 950 | |
| 951 | /* Assume port is primary */ |
| 952 | tb_switch_for_each_port(sw, p) { |
| 953 | if (!tb_port_is_null(port: p)) |
| 954 | continue; |
| 955 | if (tb_is_upstream_port(port: p)) |
| 956 | continue; |
| 957 | if (!p->link_nr) { |
| 958 | if (p == port) |
| 959 | break; |
| 960 | usb4_idx++; |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | return usb4_idx; |
| 965 | } |
| 966 | |
| 967 | /** |
| 968 | * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter |
| 969 | * @sw: USB4 router |
| 970 | * @port: USB4 port |
| 971 | * |
| 972 | * USB4 routers have direct mapping between USB4 ports and PCIe |
| 973 | * downstream adapters where the PCIe topology is extended. This |
| 974 | * function returns the corresponding downstream PCIe adapter or %NULL |
| 975 | * if no such mapping was possible. |
| 976 | */ |
| 977 | struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, |
| 978 | const struct tb_port *port) |
| 979 | { |
| 980 | int usb4_idx = usb4_port_index(sw, port); |
| 981 | struct tb_port *p; |
| 982 | int pcie_idx = 0; |
| 983 | |
| 984 | /* Find PCIe down port matching usb4_port */ |
| 985 | tb_switch_for_each_port(sw, p) { |
| 986 | if (!tb_port_is_pcie_down(port: p)) |
| 987 | continue; |
| 988 | |
| 989 | if (pcie_idx == usb4_idx) |
| 990 | return p; |
| 991 | |
| 992 | pcie_idx++; |
| 993 | } |
| 994 | |
| 995 | return NULL; |
| 996 | } |
| 997 | |
| 998 | /** |
| 999 | * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter |
| 1000 | * @sw: USB4 router |
| 1001 | * @port: USB4 port |
| 1002 | * |
| 1003 | * USB4 routers have direct mapping between USB4 ports and USB 3.x |
| 1004 | * downstream adapters where the USB 3.x topology is extended. This |
| 1005 | * function returns the corresponding downstream USB 3.x adapter or |
| 1006 | * %NULL if no such mapping was possible. |
| 1007 | */ |
| 1008 | struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, |
| 1009 | const struct tb_port *port) |
| 1010 | { |
| 1011 | int usb4_idx = usb4_port_index(sw, port); |
| 1012 | struct tb_port *p; |
| 1013 | int usb_idx = 0; |
| 1014 | |
| 1015 | /* Find USB3 down port matching usb4_port */ |
| 1016 | tb_switch_for_each_port(sw, p) { |
| 1017 | if (!tb_port_is_usb3_down(port: p)) |
| 1018 | continue; |
| 1019 | |
| 1020 | if (usb_idx == usb4_idx) |
| 1021 | return p; |
| 1022 | |
| 1023 | usb_idx++; |
| 1024 | } |
| 1025 | |
| 1026 | return NULL; |
| 1027 | } |
| 1028 | |
| 1029 | /** |
| 1030 | * usb4_switch_add_ports() - Add USB4 ports for this router |
| 1031 | * @sw: USB4 router |
| 1032 | * |
| 1033 | * For USB4 router finds all USB4 ports and registers devices for each. |
| 1034 | * Can be called to any router. |
| 1035 | * |
| 1036 | * Return %0 in case of success and negative errno in case of failure. |
| 1037 | */ |
| 1038 | int usb4_switch_add_ports(struct tb_switch *sw) |
| 1039 | { |
| 1040 | struct tb_port *port; |
| 1041 | |
| 1042 | if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw)) |
| 1043 | return 0; |
| 1044 | |
| 1045 | tb_switch_for_each_port(sw, port) { |
| 1046 | struct usb4_port *usb4; |
| 1047 | |
| 1048 | if (!tb_port_is_null(port)) |
| 1049 | continue; |
| 1050 | if (!port->cap_usb4) |
| 1051 | continue; |
| 1052 | |
| 1053 | usb4 = usb4_port_device_add(port); |
| 1054 | if (IS_ERR(ptr: usb4)) { |
| 1055 | usb4_switch_remove_ports(sw); |
| 1056 | return PTR_ERR(ptr: usb4); |
| 1057 | } |
| 1058 | |
| 1059 | port->usb4 = usb4; |
| 1060 | } |
| 1061 | |
| 1062 | return 0; |
| 1063 | } |
| 1064 | |
| 1065 | /** |
| 1066 | * usb4_switch_remove_ports() - Removes USB4 ports from this router |
| 1067 | * @sw: USB4 router |
| 1068 | * |
| 1069 | * Unregisters previously registered USB4 ports. |
| 1070 | */ |
| 1071 | void usb4_switch_remove_ports(struct tb_switch *sw) |
| 1072 | { |
| 1073 | struct tb_port *port; |
| 1074 | |
| 1075 | tb_switch_for_each_port(sw, port) { |
| 1076 | if (port->usb4) { |
| 1077 | usb4_port_device_remove(usb4: port->usb4); |
| 1078 | port->usb4 = NULL; |
| 1079 | } |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | /** |
| 1084 | * usb4_port_unlock() - Unlock USB4 downstream port |
| 1085 | * @port: USB4 port to unlock |
| 1086 | * |
| 1087 | * Unlocks USB4 downstream port so that the connection manager can |
| 1088 | * access the router below this port. |
| 1089 | */ |
| 1090 | int usb4_port_unlock(struct tb_port *port) |
| 1091 | { |
| 1092 | int ret; |
| 1093 | u32 val; |
| 1094 | |
| 1095 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, ADP_CS_4, length: 1); |
| 1096 | if (ret) |
| 1097 | return ret; |
| 1098 | |
| 1099 | val &= ~ADP_CS_4_LCK; |
| 1100 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, ADP_CS_4, length: 1); |
| 1101 | } |
| 1102 | |
| 1103 | /** |
| 1104 | * usb4_port_hotplug_enable() - Enables hotplug for a port |
| 1105 | * @port: USB4 port to operate on |
| 1106 | * |
| 1107 | * Enables hot plug events on a given port. This is only intended |
| 1108 | * to be used on lane, DP-IN, and DP-OUT adapters. |
| 1109 | */ |
| 1110 | int usb4_port_hotplug_enable(struct tb_port *port) |
| 1111 | { |
| 1112 | int ret; |
| 1113 | u32 val; |
| 1114 | |
| 1115 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, ADP_CS_5, length: 1); |
| 1116 | if (ret) |
| 1117 | return ret; |
| 1118 | |
| 1119 | val &= ~ADP_CS_5_DHP; |
| 1120 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, ADP_CS_5, length: 1); |
| 1121 | } |
| 1122 | |
| 1123 | /** |
| 1124 | * usb4_port_reset() - Issue downstream port reset |
| 1125 | * @port: USB4 port to reset |
| 1126 | * |
| 1127 | * Issues downstream port reset to @port. |
| 1128 | */ |
| 1129 | int usb4_port_reset(struct tb_port *port) |
| 1130 | { |
| 1131 | int ret; |
| 1132 | u32 val; |
| 1133 | |
| 1134 | if (!port->cap_usb4) |
| 1135 | return -EINVAL; |
| 1136 | |
| 1137 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1138 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1139 | if (ret) |
| 1140 | return ret; |
| 1141 | |
| 1142 | val |= PORT_CS_19_DPR; |
| 1143 | |
| 1144 | ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 1145 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1146 | if (ret) |
| 1147 | return ret; |
| 1148 | |
| 1149 | fsleep(usecs: 10000); |
| 1150 | |
| 1151 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1152 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1153 | if (ret) |
| 1154 | return ret; |
| 1155 | |
| 1156 | val &= ~PORT_CS_19_DPR; |
| 1157 | |
| 1158 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 1159 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1160 | } |
| 1161 | |
| 1162 | static int usb4_port_set_configured(struct tb_port *port, bool configured) |
| 1163 | { |
| 1164 | int ret; |
| 1165 | u32 val; |
| 1166 | |
| 1167 | if (!port->cap_usb4) |
| 1168 | return -EINVAL; |
| 1169 | |
| 1170 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1171 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1172 | if (ret) |
| 1173 | return ret; |
| 1174 | |
| 1175 | if (configured) |
| 1176 | val |= PORT_CS_19_PC; |
| 1177 | else |
| 1178 | val &= ~PORT_CS_19_PC; |
| 1179 | |
| 1180 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 1181 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1182 | } |
| 1183 | |
| 1184 | /** |
| 1185 | * usb4_port_configure() - Set USB4 port configured |
| 1186 | * @port: USB4 router |
| 1187 | * |
| 1188 | * Sets the USB4 link to be configured for power management purposes. |
| 1189 | */ |
| 1190 | int usb4_port_configure(struct tb_port *port) |
| 1191 | { |
| 1192 | return usb4_port_set_configured(port, configured: true); |
| 1193 | } |
| 1194 | |
| 1195 | /** |
| 1196 | * usb4_port_unconfigure() - Set USB4 port unconfigured |
| 1197 | * @port: USB4 router |
| 1198 | * |
| 1199 | * Sets the USB4 link to be unconfigured for power management purposes. |
| 1200 | */ |
| 1201 | void usb4_port_unconfigure(struct tb_port *port) |
| 1202 | { |
| 1203 | usb4_port_set_configured(port, configured: false); |
| 1204 | } |
| 1205 | |
| 1206 | static int usb4_set_xdomain_configured(struct tb_port *port, bool configured) |
| 1207 | { |
| 1208 | int ret; |
| 1209 | u32 val; |
| 1210 | |
| 1211 | if (!port->cap_usb4) |
| 1212 | return -EINVAL; |
| 1213 | |
| 1214 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1215 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1216 | if (ret) |
| 1217 | return ret; |
| 1218 | |
| 1219 | if (configured) |
| 1220 | val |= PORT_CS_19_PID; |
| 1221 | else |
| 1222 | val &= ~PORT_CS_19_PID; |
| 1223 | |
| 1224 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 1225 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1226 | } |
| 1227 | |
| 1228 | /** |
| 1229 | * usb4_port_configure_xdomain() - Configure port for XDomain |
| 1230 | * @port: USB4 port connected to another host |
| 1231 | * @xd: XDomain that is connected to the port |
| 1232 | * |
| 1233 | * Marks the USB4 port as being connected to another host and updates |
| 1234 | * the link type. Returns %0 in success and negative errno in failure. |
| 1235 | */ |
| 1236 | int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) |
| 1237 | { |
| 1238 | xd->link_usb4 = link_is_usb4(port); |
| 1239 | return usb4_set_xdomain_configured(port, configured: true); |
| 1240 | } |
| 1241 | |
| 1242 | /** |
| 1243 | * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain |
| 1244 | * @port: USB4 port that was connected to another host |
| 1245 | * |
| 1246 | * Clears USB4 port from being marked as XDomain. |
| 1247 | */ |
| 1248 | void usb4_port_unconfigure_xdomain(struct tb_port *port) |
| 1249 | { |
| 1250 | usb4_set_xdomain_configured(port, configured: false); |
| 1251 | } |
| 1252 | |
| 1253 | static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit, |
| 1254 | u32 value, int timeout_msec, unsigned long delay_usec) |
| 1255 | { |
| 1256 | ktime_t timeout = ktime_add_ms(kt: ktime_get(), msec: timeout_msec); |
| 1257 | |
| 1258 | do { |
| 1259 | u32 val; |
| 1260 | int ret; |
| 1261 | |
| 1262 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, offset, length: 1); |
| 1263 | if (ret) |
| 1264 | return ret; |
| 1265 | |
| 1266 | if ((val & bit) == value) |
| 1267 | return 0; |
| 1268 | |
| 1269 | fsleep(usecs: delay_usec); |
| 1270 | } while (ktime_before(cmp1: ktime_get(), cmp2: timeout)); |
| 1271 | |
| 1272 | return -ETIMEDOUT; |
| 1273 | } |
| 1274 | |
| 1275 | static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords) |
| 1276 | { |
| 1277 | if (dwords > USB4_DATA_DWORDS) |
| 1278 | return -EINVAL; |
| 1279 | |
| 1280 | return tb_port_read(port, buffer: data, space: TB_CFG_PORT, offset: port->cap_usb4 + PORT_CS_2, |
| 1281 | length: dwords); |
| 1282 | } |
| 1283 | |
| 1284 | static int usb4_port_write_data(struct tb_port *port, const void *data, |
| 1285 | size_t dwords) |
| 1286 | { |
| 1287 | if (dwords > USB4_DATA_DWORDS) |
| 1288 | return -EINVAL; |
| 1289 | |
| 1290 | return tb_port_write(port, buffer: data, space: TB_CFG_PORT, offset: port->cap_usb4 + PORT_CS_2, |
| 1291 | length: dwords); |
| 1292 | } |
| 1293 | |
| 1294 | /** |
| 1295 | * usb4_port_sb_read() - Read from sideband register |
| 1296 | * @port: USB4 port to read |
| 1297 | * @target: Sideband target |
| 1298 | * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER |
| 1299 | * @reg: Sideband register index |
| 1300 | * @buf: Buffer where the sideband data is copied |
| 1301 | * @size: Size of @buf |
| 1302 | * |
| 1303 | * Reads data from sideband register @reg and copies it into @buf. |
| 1304 | * Returns %0 in case of success and negative errno in case of failure. |
| 1305 | */ |
| 1306 | int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, u8 index, |
| 1307 | u8 reg, void *buf, u8 size) |
| 1308 | { |
| 1309 | size_t dwords = DIV_ROUND_UP(size, 4); |
| 1310 | int ret; |
| 1311 | u32 val; |
| 1312 | |
| 1313 | if (!port->cap_usb4) |
| 1314 | return -EINVAL; |
| 1315 | |
| 1316 | val = reg; |
| 1317 | val |= size << PORT_CS_1_LENGTH_SHIFT; |
| 1318 | val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; |
| 1319 | if (target == USB4_SB_TARGET_RETIMER) |
| 1320 | val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); |
| 1321 | val |= PORT_CS_1_PND; |
| 1322 | |
| 1323 | ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 1324 | offset: port->cap_usb4 + PORT_CS_1, length: 1); |
| 1325 | if (ret) |
| 1326 | return ret; |
| 1327 | |
| 1328 | ret = usb4_port_wait_for_bit(port, offset: port->cap_usb4 + PORT_CS_1, |
| 1329 | PORT_CS_1_PND, value: 0, timeout_msec: 500, USB4_PORT_SB_DELAY); |
| 1330 | if (ret) |
| 1331 | return ret; |
| 1332 | |
| 1333 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1334 | offset: port->cap_usb4 + PORT_CS_1, length: 1); |
| 1335 | if (ret) |
| 1336 | return ret; |
| 1337 | |
| 1338 | if (val & PORT_CS_1_NR) |
| 1339 | return -ENODEV; |
| 1340 | if (val & PORT_CS_1_RC) |
| 1341 | return -EIO; |
| 1342 | |
| 1343 | return buf ? usb4_port_read_data(port, data: buf, dwords) : 0; |
| 1344 | } |
| 1345 | |
| 1346 | /** |
| 1347 | * usb4_port_sb_write() - Write to sideband register |
| 1348 | * @port: USB4 port to write |
| 1349 | * @target: Sideband target |
| 1350 | * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER |
| 1351 | * @reg: Sideband register index |
| 1352 | * @buf: Data to write |
| 1353 | * @size: Size of @buf |
| 1354 | * |
| 1355 | * Writes @buf to sideband register @reg. Returns %0 in case of success |
| 1356 | * and negative errno in case of failure. |
| 1357 | */ |
| 1358 | int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target, |
| 1359 | u8 index, u8 reg, const void *buf, u8 size) |
| 1360 | { |
| 1361 | size_t dwords = DIV_ROUND_UP(size, 4); |
| 1362 | int ret; |
| 1363 | u32 val; |
| 1364 | |
| 1365 | if (!port->cap_usb4) |
| 1366 | return -EINVAL; |
| 1367 | |
| 1368 | if (buf) { |
| 1369 | ret = usb4_port_write_data(port, data: buf, dwords); |
| 1370 | if (ret) |
| 1371 | return ret; |
| 1372 | } |
| 1373 | |
| 1374 | val = reg; |
| 1375 | val |= size << PORT_CS_1_LENGTH_SHIFT; |
| 1376 | val |= PORT_CS_1_WNR_WRITE; |
| 1377 | val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; |
| 1378 | if (target == USB4_SB_TARGET_RETIMER) |
| 1379 | val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); |
| 1380 | val |= PORT_CS_1_PND; |
| 1381 | |
| 1382 | ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 1383 | offset: port->cap_usb4 + PORT_CS_1, length: 1); |
| 1384 | if (ret) |
| 1385 | return ret; |
| 1386 | |
| 1387 | ret = usb4_port_wait_for_bit(port, offset: port->cap_usb4 + PORT_CS_1, |
| 1388 | PORT_CS_1_PND, value: 0, timeout_msec: 500, USB4_PORT_SB_DELAY); |
| 1389 | if (ret) |
| 1390 | return ret; |
| 1391 | |
| 1392 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1393 | offset: port->cap_usb4 + PORT_CS_1, length: 1); |
| 1394 | if (ret) |
| 1395 | return ret; |
| 1396 | |
| 1397 | if (val & PORT_CS_1_NR) |
| 1398 | return -ENODEV; |
| 1399 | if (val & PORT_CS_1_RC) |
| 1400 | return -EIO; |
| 1401 | |
| 1402 | return 0; |
| 1403 | } |
| 1404 | |
| 1405 | static int usb4_port_sb_opcode_err_to_errno(u32 val) |
| 1406 | { |
| 1407 | switch (val) { |
| 1408 | case 0: |
| 1409 | return 0; |
| 1410 | case USB4_SB_OPCODE_ERR: |
| 1411 | return -EAGAIN; |
| 1412 | case USB4_SB_OPCODE_ONS: |
| 1413 | return -EOPNOTSUPP; |
| 1414 | default: |
| 1415 | return -EIO; |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target, |
| 1420 | u8 index, enum usb4_sb_opcode opcode, int timeout_msec) |
| 1421 | { |
| 1422 | ktime_t timeout; |
| 1423 | u32 val; |
| 1424 | int ret; |
| 1425 | |
| 1426 | val = opcode; |
| 1427 | ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, buf: &val, |
| 1428 | size: sizeof(val)); |
| 1429 | if (ret) |
| 1430 | return ret; |
| 1431 | |
| 1432 | timeout = ktime_add_ms(kt: ktime_get(), msec: timeout_msec); |
| 1433 | |
| 1434 | do { |
| 1435 | /* Check results */ |
| 1436 | ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE, |
| 1437 | buf: &val, size: sizeof(val)); |
| 1438 | if (ret) |
| 1439 | return ret; |
| 1440 | |
| 1441 | if (val != opcode) |
| 1442 | return usb4_port_sb_opcode_err_to_errno(val); |
| 1443 | |
| 1444 | fsleep(USB4_PORT_SB_DELAY); |
| 1445 | } while (ktime_before(cmp1: ktime_get(), cmp2: timeout)); |
| 1446 | |
| 1447 | return -ETIMEDOUT; |
| 1448 | } |
| 1449 | |
| 1450 | static int usb4_port_set_router_offline(struct tb_port *port, bool offline) |
| 1451 | { |
| 1452 | u32 val = !offline; |
| 1453 | int ret; |
| 1454 | |
| 1455 | ret = usb4_port_sb_write(port, target: USB4_SB_TARGET_ROUTER, index: 0, |
| 1456 | USB4_SB_METADATA, buf: &val, size: sizeof(val)); |
| 1457 | if (ret) |
| 1458 | return ret; |
| 1459 | |
| 1460 | val = USB4_SB_OPCODE_ROUTER_OFFLINE; |
| 1461 | return usb4_port_sb_write(port, target: USB4_SB_TARGET_ROUTER, index: 0, |
| 1462 | USB4_SB_OPCODE, buf: &val, size: sizeof(val)); |
| 1463 | } |
| 1464 | |
| 1465 | /** |
| 1466 | * usb4_port_router_offline() - Put the USB4 port to offline mode |
| 1467 | * @port: USB4 port |
| 1468 | * |
| 1469 | * This function puts the USB4 port into offline mode. In this mode the |
| 1470 | * port does not react on hotplug events anymore. This needs to be |
| 1471 | * called before retimer access is done when the USB4 links is not up. |
| 1472 | * |
| 1473 | * Returns %0 in case of success and negative errno if there was an |
| 1474 | * error. |
| 1475 | */ |
| 1476 | int usb4_port_router_offline(struct tb_port *port) |
| 1477 | { |
| 1478 | return usb4_port_set_router_offline(port, offline: true); |
| 1479 | } |
| 1480 | |
| 1481 | /** |
| 1482 | * usb4_port_router_online() - Put the USB4 port back to online |
| 1483 | * @port: USB4 port |
| 1484 | * |
| 1485 | * Makes the USB4 port functional again. |
| 1486 | */ |
| 1487 | int usb4_port_router_online(struct tb_port *port) |
| 1488 | { |
| 1489 | return usb4_port_set_router_offline(port, offline: false); |
| 1490 | } |
| 1491 | |
| 1492 | /** |
| 1493 | * usb4_port_enumerate_retimers() - Send RT broadcast transaction |
| 1494 | * @port: USB4 port |
| 1495 | * |
| 1496 | * This forces the USB4 port to send broadcast RT transaction which |
| 1497 | * makes the retimers on the link to assign index to themselves. Returns |
| 1498 | * %0 in case of success and negative errno if there was an error. |
| 1499 | */ |
| 1500 | int usb4_port_enumerate_retimers(struct tb_port *port) |
| 1501 | { |
| 1502 | u32 val; |
| 1503 | |
| 1504 | val = USB4_SB_OPCODE_ENUMERATE_RETIMERS; |
| 1505 | return usb4_port_sb_write(port, target: USB4_SB_TARGET_ROUTER, index: 0, |
| 1506 | USB4_SB_OPCODE, buf: &val, size: sizeof(val)); |
| 1507 | } |
| 1508 | |
| 1509 | /** |
| 1510 | * usb4_port_clx_supported() - Check if CLx is supported by the link |
| 1511 | * @port: Port to check for CLx support for |
| 1512 | * |
| 1513 | * PORT_CS_18_CPS bit reflects if the link supports CLx including |
| 1514 | * active cables (if connected on the link). |
| 1515 | */ |
| 1516 | bool usb4_port_clx_supported(struct tb_port *port) |
| 1517 | { |
| 1518 | int ret; |
| 1519 | u32 val; |
| 1520 | |
| 1521 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1522 | offset: port->cap_usb4 + PORT_CS_18, length: 1); |
| 1523 | if (ret) |
| 1524 | return false; |
| 1525 | |
| 1526 | return !!(val & PORT_CS_18_CPS); |
| 1527 | } |
| 1528 | |
| 1529 | /** |
| 1530 | * usb4_port_asym_supported() - If the port supports asymmetric link |
| 1531 | * @port: USB4 port |
| 1532 | * |
| 1533 | * Checks if the port and the cable supports asymmetric link and returns |
| 1534 | * %true in that case. |
| 1535 | */ |
| 1536 | bool usb4_port_asym_supported(struct tb_port *port) |
| 1537 | { |
| 1538 | u32 val; |
| 1539 | |
| 1540 | if (!port->cap_usb4) |
| 1541 | return false; |
| 1542 | |
| 1543 | if (tb_port_read(port, buffer: &val, space: TB_CFG_PORT, offset: port->cap_usb4 + PORT_CS_18, length: 1)) |
| 1544 | return false; |
| 1545 | |
| 1546 | return !!(val & PORT_CS_18_CSA); |
| 1547 | } |
| 1548 | |
| 1549 | /** |
| 1550 | * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric |
| 1551 | * @port: USB4 port |
| 1552 | * @width: Asymmetric width to configure |
| 1553 | * |
| 1554 | * Sets USB4 port link width to @width. Can be called for widths where |
| 1555 | * usb4_port_asym_width_supported() returned @true. |
| 1556 | */ |
| 1557 | int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width) |
| 1558 | { |
| 1559 | u32 val; |
| 1560 | int ret; |
| 1561 | |
| 1562 | if (!port->cap_phy) |
| 1563 | return -EINVAL; |
| 1564 | |
| 1565 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1566 | offset: port->cap_phy + LANE_ADP_CS_1, length: 1); |
| 1567 | if (ret) |
| 1568 | return ret; |
| 1569 | |
| 1570 | val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK; |
| 1571 | switch (width) { |
| 1572 | case TB_LINK_WIDTH_DUAL: |
| 1573 | val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK, |
| 1574 | LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL); |
| 1575 | break; |
| 1576 | case TB_LINK_WIDTH_ASYM_TX: |
| 1577 | val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK, |
| 1578 | LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX); |
| 1579 | break; |
| 1580 | case TB_LINK_WIDTH_ASYM_RX: |
| 1581 | val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK, |
| 1582 | LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX); |
| 1583 | break; |
| 1584 | default: |
| 1585 | return -EINVAL; |
| 1586 | } |
| 1587 | |
| 1588 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 1589 | offset: port->cap_phy + LANE_ADP_CS_1, length: 1); |
| 1590 | } |
| 1591 | |
| 1592 | /** |
| 1593 | * usb4_port_asym_start() - Start symmetry change and wait for completion |
| 1594 | * @port: USB4 port |
| 1595 | * |
| 1596 | * Start symmetry change of the link to asymmetric or symmetric |
| 1597 | * (according to what was previously set in tb_port_set_link_width(). |
| 1598 | * Wait for completion of the change. |
| 1599 | * |
| 1600 | * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or |
| 1601 | * a negative errno in case of a failure. |
| 1602 | */ |
| 1603 | int usb4_port_asym_start(struct tb_port *port) |
| 1604 | { |
| 1605 | int ret; |
| 1606 | u32 val; |
| 1607 | |
| 1608 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 1609 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1610 | if (ret) |
| 1611 | return ret; |
| 1612 | |
| 1613 | val &= ~PORT_CS_19_START_ASYM; |
| 1614 | val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1); |
| 1615 | |
| 1616 | ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 1617 | offset: port->cap_usb4 + PORT_CS_19, length: 1); |
| 1618 | if (ret) |
| 1619 | return ret; |
| 1620 | |
| 1621 | /* |
| 1622 | * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4 |
| 1623 | * port started the symmetry transition. |
| 1624 | */ |
| 1625 | ret = usb4_port_wait_for_bit(port, offset: port->cap_usb4 + PORT_CS_19, |
| 1626 | PORT_CS_19_START_ASYM, value: 0, timeout_msec: 1000, |
| 1627 | USB4_PORT_DELAY); |
| 1628 | if (ret) |
| 1629 | return ret; |
| 1630 | |
| 1631 | /* Then wait for the transtion to be completed */ |
| 1632 | return usb4_port_wait_for_bit(port, offset: port->cap_usb4 + PORT_CS_18, |
| 1633 | PORT_CS_18_TIP, value: 0, timeout_msec: 5000, USB4_PORT_DELAY); |
| 1634 | } |
| 1635 | |
| 1636 | /** |
| 1637 | * usb4_port_margining_caps() - Read USB4 port marginig capabilities |
| 1638 | * @port: USB4 port |
| 1639 | * @target: Sideband target |
| 1640 | * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER |
| 1641 | * @caps: Array with at least two elements to hold the results |
| 1642 | * @ncaps: Number of elements in the caps array |
| 1643 | * |
| 1644 | * Reads the USB4 port lane margining capabilities into @caps. |
| 1645 | */ |
| 1646 | int usb4_port_margining_caps(struct tb_port *port, enum usb4_sb_target target, |
| 1647 | u8 index, u32 *caps, size_t ncaps) |
| 1648 | { |
| 1649 | int ret; |
| 1650 | |
| 1651 | ret = usb4_port_sb_op(port, target, index, |
| 1652 | opcode: USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, timeout_msec: 500); |
| 1653 | if (ret) |
| 1654 | return ret; |
| 1655 | |
| 1656 | return usb4_port_sb_read(port, target, index, USB4_SB_DATA, buf: caps, |
| 1657 | size: sizeof(*caps) * ncaps); |
| 1658 | } |
| 1659 | |
| 1660 | /** |
| 1661 | * usb4_port_hw_margin() - Run hardware lane margining on port |
| 1662 | * @port: USB4 port |
| 1663 | * @target: Sideband target |
| 1664 | * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER |
| 1665 | * @params: Parameters for USB4 hardware margining |
| 1666 | * @results: Array to hold the results |
| 1667 | * @nresults: Number of elements in the results array |
| 1668 | * |
| 1669 | * Runs hardware lane margining on USB4 port and returns the result in |
| 1670 | * @results. |
| 1671 | */ |
| 1672 | int usb4_port_hw_margin(struct tb_port *port, enum usb4_sb_target target, |
| 1673 | u8 index, const struct usb4_port_margining_params *params, |
| 1674 | u32 *results, size_t nresults) |
| 1675 | { |
| 1676 | u32 val; |
| 1677 | int ret; |
| 1678 | |
| 1679 | if (WARN_ON_ONCE(!params)) |
| 1680 | return -EINVAL; |
| 1681 | |
| 1682 | val = params->lanes; |
| 1683 | if (params->time) |
| 1684 | val |= USB4_MARGIN_HW_TIME; |
| 1685 | if (params->right_high || params->upper_eye) |
| 1686 | val |= USB4_MARGIN_HW_RHU; |
| 1687 | if (params->ber_level) |
| 1688 | val |= FIELD_PREP(USB4_MARGIN_HW_BER_MASK, params->ber_level); |
| 1689 | if (params->optional_voltage_offset_range) |
| 1690 | val |= USB4_MARGIN_HW_OPT_VOLTAGE; |
| 1691 | |
| 1692 | ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, buf: &val, |
| 1693 | size: sizeof(val)); |
| 1694 | if (ret) |
| 1695 | return ret; |
| 1696 | |
| 1697 | ret = usb4_port_sb_op(port, target, index, |
| 1698 | opcode: USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, timeout_msec: 2500); |
| 1699 | if (ret) |
| 1700 | return ret; |
| 1701 | |
| 1702 | return usb4_port_sb_read(port, target, index, USB4_SB_DATA, buf: results, |
| 1703 | size: sizeof(*results) * nresults); |
| 1704 | } |
| 1705 | |
| 1706 | /** |
| 1707 | * usb4_port_sw_margin() - Run software lane margining on port |
| 1708 | * @port: USB4 port |
| 1709 | * @target: Sideband target |
| 1710 | * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER |
| 1711 | * @params: Parameters for USB4 software margining |
| 1712 | * @results: Data word for the operation completion data |
| 1713 | * |
| 1714 | * Runs software lane margining on USB4 port. Read back the error |
| 1715 | * counters by calling usb4_port_sw_margin_errors(). Returns %0 in |
| 1716 | * success and negative errno otherwise. |
| 1717 | */ |
| 1718 | int usb4_port_sw_margin(struct tb_port *port, enum usb4_sb_target target, |
| 1719 | u8 index, const struct usb4_port_margining_params *params, |
| 1720 | u32 *results) |
| 1721 | { |
| 1722 | u32 val; |
| 1723 | int ret; |
| 1724 | |
| 1725 | if (WARN_ON_ONCE(!params)) |
| 1726 | return -EINVAL; |
| 1727 | |
| 1728 | val = params->lanes; |
| 1729 | if (params->time) |
| 1730 | val |= USB4_MARGIN_SW_TIME; |
| 1731 | if (params->optional_voltage_offset_range) |
| 1732 | val |= USB4_MARGIN_SW_OPT_VOLTAGE; |
| 1733 | if (params->right_high) |
| 1734 | val |= USB4_MARGIN_SW_RH; |
| 1735 | if (params->upper_eye) |
| 1736 | val |= USB4_MARGIN_SW_UPPER_EYE; |
| 1737 | val |= FIELD_PREP(USB4_MARGIN_SW_COUNTER_MASK, params->error_counter); |
| 1738 | val |= FIELD_PREP(USB4_MARGIN_SW_VT_MASK, params->voltage_time_offset); |
| 1739 | |
| 1740 | ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, buf: &val, |
| 1741 | size: sizeof(val)); |
| 1742 | if (ret) |
| 1743 | return ret; |
| 1744 | |
| 1745 | ret = usb4_port_sb_op(port, target, index, |
| 1746 | opcode: USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, timeout_msec: 2500); |
| 1747 | if (ret) |
| 1748 | return ret; |
| 1749 | |
| 1750 | return usb4_port_sb_read(port, target, index, USB4_SB_DATA, buf: results, |
| 1751 | size: sizeof(*results)); |
| 1752 | |
| 1753 | } |
| 1754 | |
| 1755 | /** |
| 1756 | * usb4_port_sw_margin_errors() - Read the software margining error counters |
| 1757 | * @port: USB4 port |
| 1758 | * @target: Sideband target |
| 1759 | * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER |
| 1760 | * @errors: Error metadata is copied here. |
| 1761 | * |
| 1762 | * This reads back the software margining error counters from the port. |
| 1763 | * Returns %0 in success and negative errno otherwise. |
| 1764 | */ |
| 1765 | int usb4_port_sw_margin_errors(struct tb_port *port, enum usb4_sb_target target, |
| 1766 | u8 index, u32 *errors) |
| 1767 | { |
| 1768 | int ret; |
| 1769 | |
| 1770 | ret = usb4_port_sb_op(port, target, index, |
| 1771 | opcode: USB4_SB_OPCODE_READ_SW_MARGIN_ERR, timeout_msec: 150); |
| 1772 | if (ret) |
| 1773 | return ret; |
| 1774 | |
| 1775 | return usb4_port_sb_read(port, target, index, USB4_SB_METADATA, buf: errors, |
| 1776 | size: sizeof(*errors)); |
| 1777 | } |
| 1778 | |
| 1779 | static inline int usb4_port_retimer_op(struct tb_port *port, u8 index, |
| 1780 | enum usb4_sb_opcode opcode, |
| 1781 | int timeout_msec) |
| 1782 | { |
| 1783 | return usb4_port_sb_op(port, target: USB4_SB_TARGET_RETIMER, index, opcode, |
| 1784 | timeout_msec); |
| 1785 | } |
| 1786 | |
| 1787 | /** |
| 1788 | * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions |
| 1789 | * @port: USB4 port |
| 1790 | * @index: Retimer index |
| 1791 | * |
| 1792 | * Enables sideband channel transations on SBTX. Can be used when USB4 |
| 1793 | * link does not go up, for example if there is no device connected. |
| 1794 | */ |
| 1795 | int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index) |
| 1796 | { |
| 1797 | int ret; |
| 1798 | |
| 1799 | ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_SET_INBOUND_SBTX, |
| 1800 | timeout_msec: 500); |
| 1801 | |
| 1802 | if (ret != -ENODEV) |
| 1803 | return ret; |
| 1804 | |
| 1805 | /* |
| 1806 | * Per the USB4 retimer spec, the retimer is not required to |
| 1807 | * send an RT (Retimer Transaction) response for the first |
| 1808 | * SET_INBOUND_SBTX command |
| 1809 | */ |
| 1810 | return usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_SET_INBOUND_SBTX, |
| 1811 | timeout_msec: 500); |
| 1812 | } |
| 1813 | |
| 1814 | /** |
| 1815 | * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions |
| 1816 | * @port: USB4 port |
| 1817 | * @index: Retimer index |
| 1818 | * |
| 1819 | * Disables sideband channel transations on SBTX. The reverse of |
| 1820 | * usb4_port_retimer_set_inbound_sbtx(). |
| 1821 | */ |
| 1822 | int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index) |
| 1823 | { |
| 1824 | return usb4_port_retimer_op(port, index, |
| 1825 | opcode: USB4_SB_OPCODE_UNSET_INBOUND_SBTX, timeout_msec: 500); |
| 1826 | } |
| 1827 | |
| 1828 | /** |
| 1829 | * usb4_port_retimer_is_last() - Is the retimer last on-board retimer |
| 1830 | * @port: USB4 port |
| 1831 | * @index: Retimer index |
| 1832 | * |
| 1833 | * If the retimer at @index is last one (connected directly to the |
| 1834 | * Type-C port) this function returns %1. If it is not returns %0. If |
| 1835 | * the retimer is not present returns %-ENODEV. Otherwise returns |
| 1836 | * negative errno. |
| 1837 | */ |
| 1838 | int usb4_port_retimer_is_last(struct tb_port *port, u8 index) |
| 1839 | { |
| 1840 | u32 metadata; |
| 1841 | int ret; |
| 1842 | |
| 1843 | ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_QUERY_LAST_RETIMER, |
| 1844 | timeout_msec: 500); |
| 1845 | if (ret) |
| 1846 | return ret; |
| 1847 | |
| 1848 | ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index, |
| 1849 | USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata)); |
| 1850 | return ret ? ret : metadata & 1; |
| 1851 | } |
| 1852 | |
| 1853 | /** |
| 1854 | * usb4_port_retimer_is_cable() - Is the retimer cable retimer |
| 1855 | * @port: USB4 port |
| 1856 | * @index: Retimer index |
| 1857 | * |
| 1858 | * If the retimer at @index is last cable retimer this function returns |
| 1859 | * %1 and %0 if it is on-board retimer. In case a retimer is not present |
| 1860 | * at @index returns %-ENODEV. Otherwise returns negative errno. |
| 1861 | */ |
| 1862 | int usb4_port_retimer_is_cable(struct tb_port *port, u8 index) |
| 1863 | { |
| 1864 | u32 metadata; |
| 1865 | int ret; |
| 1866 | |
| 1867 | ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_QUERY_CABLE_RETIMER, |
| 1868 | timeout_msec: 500); |
| 1869 | if (ret) |
| 1870 | return ret; |
| 1871 | |
| 1872 | ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index, |
| 1873 | USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata)); |
| 1874 | return ret ? ret : metadata & 1; |
| 1875 | } |
| 1876 | |
| 1877 | /** |
| 1878 | * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size |
| 1879 | * @port: USB4 port |
| 1880 | * @index: Retimer index |
| 1881 | * |
| 1882 | * Reads NVM sector size (in bytes) of a retimer at @index. This |
| 1883 | * operation can be used to determine whether the retimer supports NVM |
| 1884 | * upgrade for example. Returns sector size in bytes or negative errno |
| 1885 | * in case of error. Specifically returns %-ENODEV if there is no |
| 1886 | * retimer at @index. |
| 1887 | */ |
| 1888 | int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index) |
| 1889 | { |
| 1890 | u32 metadata; |
| 1891 | int ret; |
| 1892 | |
| 1893 | ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE, |
| 1894 | timeout_msec: 500); |
| 1895 | if (ret) |
| 1896 | return ret; |
| 1897 | |
| 1898 | ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index, |
| 1899 | USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata)); |
| 1900 | return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK; |
| 1901 | } |
| 1902 | |
| 1903 | /** |
| 1904 | * usb4_port_retimer_nvm_set_offset() - Set NVM write offset |
| 1905 | * @port: USB4 port |
| 1906 | * @index: Retimer index |
| 1907 | * @address: Start offset |
| 1908 | * |
| 1909 | * Exlicitly sets NVM write offset. Normally when writing to NVM this is |
| 1910 | * done automatically by usb4_port_retimer_nvm_write(). |
| 1911 | * |
| 1912 | * Returns %0 in success and negative errno if there was a failure. |
| 1913 | */ |
| 1914 | int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index, |
| 1915 | unsigned int address) |
| 1916 | { |
| 1917 | u32 metadata, dwaddress; |
| 1918 | int ret; |
| 1919 | |
| 1920 | dwaddress = address / 4; |
| 1921 | metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & |
| 1922 | USB4_NVM_SET_OFFSET_MASK; |
| 1923 | |
| 1924 | ret = usb4_port_sb_write(port, target: USB4_SB_TARGET_RETIMER, index, |
| 1925 | USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata)); |
| 1926 | if (ret) |
| 1927 | return ret; |
| 1928 | |
| 1929 | return usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_NVM_SET_OFFSET, |
| 1930 | timeout_msec: 500); |
| 1931 | } |
| 1932 | |
| 1933 | struct retimer_info { |
| 1934 | struct tb_port *port; |
| 1935 | u8 index; |
| 1936 | }; |
| 1937 | |
| 1938 | static int usb4_port_retimer_nvm_write_next_block(void *data, |
| 1939 | unsigned int dwaddress, const void *buf, size_t dwords) |
| 1940 | |
| 1941 | { |
| 1942 | const struct retimer_info *info = data; |
| 1943 | struct tb_port *port = info->port; |
| 1944 | u8 index = info->index; |
| 1945 | int ret; |
| 1946 | |
| 1947 | ret = usb4_port_sb_write(port, target: USB4_SB_TARGET_RETIMER, index, |
| 1948 | USB4_SB_DATA, buf, size: dwords * 4); |
| 1949 | if (ret) |
| 1950 | return ret; |
| 1951 | |
| 1952 | return usb4_port_retimer_op(port, index, |
| 1953 | opcode: USB4_SB_OPCODE_NVM_BLOCK_WRITE, timeout_msec: 1000); |
| 1954 | } |
| 1955 | |
| 1956 | /** |
| 1957 | * usb4_port_retimer_nvm_write() - Write to retimer NVM |
| 1958 | * @port: USB4 port |
| 1959 | * @index: Retimer index |
| 1960 | * @address: Byte address where to start the write |
| 1961 | * @buf: Data to write |
| 1962 | * @size: Size in bytes how much to write |
| 1963 | * |
| 1964 | * Writes @size bytes from @buf to the retimer NVM. Used for NVM |
| 1965 | * upgrade. Returns %0 if the data was written successfully and negative |
| 1966 | * errno in case of failure. Specifically returns %-ENODEV if there is |
| 1967 | * no retimer at @index. |
| 1968 | */ |
| 1969 | int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address, |
| 1970 | const void *buf, size_t size) |
| 1971 | { |
| 1972 | struct retimer_info info = { .port = port, .index = index }; |
| 1973 | int ret; |
| 1974 | |
| 1975 | ret = usb4_port_retimer_nvm_set_offset(port, index, address); |
| 1976 | if (ret) |
| 1977 | return ret; |
| 1978 | |
| 1979 | return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES, |
| 1980 | write_next_block: usb4_port_retimer_nvm_write_next_block, write_block_data: &info); |
| 1981 | } |
| 1982 | |
| 1983 | /** |
| 1984 | * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade |
| 1985 | * @port: USB4 port |
| 1986 | * @index: Retimer index |
| 1987 | * |
| 1988 | * After the new NVM image has been written via usb4_port_retimer_nvm_write() |
| 1989 | * this function can be used to trigger the NVM upgrade process. If |
| 1990 | * successful the retimer restarts with the new NVM and may not have the |
| 1991 | * index set so one needs to call usb4_port_enumerate_retimers() to |
| 1992 | * force index to be assigned. |
| 1993 | */ |
| 1994 | int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index) |
| 1995 | { |
| 1996 | u32 val; |
| 1997 | |
| 1998 | /* |
| 1999 | * We need to use the raw operation here because once the |
| 2000 | * authentication completes the retimer index is not set anymore |
| 2001 | * so we do not get back the status now. |
| 2002 | */ |
| 2003 | val = USB4_SB_OPCODE_NVM_AUTH_WRITE; |
| 2004 | return usb4_port_sb_write(port, target: USB4_SB_TARGET_RETIMER, index, |
| 2005 | USB4_SB_OPCODE, buf: &val, size: sizeof(val)); |
| 2006 | } |
| 2007 | |
| 2008 | /** |
| 2009 | * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade |
| 2010 | * @port: USB4 port |
| 2011 | * @index: Retimer index |
| 2012 | * @status: Raw status code read from metadata |
| 2013 | * |
| 2014 | * This can be called after usb4_port_retimer_nvm_authenticate() and |
| 2015 | * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade. |
| 2016 | * |
| 2017 | * Returns %0 if the authentication status was successfully read. The |
| 2018 | * completion metadata (the result) is then stored into @status. If |
| 2019 | * reading the status fails, returns negative errno. |
| 2020 | */ |
| 2021 | int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index, |
| 2022 | u32 *status) |
| 2023 | { |
| 2024 | u32 metadata, val; |
| 2025 | int ret; |
| 2026 | |
| 2027 | ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index, |
| 2028 | USB4_SB_OPCODE, buf: &val, size: sizeof(val)); |
| 2029 | if (ret) |
| 2030 | return ret; |
| 2031 | |
| 2032 | ret = usb4_port_sb_opcode_err_to_errno(val); |
| 2033 | switch (ret) { |
| 2034 | case 0: |
| 2035 | *status = 0; |
| 2036 | return 0; |
| 2037 | |
| 2038 | case -EAGAIN: |
| 2039 | ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index, |
| 2040 | USB4_SB_METADATA, buf: &metadata, |
| 2041 | size: sizeof(metadata)); |
| 2042 | if (ret) |
| 2043 | return ret; |
| 2044 | |
| 2045 | *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK; |
| 2046 | return 0; |
| 2047 | |
| 2048 | default: |
| 2049 | return ret; |
| 2050 | } |
| 2051 | } |
| 2052 | |
| 2053 | static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress, |
| 2054 | void *buf, size_t dwords) |
| 2055 | { |
| 2056 | const struct retimer_info *info = data; |
| 2057 | struct tb_port *port = info->port; |
| 2058 | u8 index = info->index; |
| 2059 | u32 metadata; |
| 2060 | int ret; |
| 2061 | |
| 2062 | metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT; |
| 2063 | if (dwords < USB4_DATA_DWORDS) |
| 2064 | metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT; |
| 2065 | |
| 2066 | ret = usb4_port_sb_write(port, target: USB4_SB_TARGET_RETIMER, index, |
| 2067 | USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata)); |
| 2068 | if (ret) |
| 2069 | return ret; |
| 2070 | |
| 2071 | ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_NVM_READ, timeout_msec: 500); |
| 2072 | if (ret) |
| 2073 | return ret; |
| 2074 | |
| 2075 | return usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index, |
| 2076 | USB4_SB_DATA, buf, size: dwords * 4); |
| 2077 | } |
| 2078 | |
| 2079 | /** |
| 2080 | * usb4_port_retimer_nvm_read() - Read contents of retimer NVM |
| 2081 | * @port: USB4 port |
| 2082 | * @index: Retimer index |
| 2083 | * @address: NVM address (in bytes) to start reading |
| 2084 | * @buf: Data read from NVM is stored here |
| 2085 | * @size: Number of bytes to read |
| 2086 | * |
| 2087 | * Reads retimer NVM and copies the contents to @buf. Returns %0 if the |
| 2088 | * read was successful and negative errno in case of failure. |
| 2089 | * Specifically returns %-ENODEV if there is no retimer at @index. |
| 2090 | */ |
| 2091 | int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index, |
| 2092 | unsigned int address, void *buf, size_t size) |
| 2093 | { |
| 2094 | struct retimer_info info = { .port = port, .index = index }; |
| 2095 | |
| 2096 | return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, |
| 2097 | read_block: usb4_port_retimer_nvm_read_block, read_block_data: &info); |
| 2098 | } |
| 2099 | |
| 2100 | static inline unsigned int |
| 2101 | usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw) |
| 2102 | { |
| 2103 | /* Take the possible bandwidth limitation into account */ |
| 2104 | if (port->max_bw) |
| 2105 | return min(bw, port->max_bw); |
| 2106 | return bw; |
| 2107 | } |
| 2108 | |
| 2109 | /** |
| 2110 | * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate |
| 2111 | * @port: USB3 adapter port |
| 2112 | * |
| 2113 | * Return maximum supported link rate of a USB3 adapter in Mb/s. |
| 2114 | * Negative errno in case of error. |
| 2115 | */ |
| 2116 | int usb4_usb3_port_max_link_rate(struct tb_port *port) |
| 2117 | { |
| 2118 | int ret, lr; |
| 2119 | u32 val; |
| 2120 | |
| 2121 | if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) |
| 2122 | return -EINVAL; |
| 2123 | |
| 2124 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2125 | offset: port->cap_adap + ADP_USB3_CS_4, length: 1); |
| 2126 | if (ret) |
| 2127 | return ret; |
| 2128 | |
| 2129 | lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT; |
| 2130 | ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000; |
| 2131 | |
| 2132 | return usb4_usb3_port_max_bandwidth(port, bw: ret); |
| 2133 | } |
| 2134 | |
| 2135 | static int usb4_usb3_port_cm_request(struct tb_port *port, bool request) |
| 2136 | { |
| 2137 | int ret; |
| 2138 | u32 val; |
| 2139 | |
| 2140 | if (!tb_port_is_usb3_down(port)) |
| 2141 | return -EINVAL; |
| 2142 | if (tb_route(sw: port->sw)) |
| 2143 | return -EINVAL; |
| 2144 | |
| 2145 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2146 | offset: port->cap_adap + ADP_USB3_CS_2, length: 1); |
| 2147 | if (ret) |
| 2148 | return ret; |
| 2149 | |
| 2150 | if (request) |
| 2151 | val |= ADP_USB3_CS_2_CMR; |
| 2152 | else |
| 2153 | val &= ~ADP_USB3_CS_2_CMR; |
| 2154 | |
| 2155 | ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2156 | offset: port->cap_adap + ADP_USB3_CS_2, length: 1); |
| 2157 | if (ret) |
| 2158 | return ret; |
| 2159 | |
| 2160 | /* |
| 2161 | * We can use val here directly as the CMR bit is in the same place |
| 2162 | * as HCA. Just mask out others. |
| 2163 | */ |
| 2164 | val &= ADP_USB3_CS_2_CMR; |
| 2165 | return usb4_port_wait_for_bit(port, offset: port->cap_adap + ADP_USB3_CS_1, |
| 2166 | ADP_USB3_CS_1_HCA, value: val, timeout_msec: 1500, |
| 2167 | USB4_PORT_DELAY); |
| 2168 | } |
| 2169 | |
| 2170 | static inline int usb4_usb3_port_set_cm_request(struct tb_port *port) |
| 2171 | { |
| 2172 | return usb4_usb3_port_cm_request(port, request: true); |
| 2173 | } |
| 2174 | |
| 2175 | static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port) |
| 2176 | { |
| 2177 | return usb4_usb3_port_cm_request(port, request: false); |
| 2178 | } |
| 2179 | |
| 2180 | static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale) |
| 2181 | { |
| 2182 | unsigned long uframes; |
| 2183 | |
| 2184 | uframes = bw * 512UL << scale; |
| 2185 | return DIV_ROUND_CLOSEST(uframes * 8000, MEGA); |
| 2186 | } |
| 2187 | |
| 2188 | static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale) |
| 2189 | { |
| 2190 | unsigned long uframes; |
| 2191 | |
| 2192 | /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */ |
| 2193 | uframes = ((unsigned long)mbps * MEGA) / 8000; |
| 2194 | return DIV_ROUND_UP(uframes, 512UL << scale); |
| 2195 | } |
| 2196 | |
| 2197 | static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port, |
| 2198 | int *upstream_bw, |
| 2199 | int *downstream_bw) |
| 2200 | { |
| 2201 | u32 val, bw, scale; |
| 2202 | int ret; |
| 2203 | |
| 2204 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2205 | offset: port->cap_adap + ADP_USB3_CS_2, length: 1); |
| 2206 | if (ret) |
| 2207 | return ret; |
| 2208 | |
| 2209 | ret = tb_port_read(port, buffer: &scale, space: TB_CFG_PORT, |
| 2210 | offset: port->cap_adap + ADP_USB3_CS_3, length: 1); |
| 2211 | if (ret) |
| 2212 | return ret; |
| 2213 | |
| 2214 | scale &= ADP_USB3_CS_3_SCALE_MASK; |
| 2215 | |
| 2216 | bw = val & ADP_USB3_CS_2_AUBW_MASK; |
| 2217 | *upstream_bw = usb3_bw_to_mbps(bw, scale); |
| 2218 | |
| 2219 | bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT; |
| 2220 | *downstream_bw = usb3_bw_to_mbps(bw, scale); |
| 2221 | |
| 2222 | return 0; |
| 2223 | } |
| 2224 | |
| 2225 | /** |
| 2226 | * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3 |
| 2227 | * @port: USB3 adapter port |
| 2228 | * @upstream_bw: Allocated upstream bandwidth is stored here |
| 2229 | * @downstream_bw: Allocated downstream bandwidth is stored here |
| 2230 | * |
| 2231 | * Stores currently allocated USB3 bandwidth into @upstream_bw and |
| 2232 | * @downstream_bw in Mb/s. Returns %0 in case of success and negative |
| 2233 | * errno in failure. |
| 2234 | */ |
| 2235 | int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw, |
| 2236 | int *downstream_bw) |
| 2237 | { |
| 2238 | int ret; |
| 2239 | |
| 2240 | ret = usb4_usb3_port_set_cm_request(port); |
| 2241 | if (ret) |
| 2242 | return ret; |
| 2243 | |
| 2244 | ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw, |
| 2245 | downstream_bw); |
| 2246 | usb4_usb3_port_clear_cm_request(port); |
| 2247 | |
| 2248 | return ret; |
| 2249 | } |
| 2250 | |
| 2251 | static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port, |
| 2252 | int *upstream_bw, |
| 2253 | int *downstream_bw) |
| 2254 | { |
| 2255 | u32 val, bw, scale; |
| 2256 | int ret; |
| 2257 | |
| 2258 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2259 | offset: port->cap_adap + ADP_USB3_CS_1, length: 1); |
| 2260 | if (ret) |
| 2261 | return ret; |
| 2262 | |
| 2263 | ret = tb_port_read(port, buffer: &scale, space: TB_CFG_PORT, |
| 2264 | offset: port->cap_adap + ADP_USB3_CS_3, length: 1); |
| 2265 | if (ret) |
| 2266 | return ret; |
| 2267 | |
| 2268 | scale &= ADP_USB3_CS_3_SCALE_MASK; |
| 2269 | |
| 2270 | bw = val & ADP_USB3_CS_1_CUBW_MASK; |
| 2271 | *upstream_bw = usb3_bw_to_mbps(bw, scale); |
| 2272 | |
| 2273 | bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT; |
| 2274 | *downstream_bw = usb3_bw_to_mbps(bw, scale); |
| 2275 | |
| 2276 | return 0; |
| 2277 | } |
| 2278 | |
| 2279 | static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port, |
| 2280 | int upstream_bw, |
| 2281 | int downstream_bw) |
| 2282 | { |
| 2283 | u32 val, ubw, dbw, scale; |
| 2284 | int ret, max_bw; |
| 2285 | |
| 2286 | /* Figure out suitable scale */ |
| 2287 | scale = 0; |
| 2288 | max_bw = max(upstream_bw, downstream_bw); |
| 2289 | while (scale < 64) { |
| 2290 | if (mbps_to_usb3_bw(mbps: max_bw, scale) < 4096) |
| 2291 | break; |
| 2292 | scale++; |
| 2293 | } |
| 2294 | |
| 2295 | if (WARN_ON(scale >= 64)) |
| 2296 | return -EINVAL; |
| 2297 | |
| 2298 | ret = tb_port_write(port, buffer: &scale, space: TB_CFG_PORT, |
| 2299 | offset: port->cap_adap + ADP_USB3_CS_3, length: 1); |
| 2300 | if (ret) |
| 2301 | return ret; |
| 2302 | |
| 2303 | ubw = mbps_to_usb3_bw(mbps: upstream_bw, scale); |
| 2304 | dbw = mbps_to_usb3_bw(mbps: downstream_bw, scale); |
| 2305 | |
| 2306 | tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n" , ubw, dbw, scale); |
| 2307 | |
| 2308 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2309 | offset: port->cap_adap + ADP_USB3_CS_2, length: 1); |
| 2310 | if (ret) |
| 2311 | return ret; |
| 2312 | |
| 2313 | val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK); |
| 2314 | val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT; |
| 2315 | val |= ubw; |
| 2316 | |
| 2317 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2318 | offset: port->cap_adap + ADP_USB3_CS_2, length: 1); |
| 2319 | } |
| 2320 | |
| 2321 | /** |
| 2322 | * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3 |
| 2323 | * @port: USB3 adapter port |
| 2324 | * @upstream_bw: New upstream bandwidth |
| 2325 | * @downstream_bw: New downstream bandwidth |
| 2326 | * |
| 2327 | * This can be used to set how much bandwidth is allocated for the USB3 |
| 2328 | * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the |
| 2329 | * new values programmed to the USB3 adapter allocation registers. If |
| 2330 | * the values are lower than what is currently consumed the allocation |
| 2331 | * is set to what is currently consumed instead (consumed bandwidth |
| 2332 | * cannot be taken away by CM). The actual new values are returned in |
| 2333 | * @upstream_bw and @downstream_bw. |
| 2334 | * |
| 2335 | * Returns %0 in case of success and negative errno if there was a |
| 2336 | * failure. |
| 2337 | */ |
| 2338 | int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw, |
| 2339 | int *downstream_bw) |
| 2340 | { |
| 2341 | int ret, consumed_up, consumed_down, allocate_up, allocate_down; |
| 2342 | |
| 2343 | ret = usb4_usb3_port_set_cm_request(port); |
| 2344 | if (ret) |
| 2345 | return ret; |
| 2346 | |
| 2347 | ret = usb4_usb3_port_read_consumed_bandwidth(port, upstream_bw: &consumed_up, |
| 2348 | downstream_bw: &consumed_down); |
| 2349 | if (ret) |
| 2350 | goto err_request; |
| 2351 | |
| 2352 | /* Don't allow it go lower than what is consumed */ |
| 2353 | allocate_up = max(*upstream_bw, consumed_up); |
| 2354 | allocate_down = max(*downstream_bw, consumed_down); |
| 2355 | |
| 2356 | ret = usb4_usb3_port_write_allocated_bandwidth(port, upstream_bw: allocate_up, |
| 2357 | downstream_bw: allocate_down); |
| 2358 | if (ret) |
| 2359 | goto err_request; |
| 2360 | |
| 2361 | *upstream_bw = allocate_up; |
| 2362 | *downstream_bw = allocate_down; |
| 2363 | |
| 2364 | err_request: |
| 2365 | usb4_usb3_port_clear_cm_request(port); |
| 2366 | return ret; |
| 2367 | } |
| 2368 | |
| 2369 | /** |
| 2370 | * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth |
| 2371 | * @port: USB3 adapter port |
| 2372 | * @upstream_bw: New allocated upstream bandwidth |
| 2373 | * @downstream_bw: New allocated downstream bandwidth |
| 2374 | * |
| 2375 | * Releases USB3 allocated bandwidth down to what is actually consumed. |
| 2376 | * The new bandwidth is returned in @upstream_bw and @downstream_bw. |
| 2377 | * |
| 2378 | * Returns 0% in success and negative errno in case of failure. |
| 2379 | */ |
| 2380 | int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw, |
| 2381 | int *downstream_bw) |
| 2382 | { |
| 2383 | int ret, consumed_up, consumed_down; |
| 2384 | |
| 2385 | ret = usb4_usb3_port_set_cm_request(port); |
| 2386 | if (ret) |
| 2387 | return ret; |
| 2388 | |
| 2389 | ret = usb4_usb3_port_read_consumed_bandwidth(port, upstream_bw: &consumed_up, |
| 2390 | downstream_bw: &consumed_down); |
| 2391 | if (ret) |
| 2392 | goto err_request; |
| 2393 | |
| 2394 | /* |
| 2395 | * Always keep 900 Mb/s to make sure xHCI has at least some |
| 2396 | * bandwidth available for isochronous traffic. |
| 2397 | */ |
| 2398 | if (consumed_up < 900) |
| 2399 | consumed_up = 900; |
| 2400 | if (consumed_down < 900) |
| 2401 | consumed_down = 900; |
| 2402 | |
| 2403 | ret = usb4_usb3_port_write_allocated_bandwidth(port, upstream_bw: consumed_up, |
| 2404 | downstream_bw: consumed_down); |
| 2405 | if (ret) |
| 2406 | goto err_request; |
| 2407 | |
| 2408 | *upstream_bw = consumed_up; |
| 2409 | *downstream_bw = consumed_down; |
| 2410 | |
| 2411 | err_request: |
| 2412 | usb4_usb3_port_clear_cm_request(port); |
| 2413 | return ret; |
| 2414 | } |
| 2415 | |
| 2416 | static bool is_usb4_dpin(const struct tb_port *port) |
| 2417 | { |
| 2418 | if (!tb_port_is_dpin(port)) |
| 2419 | return false; |
| 2420 | if (!tb_switch_is_usb4(sw: port->sw)) |
| 2421 | return false; |
| 2422 | return true; |
| 2423 | } |
| 2424 | |
| 2425 | /** |
| 2426 | * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter |
| 2427 | * @port: DP IN adapter |
| 2428 | * @cm_id: CM ID to assign |
| 2429 | * |
| 2430 | * Sets CM ID for the @port. Returns %0 on success and negative errno |
| 2431 | * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not |
| 2432 | * support this. |
| 2433 | */ |
| 2434 | int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id) |
| 2435 | { |
| 2436 | u32 val; |
| 2437 | int ret; |
| 2438 | |
| 2439 | if (!is_usb4_dpin(port)) |
| 2440 | return -EOPNOTSUPP; |
| 2441 | |
| 2442 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2443 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2444 | if (ret) |
| 2445 | return ret; |
| 2446 | |
| 2447 | val &= ~ADP_DP_CS_2_CM_ID_MASK; |
| 2448 | val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT; |
| 2449 | |
| 2450 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2451 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2452 | } |
| 2453 | |
| 2454 | /** |
| 2455 | * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode |
| 2456 | * supported |
| 2457 | * @port: DP IN adapter to check |
| 2458 | * |
| 2459 | * Can be called to any DP IN adapter. Returns true if the adapter |
| 2460 | * supports USB4 bandwidth allocation mode, false otherwise. |
| 2461 | */ |
| 2462 | bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port) |
| 2463 | { |
| 2464 | int ret; |
| 2465 | u32 val; |
| 2466 | |
| 2467 | if (!is_usb4_dpin(port)) |
| 2468 | return false; |
| 2469 | |
| 2470 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2471 | offset: port->cap_adap + DP_LOCAL_CAP, length: 1); |
| 2472 | if (ret) |
| 2473 | return false; |
| 2474 | |
| 2475 | return !!(val & DP_COMMON_CAP_BW_MODE); |
| 2476 | } |
| 2477 | |
| 2478 | /** |
| 2479 | * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode |
| 2480 | * enabled |
| 2481 | * @port: DP IN adapter to check |
| 2482 | * |
| 2483 | * Can be called to any DP IN adapter. Returns true if the bandwidth |
| 2484 | * allocation mode has been enabled, false otherwise. |
| 2485 | */ |
| 2486 | bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port) |
| 2487 | { |
| 2488 | int ret; |
| 2489 | u32 val; |
| 2490 | |
| 2491 | if (!is_usb4_dpin(port)) |
| 2492 | return false; |
| 2493 | |
| 2494 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2495 | offset: port->cap_adap + ADP_DP_CS_8, length: 1); |
| 2496 | if (ret) |
| 2497 | return false; |
| 2498 | |
| 2499 | return !!(val & ADP_DP_CS_8_DPME); |
| 2500 | } |
| 2501 | |
| 2502 | /** |
| 2503 | * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for |
| 2504 | * bandwidth allocation mode |
| 2505 | * @port: DP IN adapter |
| 2506 | * @supported: Does the CM support bandwidth allocation mode |
| 2507 | * |
| 2508 | * Can be called to any DP IN adapter. Sets or clears the CM support bit |
| 2509 | * of the DP IN adapter. Returns %0 in success and negative errno |
| 2510 | * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter |
| 2511 | * does not support this. |
| 2512 | */ |
| 2513 | int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port, |
| 2514 | bool supported) |
| 2515 | { |
| 2516 | u32 val; |
| 2517 | int ret; |
| 2518 | |
| 2519 | if (!is_usb4_dpin(port)) |
| 2520 | return -EOPNOTSUPP; |
| 2521 | |
| 2522 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2523 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2524 | if (ret) |
| 2525 | return ret; |
| 2526 | |
| 2527 | if (supported) |
| 2528 | val |= ADP_DP_CS_2_CMMS; |
| 2529 | else |
| 2530 | val &= ~ADP_DP_CS_2_CMMS; |
| 2531 | |
| 2532 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2533 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2534 | } |
| 2535 | |
| 2536 | /** |
| 2537 | * usb4_dp_port_group_id() - Return Group ID assigned for the adapter |
| 2538 | * @port: DP IN adapter |
| 2539 | * |
| 2540 | * Reads bandwidth allocation Group ID from the DP IN adapter and |
| 2541 | * returns it. If the adapter does not support setting Group_ID |
| 2542 | * %-EOPNOTSUPP is returned. |
| 2543 | */ |
| 2544 | int usb4_dp_port_group_id(struct tb_port *port) |
| 2545 | { |
| 2546 | u32 val; |
| 2547 | int ret; |
| 2548 | |
| 2549 | if (!is_usb4_dpin(port)) |
| 2550 | return -EOPNOTSUPP; |
| 2551 | |
| 2552 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2553 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2554 | if (ret) |
| 2555 | return ret; |
| 2556 | |
| 2557 | return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT; |
| 2558 | } |
| 2559 | |
| 2560 | /** |
| 2561 | * usb4_dp_port_set_group_id() - Set adapter Group ID |
| 2562 | * @port: DP IN adapter |
| 2563 | * @group_id: Group ID for the adapter |
| 2564 | * |
| 2565 | * Sets bandwidth allocation mode Group ID for the DP IN adapter. |
| 2566 | * Returns %0 in case of success and negative errno otherwise. |
| 2567 | * Specifically returns %-EOPNOTSUPP if the adapter does not support |
| 2568 | * this. |
| 2569 | */ |
| 2570 | int usb4_dp_port_set_group_id(struct tb_port *port, int group_id) |
| 2571 | { |
| 2572 | u32 val; |
| 2573 | int ret; |
| 2574 | |
| 2575 | if (!is_usb4_dpin(port)) |
| 2576 | return -EOPNOTSUPP; |
| 2577 | |
| 2578 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2579 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2580 | if (ret) |
| 2581 | return ret; |
| 2582 | |
| 2583 | val &= ~ADP_DP_CS_2_GROUP_ID_MASK; |
| 2584 | val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT; |
| 2585 | |
| 2586 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2587 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2588 | } |
| 2589 | |
| 2590 | /** |
| 2591 | * usb4_dp_port_nrd() - Read non-reduced rate and lanes |
| 2592 | * @port: DP IN adapter |
| 2593 | * @rate: Non-reduced rate in Mb/s is placed here |
| 2594 | * @lanes: Non-reduced lanes are placed here |
| 2595 | * |
| 2596 | * Reads the non-reduced rate and lanes from the DP IN adapter. Returns |
| 2597 | * %0 in success and negative errno otherwise. Specifically returns |
| 2598 | * %-EOPNOTSUPP if the adapter does not support this. |
| 2599 | */ |
| 2600 | int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes) |
| 2601 | { |
| 2602 | u32 val, tmp; |
| 2603 | int ret; |
| 2604 | |
| 2605 | if (!is_usb4_dpin(port)) |
| 2606 | return -EOPNOTSUPP; |
| 2607 | |
| 2608 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2609 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2610 | if (ret) |
| 2611 | return ret; |
| 2612 | |
| 2613 | tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT; |
| 2614 | switch (tmp) { |
| 2615 | case DP_COMMON_CAP_RATE_RBR: |
| 2616 | *rate = 1620; |
| 2617 | break; |
| 2618 | case DP_COMMON_CAP_RATE_HBR: |
| 2619 | *rate = 2700; |
| 2620 | break; |
| 2621 | case DP_COMMON_CAP_RATE_HBR2: |
| 2622 | *rate = 5400; |
| 2623 | break; |
| 2624 | case DP_COMMON_CAP_RATE_HBR3: |
| 2625 | *rate = 8100; |
| 2626 | break; |
| 2627 | } |
| 2628 | |
| 2629 | tmp = val & ADP_DP_CS_2_NRD_MLC_MASK; |
| 2630 | switch (tmp) { |
| 2631 | case DP_COMMON_CAP_1_LANE: |
| 2632 | *lanes = 1; |
| 2633 | break; |
| 2634 | case DP_COMMON_CAP_2_LANES: |
| 2635 | *lanes = 2; |
| 2636 | break; |
| 2637 | case DP_COMMON_CAP_4_LANES: |
| 2638 | *lanes = 4; |
| 2639 | break; |
| 2640 | } |
| 2641 | |
| 2642 | return 0; |
| 2643 | } |
| 2644 | |
| 2645 | /** |
| 2646 | * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes |
| 2647 | * @port: DP IN adapter |
| 2648 | * @rate: Non-reduced rate in Mb/s |
| 2649 | * @lanes: Non-reduced lanes |
| 2650 | * |
| 2651 | * Before the capabilities reduction this function can be used to set |
| 2652 | * the non-reduced values for the DP IN adapter. Returns %0 in success |
| 2653 | * and negative errno otherwise. If the adapter does not support this |
| 2654 | * %-EOPNOTSUPP is returned. |
| 2655 | */ |
| 2656 | int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes) |
| 2657 | { |
| 2658 | u32 val; |
| 2659 | int ret; |
| 2660 | |
| 2661 | if (!is_usb4_dpin(port)) |
| 2662 | return -EOPNOTSUPP; |
| 2663 | |
| 2664 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2665 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2666 | if (ret) |
| 2667 | return ret; |
| 2668 | |
| 2669 | val &= ~ADP_DP_CS_2_NRD_MLR_MASK; |
| 2670 | |
| 2671 | switch (rate) { |
| 2672 | case 1620: |
| 2673 | break; |
| 2674 | case 2700: |
| 2675 | val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT) |
| 2676 | & ADP_DP_CS_2_NRD_MLR_MASK; |
| 2677 | break; |
| 2678 | case 5400: |
| 2679 | val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT) |
| 2680 | & ADP_DP_CS_2_NRD_MLR_MASK; |
| 2681 | break; |
| 2682 | case 8100: |
| 2683 | val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT) |
| 2684 | & ADP_DP_CS_2_NRD_MLR_MASK; |
| 2685 | break; |
| 2686 | default: |
| 2687 | return -EINVAL; |
| 2688 | } |
| 2689 | |
| 2690 | val &= ~ADP_DP_CS_2_NRD_MLC_MASK; |
| 2691 | |
| 2692 | switch (lanes) { |
| 2693 | case 1: |
| 2694 | break; |
| 2695 | case 2: |
| 2696 | val |= DP_COMMON_CAP_2_LANES; |
| 2697 | break; |
| 2698 | case 4: |
| 2699 | val |= DP_COMMON_CAP_4_LANES; |
| 2700 | break; |
| 2701 | default: |
| 2702 | return -EINVAL; |
| 2703 | } |
| 2704 | |
| 2705 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2706 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2707 | } |
| 2708 | |
| 2709 | /** |
| 2710 | * usb4_dp_port_granularity() - Return granularity for the bandwidth values |
| 2711 | * @port: DP IN adapter |
| 2712 | * |
| 2713 | * Reads the programmed granularity from @port. If the DP IN adapter does |
| 2714 | * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative |
| 2715 | * errno in other error cases. |
| 2716 | */ |
| 2717 | int usb4_dp_port_granularity(struct tb_port *port) |
| 2718 | { |
| 2719 | u32 val; |
| 2720 | int ret; |
| 2721 | |
| 2722 | if (!is_usb4_dpin(port)) |
| 2723 | return -EOPNOTSUPP; |
| 2724 | |
| 2725 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2726 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2727 | if (ret) |
| 2728 | return ret; |
| 2729 | |
| 2730 | val &= ADP_DP_CS_2_GR_MASK; |
| 2731 | val >>= ADP_DP_CS_2_GR_SHIFT; |
| 2732 | |
| 2733 | switch (val) { |
| 2734 | case ADP_DP_CS_2_GR_0_25G: |
| 2735 | return 250; |
| 2736 | case ADP_DP_CS_2_GR_0_5G: |
| 2737 | return 500; |
| 2738 | case ADP_DP_CS_2_GR_1G: |
| 2739 | return 1000; |
| 2740 | } |
| 2741 | |
| 2742 | return -EINVAL; |
| 2743 | } |
| 2744 | |
| 2745 | /** |
| 2746 | * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values |
| 2747 | * @port: DP IN adapter |
| 2748 | * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250. |
| 2749 | * |
| 2750 | * Sets the granularity used with the estimated, allocated and requested |
| 2751 | * bandwidth. Returns %0 in success and negative errno otherwise. If the |
| 2752 | * adapter does not support this %-EOPNOTSUPP is returned. |
| 2753 | */ |
| 2754 | int usb4_dp_port_set_granularity(struct tb_port *port, int granularity) |
| 2755 | { |
| 2756 | u32 val; |
| 2757 | int ret; |
| 2758 | |
| 2759 | if (!is_usb4_dpin(port)) |
| 2760 | return -EOPNOTSUPP; |
| 2761 | |
| 2762 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2763 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2764 | if (ret) |
| 2765 | return ret; |
| 2766 | |
| 2767 | val &= ~ADP_DP_CS_2_GR_MASK; |
| 2768 | |
| 2769 | switch (granularity) { |
| 2770 | case 250: |
| 2771 | val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT; |
| 2772 | break; |
| 2773 | case 500: |
| 2774 | val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT; |
| 2775 | break; |
| 2776 | case 1000: |
| 2777 | val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT; |
| 2778 | break; |
| 2779 | default: |
| 2780 | return -EINVAL; |
| 2781 | } |
| 2782 | |
| 2783 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2784 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2785 | } |
| 2786 | |
| 2787 | /** |
| 2788 | * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth |
| 2789 | * @port: DP IN adapter |
| 2790 | * @bw: Estimated bandwidth in Mb/s. |
| 2791 | * |
| 2792 | * Sets the estimated bandwidth to @bw. Set the granularity by calling |
| 2793 | * usb4_dp_port_set_granularity() before calling this. The @bw is round |
| 2794 | * down to the closest granularity multiplier. Returns %0 in success |
| 2795 | * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if |
| 2796 | * the adapter does not support this. |
| 2797 | */ |
| 2798 | int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw) |
| 2799 | { |
| 2800 | u32 val, granularity; |
| 2801 | int ret; |
| 2802 | |
| 2803 | if (!is_usb4_dpin(port)) |
| 2804 | return -EOPNOTSUPP; |
| 2805 | |
| 2806 | ret = usb4_dp_port_granularity(port); |
| 2807 | if (ret < 0) |
| 2808 | return ret; |
| 2809 | granularity = ret; |
| 2810 | |
| 2811 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2812 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2813 | if (ret) |
| 2814 | return ret; |
| 2815 | |
| 2816 | val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK; |
| 2817 | val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT; |
| 2818 | |
| 2819 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2820 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2821 | } |
| 2822 | |
| 2823 | /** |
| 2824 | * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth |
| 2825 | * @port: DP IN adapter |
| 2826 | * |
| 2827 | * Reads and returns allocated bandwidth for @port in Mb/s (taking into |
| 2828 | * account the programmed granularity). Returns negative errno in case |
| 2829 | * of error. |
| 2830 | */ |
| 2831 | int usb4_dp_port_allocated_bandwidth(struct tb_port *port) |
| 2832 | { |
| 2833 | u32 val, granularity; |
| 2834 | int ret; |
| 2835 | |
| 2836 | if (!is_usb4_dpin(port)) |
| 2837 | return -EOPNOTSUPP; |
| 2838 | |
| 2839 | ret = usb4_dp_port_granularity(port); |
| 2840 | if (ret < 0) |
| 2841 | return ret; |
| 2842 | granularity = ret; |
| 2843 | |
| 2844 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2845 | offset: port->cap_adap + DP_STATUS, length: 1); |
| 2846 | if (ret) |
| 2847 | return ret; |
| 2848 | |
| 2849 | val &= DP_STATUS_ALLOCATED_BW_MASK; |
| 2850 | val >>= DP_STATUS_ALLOCATED_BW_SHIFT; |
| 2851 | |
| 2852 | return val * granularity; |
| 2853 | } |
| 2854 | |
| 2855 | static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack) |
| 2856 | { |
| 2857 | u32 val; |
| 2858 | int ret; |
| 2859 | |
| 2860 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2861 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2862 | if (ret) |
| 2863 | return ret; |
| 2864 | |
| 2865 | if (ack) |
| 2866 | val |= ADP_DP_CS_2_CA; |
| 2867 | else |
| 2868 | val &= ~ADP_DP_CS_2_CA; |
| 2869 | |
| 2870 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2871 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2872 | } |
| 2873 | |
| 2874 | static inline int usb4_dp_port_set_cm_ack(struct tb_port *port) |
| 2875 | { |
| 2876 | return __usb4_dp_port_set_cm_ack(port, ack: true); |
| 2877 | } |
| 2878 | |
| 2879 | static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port, |
| 2880 | int timeout_msec) |
| 2881 | { |
| 2882 | ktime_t end; |
| 2883 | u32 val; |
| 2884 | int ret; |
| 2885 | |
| 2886 | ret = __usb4_dp_port_set_cm_ack(port, ack: false); |
| 2887 | if (ret) |
| 2888 | return ret; |
| 2889 | |
| 2890 | end = ktime_add_ms(kt: ktime_get(), msec: timeout_msec); |
| 2891 | do { |
| 2892 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2893 | offset: port->cap_adap + ADP_DP_CS_8, length: 1); |
| 2894 | if (ret) |
| 2895 | return ret; |
| 2896 | |
| 2897 | if (!(val & ADP_DP_CS_8_DR)) |
| 2898 | break; |
| 2899 | |
| 2900 | usleep_range(min: 50, max: 100); |
| 2901 | } while (ktime_before(cmp1: ktime_get(), cmp2: end)); |
| 2902 | |
| 2903 | if (val & ADP_DP_CS_8_DR) { |
| 2904 | tb_port_warn(port, "timeout waiting for DPTX request to clear\n" ); |
| 2905 | return -ETIMEDOUT; |
| 2906 | } |
| 2907 | |
| 2908 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2909 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2910 | if (ret) |
| 2911 | return ret; |
| 2912 | |
| 2913 | val &= ~ADP_DP_CS_2_CA; |
| 2914 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2915 | offset: port->cap_adap + ADP_DP_CS_2, length: 1); |
| 2916 | } |
| 2917 | |
| 2918 | /** |
| 2919 | * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth |
| 2920 | * @port: DP IN adapter |
| 2921 | * @bw: New allocated bandwidth in Mb/s |
| 2922 | * |
| 2923 | * Communicates the new allocated bandwidth with the DPCD (graphics |
| 2924 | * driver). Takes into account the programmed granularity. Returns %0 in |
| 2925 | * success and negative errno in case of error. |
| 2926 | */ |
| 2927 | int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw) |
| 2928 | { |
| 2929 | u32 val, granularity; |
| 2930 | int ret; |
| 2931 | |
| 2932 | if (!is_usb4_dpin(port)) |
| 2933 | return -EOPNOTSUPP; |
| 2934 | |
| 2935 | ret = usb4_dp_port_granularity(port); |
| 2936 | if (ret < 0) |
| 2937 | return ret; |
| 2938 | granularity = ret; |
| 2939 | |
| 2940 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2941 | offset: port->cap_adap + DP_STATUS, length: 1); |
| 2942 | if (ret) |
| 2943 | return ret; |
| 2944 | |
| 2945 | val &= ~DP_STATUS_ALLOCATED_BW_MASK; |
| 2946 | val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT; |
| 2947 | |
| 2948 | ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 2949 | offset: port->cap_adap + DP_STATUS, length: 1); |
| 2950 | if (ret) |
| 2951 | return ret; |
| 2952 | |
| 2953 | ret = usb4_dp_port_set_cm_ack(port); |
| 2954 | if (ret) |
| 2955 | return ret; |
| 2956 | |
| 2957 | return usb4_dp_port_wait_and_clear_cm_ack(port, timeout_msec: 500); |
| 2958 | } |
| 2959 | |
| 2960 | /** |
| 2961 | * usb4_dp_port_requested_bandwidth() - Read requested bandwidth |
| 2962 | * @port: DP IN adapter |
| 2963 | * |
| 2964 | * Reads the DPCD (graphics driver) requested bandwidth and returns it |
| 2965 | * in Mb/s. Takes the programmed granularity into account. In case of |
| 2966 | * error returns negative errno. Specifically returns %-EOPNOTSUPP if |
| 2967 | * the adapter does not support bandwidth allocation mode, and %ENODATA |
| 2968 | * if there is no active bandwidth request from the graphics driver. |
| 2969 | */ |
| 2970 | int usb4_dp_port_requested_bandwidth(struct tb_port *port) |
| 2971 | { |
| 2972 | u32 val, granularity; |
| 2973 | int ret; |
| 2974 | |
| 2975 | if (!is_usb4_dpin(port)) |
| 2976 | return -EOPNOTSUPP; |
| 2977 | |
| 2978 | ret = usb4_dp_port_granularity(port); |
| 2979 | if (ret < 0) |
| 2980 | return ret; |
| 2981 | granularity = ret; |
| 2982 | |
| 2983 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 2984 | offset: port->cap_adap + ADP_DP_CS_8, length: 1); |
| 2985 | if (ret) |
| 2986 | return ret; |
| 2987 | |
| 2988 | if (!(val & ADP_DP_CS_8_DR)) |
| 2989 | return -ENODATA; |
| 2990 | |
| 2991 | return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity; |
| 2992 | } |
| 2993 | |
| 2994 | /** |
| 2995 | * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation |
| 2996 | * @port: PCIe adapter |
| 2997 | * @enable: Enable/disable extended encapsulation |
| 2998 | * |
| 2999 | * Enables or disables extended encapsulation used in PCIe tunneling. Caller |
| 3000 | * needs to make sure both adapters support this before enabling. Returns %0 on |
| 3001 | * success and negative errno otherwise. |
| 3002 | */ |
| 3003 | int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable) |
| 3004 | { |
| 3005 | u32 val; |
| 3006 | int ret; |
| 3007 | |
| 3008 | if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port)) |
| 3009 | return -EINVAL; |
| 3010 | |
| 3011 | ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, |
| 3012 | offset: port->cap_adap + ADP_PCIE_CS_1, length: 1); |
| 3013 | if (ret) |
| 3014 | return ret; |
| 3015 | |
| 3016 | if (enable) |
| 3017 | val |= ADP_PCIE_CS_1_EE; |
| 3018 | else |
| 3019 | val &= ~ADP_PCIE_CS_1_EE; |
| 3020 | |
| 3021 | return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, |
| 3022 | offset: port->cap_adap + ADP_PCIE_CS_1, length: 1); |
| 3023 | } |
| 3024 | |