1// SPDX-License-Identifier: GPL-2.0
2/*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/ktime.h>
12#include <linux/units.h>
13
14#include "sb_regs.h"
15#include "tb.h"
16
17#define USB4_DATA_RETRIES 3
18#define USB4_DATA_DWORDS 16
19
20#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
21#define USB4_NVM_READ_OFFSET_SHIFT 2
22#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
23#define USB4_NVM_READ_LENGTH_SHIFT 24
24
25#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
26#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
27
28#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
29#define USB4_DROM_ADDRESS_SHIFT 2
30#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
31#define USB4_DROM_SIZE_SHIFT 15
32
33#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
34
35#define USB4_BA_LENGTH_MASK GENMASK(7, 0)
36#define USB4_BA_INDEX_MASK GENMASK(15, 0)
37
38enum usb4_ba_index {
39 USB4_BA_MAX_USB3 = 0x1,
40 USB4_BA_MIN_DP_AUX = 0x2,
41 USB4_BA_MIN_DP_MAIN = 0x3,
42 USB4_BA_MAX_PCIE = 0x4,
43 USB4_BA_MAX_HI = 0x5,
44};
45
46#define USB4_BA_VALUE_MASK GENMASK(31, 16)
47#define USB4_BA_VALUE_SHIFT 16
48
49/* Delays in us used with usb4_port_wait_for_bit() */
50#define USB4_PORT_DELAY 50
51#define USB4_PORT_SB_DELAY 1000
52
53static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 u32 *metadata, u8 *status,
55 const void *tx_data, size_t tx_dwords,
56 void *rx_data, size_t rx_dwords)
57{
58 u32 val;
59 int ret;
60
61 if (metadata) {
62 ret = tb_sw_write(sw, buffer: metadata, space: TB_CFG_SWITCH, ROUTER_CS_25, length: 1);
63 if (ret)
64 return ret;
65 }
66 if (tx_dwords) {
67 ret = tb_sw_write(sw, buffer: tx_data, space: TB_CFG_SWITCH, ROUTER_CS_9,
68 length: tx_dwords);
69 if (ret)
70 return ret;
71 }
72
73 val = opcode | ROUTER_CS_26_OV;
74 ret = tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_26, length: 1);
75 if (ret)
76 return ret;
77
78 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, value: 0, timeout_msec: 500);
79 if (ret)
80 return ret;
81
82 ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_26, length: 1);
83 if (ret)
84 return ret;
85
86 if (val & ROUTER_CS_26_ONS)
87 return -EOPNOTSUPP;
88
89 if (status)
90 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 ROUTER_CS_26_STATUS_SHIFT;
92
93 if (metadata) {
94 ret = tb_sw_read(sw, buffer: metadata, space: TB_CFG_SWITCH, ROUTER_CS_25, length: 1);
95 if (ret)
96 return ret;
97 }
98 if (rx_dwords) {
99 ret = tb_sw_read(sw, buffer: rx_data, space: TB_CFG_SWITCH, ROUTER_CS_9,
100 length: rx_dwords);
101 if (ret)
102 return ret;
103 }
104
105 return 0;
106}
107
108static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 u8 *status, const void *tx_data, size_t tx_dwords,
110 void *rx_data, size_t rx_dwords)
111{
112 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113
114 if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
115 return -EINVAL;
116
117 /*
118 * If the connection manager implementation provides USB4 router
119 * operation proxy callback, call it here instead of running the
120 * operation natively.
121 */
122 if (cm_ops->usb4_switch_op) {
123 int ret;
124
125 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 tx_data, tx_dwords, rx_data,
127 rx_dwords);
128 if (ret != -EOPNOTSUPP)
129 return ret;
130
131 /*
132 * If the proxy was not supported then run the native
133 * router operation instead.
134 */
135 }
136
137 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 tx_dwords, rx_data, rx_dwords);
139}
140
141static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 u32 *metadata, u8 *status)
143{
144 return __usb4_switch_op(sw, opcode, metadata, status, NULL, tx_dwords: 0, NULL, rx_dwords: 0);
145}
146
147static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 u32 *metadata, u8 *status,
149 const void *tx_data, size_t tx_dwords,
150 void *rx_data, size_t rx_dwords)
151{
152 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 tx_dwords, rx_data, rx_dwords);
154}
155
156/**
157 * usb4_switch_check_wakes() - Check for wakes and notify PM core about them
158 * @sw: Router whose wakes to check
159 *
160 * Checks wakes occurred during suspend and notify the PM core about them.
161 */
162void usb4_switch_check_wakes(struct tb_switch *sw)
163{
164 bool wakeup_usb4 = false;
165 struct usb4_port *usb4;
166 struct tb_port *port;
167 bool wakeup = false;
168 u32 val;
169
170 if (tb_route(sw)) {
171 if (tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_6, length: 1))
172 return;
173
174 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
175 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
176 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
177
178 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
179 }
180
181 /*
182 * Check for any downstream ports for USB4 wake,
183 * connection wake and disconnection wake.
184 */
185 tb_switch_for_each_port(sw, port) {
186 if (!port->cap_usb4)
187 continue;
188
189 if (tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
190 offset: port->cap_usb4 + PORT_CS_18, length: 1))
191 break;
192
193 tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
194 (val & PORT_CS_18_WOU4S) ? "yes" : "no",
195 (val & PORT_CS_18_WOCS) ? "yes" : "no",
196 (val & PORT_CS_18_WODS) ? "yes" : "no");
197
198 wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
199 PORT_CS_18_WODS);
200
201 usb4 = port->usb4;
202 if (device_may_wakeup(dev: &usb4->dev) && wakeup_usb4)
203 pm_wakeup_event(dev: &usb4->dev, msec: 0);
204
205 wakeup |= wakeup_usb4;
206 }
207
208 if (wakeup)
209 pm_wakeup_event(dev: &sw->dev, msec: 0);
210}
211
212static bool link_is_usb4(struct tb_port *port)
213{
214 u32 val;
215
216 if (!port->cap_usb4)
217 return false;
218
219 if (tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
220 offset: port->cap_usb4 + PORT_CS_18, length: 1))
221 return false;
222
223 return !(val & PORT_CS_18_TCM);
224}
225
226/**
227 * usb4_switch_setup() - Additional setup for USB4 device
228 * @sw: USB4 router to setup
229 *
230 * USB4 routers need additional settings in order to enable all the
231 * tunneling. This function enables USB and PCIe tunneling if it can be
232 * enabled (e.g the parent switch also supports them). If USB tunneling
233 * is not available for some reason (like that there is Thunderbolt 3
234 * switch upstream) then the internal xHCI controller is enabled
235 * instead.
236 *
237 * This does not set the configuration valid bit of the router. To do
238 * that call usb4_switch_configuration_valid().
239 */
240int usb4_switch_setup(struct tb_switch *sw)
241{
242 struct tb_switch *parent = tb_switch_parent(sw);
243 struct tb_port *down;
244 bool tbt3, xhci;
245 u32 val = 0;
246 int ret;
247
248 if (!tb_route(sw))
249 return 0;
250
251 ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_6, length: 1);
252 if (ret)
253 return ret;
254
255 down = tb_switch_downstream_port(sw);
256 sw->link_usb4 = link_is_usb4(port: down);
257 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
258
259 xhci = val & ROUTER_CS_6_HCI;
260 tbt3 = !(val & ROUTER_CS_6_TNS);
261
262 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
263 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
264
265 ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1);
266 if (ret)
267 return ret;
268
269 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
270 tb_switch_find_port(sw: parent, type: TB_TYPE_USB3_DOWN)) {
271 val |= ROUTER_CS_5_UTO;
272 xhci = false;
273 }
274
275 /*
276 * Only enable PCIe tunneling if the parent router supports it
277 * and it is not disabled.
278 */
279 if (tb_acpi_may_tunnel_pcie() &&
280 tb_switch_find_port(sw: parent, type: TB_TYPE_PCIE_DOWN)) {
281 val |= ROUTER_CS_5_PTO;
282 /*
283 * xHCI can be enabled if PCIe tunneling is supported
284 * and the parent does not have any USB3 dowstream
285 * adapters (so we cannot do USB 3.x tunneling).
286 */
287 if (xhci)
288 val |= ROUTER_CS_5_HCO;
289 }
290
291 /* TBT3 supported by the CM */
292 val &= ~ROUTER_CS_5_CNS;
293
294 return tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1);
295}
296
297/**
298 * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
299 * @sw: USB4 router
300 *
301 * Sets configuration valid bit for the router. Must be called before
302 * any tunnels can be set through the router and after
303 * usb4_switch_setup() has been called. Can be called to host and device
304 * routers (does nothing for the latter).
305 *
306 * Returns %0 in success and negative errno otherwise.
307 */
308int usb4_switch_configuration_valid(struct tb_switch *sw)
309{
310 u32 val;
311 int ret;
312
313 if (!tb_route(sw))
314 return 0;
315
316 ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1);
317 if (ret)
318 return ret;
319
320 val |= ROUTER_CS_5_CV;
321
322 ret = tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1);
323 if (ret)
324 return ret;
325
326 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
327 ROUTER_CS_6_CR, timeout_msec: 50);
328}
329
330/**
331 * usb4_switch_read_uid() - Read UID from USB4 router
332 * @sw: USB4 router
333 * @uid: UID is stored here
334 *
335 * Reads 64-bit UID from USB4 router config space.
336 */
337int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
338{
339 return tb_sw_read(sw, buffer: uid, space: TB_CFG_SWITCH, ROUTER_CS_7, length: 2);
340}
341
342static int usb4_switch_drom_read_block(void *data,
343 unsigned int dwaddress, void *buf,
344 size_t dwords)
345{
346 struct tb_switch *sw = data;
347 u8 status = 0;
348 u32 metadata;
349 int ret;
350
351 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
352 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
353 USB4_DROM_ADDRESS_MASK;
354
355 ret = usb4_switch_op_data(sw, opcode: USB4_SWITCH_OP_DROM_READ, metadata: &metadata,
356 status: &status, NULL, tx_dwords: 0, rx_data: buf, rx_dwords: dwords);
357 if (ret)
358 return ret;
359
360 return status ? -EIO : 0;
361}
362
363/**
364 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
365 * @sw: USB4 router
366 * @address: Byte address inside DROM to start reading
367 * @buf: Buffer where the DROM content is stored
368 * @size: Number of bytes to read from DROM
369 *
370 * Uses USB4 router operations to read router DROM. For devices this
371 * should always work but for hosts it may return %-EOPNOTSUPP in which
372 * case the host router does not have DROM.
373 */
374int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
375 size_t size)
376{
377 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
378 read_block: usb4_switch_drom_read_block, read_block_data: sw);
379}
380
381/**
382 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
383 * @sw: USB4 router
384 *
385 * Checks whether conditions are met so that lane bonding can be
386 * established with the upstream router. Call only for device routers.
387 */
388bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
389{
390 struct tb_port *up;
391 int ret;
392 u32 val;
393
394 up = tb_upstream_port(sw);
395 ret = tb_port_read(port: up, buffer: &val, space: TB_CFG_PORT, offset: up->cap_usb4 + PORT_CS_18, length: 1);
396 if (ret)
397 return false;
398
399 return !!(val & PORT_CS_18_BE);
400}
401
402/**
403 * usb4_switch_set_wake() - Enabled/disable wake
404 * @sw: USB4 router
405 * @flags: Wakeup flags (%0 to disable)
406 *
407 * Enables/disables router to wake up from sleep.
408 */
409int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
410{
411 struct usb4_port *usb4;
412 struct tb_port *port;
413 u64 route = tb_route(sw);
414 u32 val;
415 int ret;
416
417 /*
418 * Enable wakes coming from all USB4 downstream ports (from
419 * child routers). For device routers do this also for the
420 * upstream USB4 port.
421 */
422 tb_switch_for_each_port(sw, port) {
423 if (!tb_port_is_null(port))
424 continue;
425 if (!route && tb_is_upstream_port(port))
426 continue;
427 if (!port->cap_usb4)
428 continue;
429
430 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
431 offset: port->cap_usb4 + PORT_CS_19, length: 1);
432 if (ret)
433 return ret;
434
435 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
436
437 if (tb_is_upstream_port(port)) {
438 val |= PORT_CS_19_WOU4;
439 } else {
440 bool configured = val & PORT_CS_19_PC;
441 usb4 = port->usb4;
442
443 if (((flags & TB_WAKE_ON_CONNECT) &&
444 device_may_wakeup(dev: &usb4->dev)) && !configured)
445 val |= PORT_CS_19_WOC;
446 if (((flags & TB_WAKE_ON_DISCONNECT) &&
447 device_may_wakeup(dev: &usb4->dev)) && configured)
448 val |= PORT_CS_19_WOD;
449 if ((flags & TB_WAKE_ON_USB4) && configured)
450 val |= PORT_CS_19_WOU4;
451 }
452
453 ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
454 offset: port->cap_usb4 + PORT_CS_19, length: 1);
455 if (ret)
456 return ret;
457 }
458
459 /*
460 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
461 * needed for device routers.
462 */
463 if (route) {
464 ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1);
465 if (ret)
466 return ret;
467
468 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
469 if (flags & TB_WAKE_ON_USB3)
470 val |= ROUTER_CS_5_WOU;
471 if (flags & TB_WAKE_ON_PCIE)
472 val |= ROUTER_CS_5_WOP;
473 if (flags & TB_WAKE_ON_DP)
474 val |= ROUTER_CS_5_WOD;
475
476 ret = tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1);
477 if (ret)
478 return ret;
479 }
480
481 return 0;
482}
483
484/**
485 * usb4_switch_set_sleep() - Prepare the router to enter sleep
486 * @sw: USB4 router
487 *
488 * Sets sleep bit for the router. Returns when the router sleep ready
489 * bit has been asserted.
490 */
491int usb4_switch_set_sleep(struct tb_switch *sw)
492{
493 int ret;
494 u32 val;
495
496 /* Set sleep bit and wait for sleep ready to be asserted */
497 ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1);
498 if (ret)
499 return ret;
500
501 val |= ROUTER_CS_5_SLP;
502
503 ret = tb_sw_write(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_5, length: 1);
504 if (ret)
505 return ret;
506
507 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
508 ROUTER_CS_6_SLPR, timeout_msec: 500);
509}
510
511/**
512 * usb4_switch_nvm_sector_size() - Return router NVM sector size
513 * @sw: USB4 router
514 *
515 * If the router supports NVM operations this function returns the NVM
516 * sector size in bytes. If NVM operations are not supported returns
517 * %-EOPNOTSUPP.
518 */
519int usb4_switch_nvm_sector_size(struct tb_switch *sw)
520{
521 u32 metadata;
522 u8 status;
523 int ret;
524
525 ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_NVM_SECTOR_SIZE, metadata: &metadata,
526 status: &status);
527 if (ret)
528 return ret;
529
530 if (status)
531 return status == 0x2 ? -EOPNOTSUPP : -EIO;
532
533 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
534}
535
536static int usb4_switch_nvm_read_block(void *data,
537 unsigned int dwaddress, void *buf, size_t dwords)
538{
539 struct tb_switch *sw = data;
540 u8 status = 0;
541 u32 metadata;
542 int ret;
543
544 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
545 USB4_NVM_READ_LENGTH_MASK;
546 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
547 USB4_NVM_READ_OFFSET_MASK;
548
549 ret = usb4_switch_op_data(sw, opcode: USB4_SWITCH_OP_NVM_READ, metadata: &metadata,
550 status: &status, NULL, tx_dwords: 0, rx_data: buf, rx_dwords: dwords);
551 if (ret)
552 return ret;
553
554 return status ? -EIO : 0;
555}
556
557/**
558 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
559 * @sw: USB4 router
560 * @address: Starting address in bytes
561 * @buf: Read data is placed here
562 * @size: How many bytes to read
563 *
564 * Reads NVM contents of the router. If NVM is not supported returns
565 * %-EOPNOTSUPP.
566 */
567int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
568 size_t size)
569{
570 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
571 read_block: usb4_switch_nvm_read_block, read_block_data: sw);
572}
573
574/**
575 * usb4_switch_nvm_set_offset() - Set NVM write offset
576 * @sw: USB4 router
577 * @address: Start offset
578 *
579 * Explicitly sets NVM write offset. Normally when writing to NVM this
580 * is done automatically by usb4_switch_nvm_write().
581 *
582 * Returns %0 in success and negative errno if there was a failure.
583 */
584int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
585{
586 u32 metadata, dwaddress;
587 u8 status = 0;
588 int ret;
589
590 dwaddress = address / 4;
591 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
592 USB4_NVM_SET_OFFSET_MASK;
593
594 ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_NVM_SET_OFFSET, metadata: &metadata,
595 status: &status);
596 if (ret)
597 return ret;
598
599 return status ? -EIO : 0;
600}
601
602static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
603 const void *buf, size_t dwords)
604{
605 struct tb_switch *sw = data;
606 u8 status;
607 int ret;
608
609 ret = usb4_switch_op_data(sw, opcode: USB4_SWITCH_OP_NVM_WRITE, NULL, status: &status,
610 tx_data: buf, tx_dwords: dwords, NULL, rx_dwords: 0);
611 if (ret)
612 return ret;
613
614 return status ? -EIO : 0;
615}
616
617/**
618 * usb4_switch_nvm_write() - Write to the router NVM
619 * @sw: USB4 router
620 * @address: Start address where to write in bytes
621 * @buf: Pointer to the data to write
622 * @size: Size of @buf in bytes
623 *
624 * Writes @buf to the router NVM using USB4 router operations. If NVM
625 * write is not supported returns %-EOPNOTSUPP.
626 */
627int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
628 const void *buf, size_t size)
629{
630 int ret;
631
632 ret = usb4_switch_nvm_set_offset(sw, address);
633 if (ret)
634 return ret;
635
636 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
637 write_next_block: usb4_switch_nvm_write_next_block, write_block_data: sw);
638}
639
640/**
641 * usb4_switch_nvm_authenticate() - Authenticate new NVM
642 * @sw: USB4 router
643 *
644 * After the new NVM has been written via usb4_switch_nvm_write(), this
645 * function triggers NVM authentication process. The router gets power
646 * cycled and if the authentication is successful the new NVM starts
647 * running. In case of failure returns negative errno.
648 *
649 * The caller should call usb4_switch_nvm_authenticate_status() to read
650 * the status of the authentication after power cycle. It should be the
651 * first router operation to avoid the status being lost.
652 */
653int usb4_switch_nvm_authenticate(struct tb_switch *sw)
654{
655 int ret;
656
657 ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
658 switch (ret) {
659 /*
660 * The router is power cycled once NVM_AUTH is started so it is
661 * expected to get any of the following errors back.
662 */
663 case -EACCES:
664 case -ENOTCONN:
665 case -ETIMEDOUT:
666 return 0;
667
668 default:
669 return ret;
670 }
671}
672
673/**
674 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
675 * @sw: USB4 router
676 * @status: Status code of the operation
677 *
678 * The function checks if there is status available from the last NVM
679 * authenticate router operation. If there is status then %0 is returned
680 * and the status code is placed in @status. Returns negative errno in case
681 * of failure.
682 *
683 * Must be called before any other router operation.
684 */
685int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
686{
687 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
688 u16 opcode;
689 u32 val;
690 int ret;
691
692 if (cm_ops->usb4_switch_nvm_authenticate_status) {
693 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
694 if (ret != -EOPNOTSUPP)
695 return ret;
696 }
697
698 ret = tb_sw_read(sw, buffer: &val, space: TB_CFG_SWITCH, ROUTER_CS_26, length: 1);
699 if (ret)
700 return ret;
701
702 /* Check that the opcode is correct */
703 opcode = val & ROUTER_CS_26_OPCODE_MASK;
704 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
705 if (val & ROUTER_CS_26_OV)
706 return -EBUSY;
707 if (val & ROUTER_CS_26_ONS)
708 return -EOPNOTSUPP;
709
710 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
711 ROUTER_CS_26_STATUS_SHIFT;
712 } else {
713 *status = 0;
714 }
715
716 return 0;
717}
718
719/**
720 * usb4_switch_credits_init() - Read buffer allocation parameters
721 * @sw: USB4 router
722 *
723 * Reads @sw buffer allocation parameters and initializes @sw buffer
724 * allocation fields accordingly. Specifically @sw->credits_allocation
725 * is set to %true if these parameters can be used in tunneling.
726 *
727 * Returns %0 on success and negative errno otherwise.
728 */
729int usb4_switch_credits_init(struct tb_switch *sw)
730{
731 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
732 int ret, length, i, nports;
733 const struct tb_port *port;
734 u32 data[USB4_DATA_DWORDS];
735 u32 metadata = 0;
736 u8 status = 0;
737
738 memset(data, 0, sizeof(data));
739 ret = usb4_switch_op_data(sw, opcode: USB4_SWITCH_OP_BUFFER_ALLOC, metadata: &metadata,
740 status: &status, NULL, tx_dwords: 0, rx_data: data, ARRAY_SIZE(data));
741 if (ret)
742 return ret;
743 if (status)
744 return -EIO;
745
746 length = metadata & USB4_BA_LENGTH_MASK;
747 if (WARN_ON(length > ARRAY_SIZE(data)))
748 return -EMSGSIZE;
749
750 max_usb3 = -1;
751 min_dp_aux = -1;
752 min_dp_main = -1;
753 max_pcie = -1;
754 max_dma = -1;
755
756 tb_sw_dbg(sw, "credit allocation parameters:\n");
757
758 for (i = 0; i < length; i++) {
759 u16 index, value;
760
761 index = data[i] & USB4_BA_INDEX_MASK;
762 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
763
764 switch (index) {
765 case USB4_BA_MAX_USB3:
766 tb_sw_dbg(sw, " USB3: %u\n", value);
767 max_usb3 = value;
768 break;
769 case USB4_BA_MIN_DP_AUX:
770 tb_sw_dbg(sw, " DP AUX: %u\n", value);
771 min_dp_aux = value;
772 break;
773 case USB4_BA_MIN_DP_MAIN:
774 tb_sw_dbg(sw, " DP main: %u\n", value);
775 min_dp_main = value;
776 break;
777 case USB4_BA_MAX_PCIE:
778 tb_sw_dbg(sw, " PCIe: %u\n", value);
779 max_pcie = value;
780 break;
781 case USB4_BA_MAX_HI:
782 tb_sw_dbg(sw, " DMA: %u\n", value);
783 max_dma = value;
784 break;
785 default:
786 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
787 index);
788 break;
789 }
790 }
791
792 /*
793 * Validate the buffer allocation preferences. If we find
794 * issues, log a warning and fall back using the hard-coded
795 * values.
796 */
797
798 /* Host router must report baMaxHI */
799 if (!tb_route(sw) && max_dma < 0) {
800 tb_sw_warn(sw, "host router is missing baMaxHI\n");
801 goto err_invalid;
802 }
803
804 nports = 0;
805 tb_switch_for_each_port(sw, port) {
806 if (tb_port_is_null(port))
807 nports++;
808 }
809
810 /* Must have DP buffer allocation (multiple USB4 ports) */
811 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
812 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
813 goto err_invalid;
814 }
815
816 tb_switch_for_each_port(sw, port) {
817 if (tb_port_is_dpout(port) && min_dp_main < 0) {
818 tb_sw_warn(sw, "missing baMinDPmain");
819 goto err_invalid;
820 }
821 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
822 min_dp_aux < 0) {
823 tb_sw_warn(sw, "missing baMinDPaux");
824 goto err_invalid;
825 }
826 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
827 max_usb3 < 0) {
828 tb_sw_warn(sw, "missing baMaxUSB3");
829 goto err_invalid;
830 }
831 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
832 max_pcie < 0) {
833 tb_sw_warn(sw, "missing baMaxPCIe");
834 goto err_invalid;
835 }
836 }
837
838 /*
839 * Buffer allocation passed the validation so we can use it in
840 * path creation.
841 */
842 sw->credit_allocation = true;
843 if (max_usb3 > 0)
844 sw->max_usb3_credits = max_usb3;
845 if (min_dp_aux > 0)
846 sw->min_dp_aux_credits = min_dp_aux;
847 if (min_dp_main > 0)
848 sw->min_dp_main_credits = min_dp_main;
849 if (max_pcie > 0)
850 sw->max_pcie_credits = max_pcie;
851 if (max_dma > 0)
852 sw->max_dma_credits = max_dma;
853
854 return 0;
855
856err_invalid:
857 return -EINVAL;
858}
859
860/**
861 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
862 * @sw: USB4 router
863 * @in: DP IN adapter
864 *
865 * For DP tunneling this function can be used to query availability of
866 * DP IN resource. Returns true if the resource is available for DP
867 * tunneling, false otherwise.
868 */
869bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
870{
871 u32 metadata = in->port;
872 u8 status;
873 int ret;
874
875 ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_QUERY_DP_RESOURCE, metadata: &metadata,
876 status: &status);
877 /*
878 * If DP resource allocation is not supported assume it is
879 * always available.
880 */
881 if (ret == -EOPNOTSUPP)
882 return true;
883 if (ret)
884 return false;
885
886 return !status;
887}
888
889/**
890 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
891 * @sw: USB4 router
892 * @in: DP IN adapter
893 *
894 * Allocates DP IN resource for DP tunneling using USB4 router
895 * operations. If the resource was allocated returns %0. Otherwise
896 * returns negative errno, in particular %-EBUSY if the resource is
897 * already allocated.
898 */
899int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
900{
901 u32 metadata = in->port;
902 u8 status;
903 int ret;
904
905 ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_ALLOC_DP_RESOURCE, metadata: &metadata,
906 status: &status);
907 if (ret == -EOPNOTSUPP)
908 return 0;
909 if (ret)
910 return ret;
911
912 return status ? -EBUSY : 0;
913}
914
915/**
916 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
917 * @sw: USB4 router
918 * @in: DP IN adapter
919 *
920 * Releases the previously allocated DP IN resource.
921 */
922int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
923{
924 u32 metadata = in->port;
925 u8 status;
926 int ret;
927
928 ret = usb4_switch_op(sw, opcode: USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, metadata: &metadata,
929 status: &status);
930 if (ret == -EOPNOTSUPP)
931 return 0;
932 if (ret)
933 return ret;
934
935 return status ? -EIO : 0;
936}
937
938/**
939 * usb4_port_index() - Finds matching USB4 port index
940 * @sw: USB4 router
941 * @port: USB4 protocol or lane adapter
942 *
943 * Finds matching USB4 port index (starting from %0) that given @port goes
944 * through.
945 */
946int usb4_port_index(const struct tb_switch *sw, const struct tb_port *port)
947{
948 struct tb_port *p;
949 int usb4_idx = 0;
950
951 /* Assume port is primary */
952 tb_switch_for_each_port(sw, p) {
953 if (!tb_port_is_null(port: p))
954 continue;
955 if (tb_is_upstream_port(port: p))
956 continue;
957 if (!p->link_nr) {
958 if (p == port)
959 break;
960 usb4_idx++;
961 }
962 }
963
964 return usb4_idx;
965}
966
967/**
968 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
969 * @sw: USB4 router
970 * @port: USB4 port
971 *
972 * USB4 routers have direct mapping between USB4 ports and PCIe
973 * downstream adapters where the PCIe topology is extended. This
974 * function returns the corresponding downstream PCIe adapter or %NULL
975 * if no such mapping was possible.
976 */
977struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
978 const struct tb_port *port)
979{
980 int usb4_idx = usb4_port_index(sw, port);
981 struct tb_port *p;
982 int pcie_idx = 0;
983
984 /* Find PCIe down port matching usb4_port */
985 tb_switch_for_each_port(sw, p) {
986 if (!tb_port_is_pcie_down(port: p))
987 continue;
988
989 if (pcie_idx == usb4_idx)
990 return p;
991
992 pcie_idx++;
993 }
994
995 return NULL;
996}
997
998/**
999 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
1000 * @sw: USB4 router
1001 * @port: USB4 port
1002 *
1003 * USB4 routers have direct mapping between USB4 ports and USB 3.x
1004 * downstream adapters where the USB 3.x topology is extended. This
1005 * function returns the corresponding downstream USB 3.x adapter or
1006 * %NULL if no such mapping was possible.
1007 */
1008struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1009 const struct tb_port *port)
1010{
1011 int usb4_idx = usb4_port_index(sw, port);
1012 struct tb_port *p;
1013 int usb_idx = 0;
1014
1015 /* Find USB3 down port matching usb4_port */
1016 tb_switch_for_each_port(sw, p) {
1017 if (!tb_port_is_usb3_down(port: p))
1018 continue;
1019
1020 if (usb_idx == usb4_idx)
1021 return p;
1022
1023 usb_idx++;
1024 }
1025
1026 return NULL;
1027}
1028
1029/**
1030 * usb4_switch_add_ports() - Add USB4 ports for this router
1031 * @sw: USB4 router
1032 *
1033 * For USB4 router finds all USB4 ports and registers devices for each.
1034 * Can be called to any router.
1035 *
1036 * Return %0 in case of success and negative errno in case of failure.
1037 */
1038int usb4_switch_add_ports(struct tb_switch *sw)
1039{
1040 struct tb_port *port;
1041
1042 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1043 return 0;
1044
1045 tb_switch_for_each_port(sw, port) {
1046 struct usb4_port *usb4;
1047
1048 if (!tb_port_is_null(port))
1049 continue;
1050 if (!port->cap_usb4)
1051 continue;
1052
1053 usb4 = usb4_port_device_add(port);
1054 if (IS_ERR(ptr: usb4)) {
1055 usb4_switch_remove_ports(sw);
1056 return PTR_ERR(ptr: usb4);
1057 }
1058
1059 port->usb4 = usb4;
1060 }
1061
1062 return 0;
1063}
1064
1065/**
1066 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1067 * @sw: USB4 router
1068 *
1069 * Unregisters previously registered USB4 ports.
1070 */
1071void usb4_switch_remove_ports(struct tb_switch *sw)
1072{
1073 struct tb_port *port;
1074
1075 tb_switch_for_each_port(sw, port) {
1076 if (port->usb4) {
1077 usb4_port_device_remove(usb4: port->usb4);
1078 port->usb4 = NULL;
1079 }
1080 }
1081}
1082
1083/**
1084 * usb4_port_unlock() - Unlock USB4 downstream port
1085 * @port: USB4 port to unlock
1086 *
1087 * Unlocks USB4 downstream port so that the connection manager can
1088 * access the router below this port.
1089 */
1090int usb4_port_unlock(struct tb_port *port)
1091{
1092 int ret;
1093 u32 val;
1094
1095 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, ADP_CS_4, length: 1);
1096 if (ret)
1097 return ret;
1098
1099 val &= ~ADP_CS_4_LCK;
1100 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, ADP_CS_4, length: 1);
1101}
1102
1103/**
1104 * usb4_port_hotplug_enable() - Enables hotplug for a port
1105 * @port: USB4 port to operate on
1106 *
1107 * Enables hot plug events on a given port. This is only intended
1108 * to be used on lane, DP-IN, and DP-OUT adapters.
1109 */
1110int usb4_port_hotplug_enable(struct tb_port *port)
1111{
1112 int ret;
1113 u32 val;
1114
1115 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, ADP_CS_5, length: 1);
1116 if (ret)
1117 return ret;
1118
1119 val &= ~ADP_CS_5_DHP;
1120 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT, ADP_CS_5, length: 1);
1121}
1122
1123/**
1124 * usb4_port_reset() - Issue downstream port reset
1125 * @port: USB4 port to reset
1126 *
1127 * Issues downstream port reset to @port.
1128 */
1129int usb4_port_reset(struct tb_port *port)
1130{
1131 int ret;
1132 u32 val;
1133
1134 if (!port->cap_usb4)
1135 return -EINVAL;
1136
1137 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1138 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1139 if (ret)
1140 return ret;
1141
1142 val |= PORT_CS_19_DPR;
1143
1144 ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
1145 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1146 if (ret)
1147 return ret;
1148
1149 fsleep(usecs: 10000);
1150
1151 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1152 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1153 if (ret)
1154 return ret;
1155
1156 val &= ~PORT_CS_19_DPR;
1157
1158 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
1159 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1160}
1161
1162static int usb4_port_set_configured(struct tb_port *port, bool configured)
1163{
1164 int ret;
1165 u32 val;
1166
1167 if (!port->cap_usb4)
1168 return -EINVAL;
1169
1170 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1171 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1172 if (ret)
1173 return ret;
1174
1175 if (configured)
1176 val |= PORT_CS_19_PC;
1177 else
1178 val &= ~PORT_CS_19_PC;
1179
1180 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
1181 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1182}
1183
1184/**
1185 * usb4_port_configure() - Set USB4 port configured
1186 * @port: USB4 router
1187 *
1188 * Sets the USB4 link to be configured for power management purposes.
1189 */
1190int usb4_port_configure(struct tb_port *port)
1191{
1192 return usb4_port_set_configured(port, configured: true);
1193}
1194
1195/**
1196 * usb4_port_unconfigure() - Set USB4 port unconfigured
1197 * @port: USB4 router
1198 *
1199 * Sets the USB4 link to be unconfigured for power management purposes.
1200 */
1201void usb4_port_unconfigure(struct tb_port *port)
1202{
1203 usb4_port_set_configured(port, configured: false);
1204}
1205
1206static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1207{
1208 int ret;
1209 u32 val;
1210
1211 if (!port->cap_usb4)
1212 return -EINVAL;
1213
1214 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1215 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1216 if (ret)
1217 return ret;
1218
1219 if (configured)
1220 val |= PORT_CS_19_PID;
1221 else
1222 val &= ~PORT_CS_19_PID;
1223
1224 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
1225 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1226}
1227
1228/**
1229 * usb4_port_configure_xdomain() - Configure port for XDomain
1230 * @port: USB4 port connected to another host
1231 * @xd: XDomain that is connected to the port
1232 *
1233 * Marks the USB4 port as being connected to another host and updates
1234 * the link type. Returns %0 in success and negative errno in failure.
1235 */
1236int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1237{
1238 xd->link_usb4 = link_is_usb4(port);
1239 return usb4_set_xdomain_configured(port, configured: true);
1240}
1241
1242/**
1243 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1244 * @port: USB4 port that was connected to another host
1245 *
1246 * Clears USB4 port from being marked as XDomain.
1247 */
1248void usb4_port_unconfigure_xdomain(struct tb_port *port)
1249{
1250 usb4_set_xdomain_configured(port, configured: false);
1251}
1252
1253static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1254 u32 value, int timeout_msec, unsigned long delay_usec)
1255{
1256 ktime_t timeout = ktime_add_ms(kt: ktime_get(), msec: timeout_msec);
1257
1258 do {
1259 u32 val;
1260 int ret;
1261
1262 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT, offset, length: 1);
1263 if (ret)
1264 return ret;
1265
1266 if ((val & bit) == value)
1267 return 0;
1268
1269 fsleep(usecs: delay_usec);
1270 } while (ktime_before(cmp1: ktime_get(), cmp2: timeout));
1271
1272 return -ETIMEDOUT;
1273}
1274
1275static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1276{
1277 if (dwords > USB4_DATA_DWORDS)
1278 return -EINVAL;
1279
1280 return tb_port_read(port, buffer: data, space: TB_CFG_PORT, offset: port->cap_usb4 + PORT_CS_2,
1281 length: dwords);
1282}
1283
1284static int usb4_port_write_data(struct tb_port *port, const void *data,
1285 size_t dwords)
1286{
1287 if (dwords > USB4_DATA_DWORDS)
1288 return -EINVAL;
1289
1290 return tb_port_write(port, buffer: data, space: TB_CFG_PORT, offset: port->cap_usb4 + PORT_CS_2,
1291 length: dwords);
1292}
1293
1294/**
1295 * usb4_port_sb_read() - Read from sideband register
1296 * @port: USB4 port to read
1297 * @target: Sideband target
1298 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1299 * @reg: Sideband register index
1300 * @buf: Buffer where the sideband data is copied
1301 * @size: Size of @buf
1302 *
1303 * Reads data from sideband register @reg and copies it into @buf.
1304 * Returns %0 in case of success and negative errno in case of failure.
1305 */
1306int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, u8 index,
1307 u8 reg, void *buf, u8 size)
1308{
1309 size_t dwords = DIV_ROUND_UP(size, 4);
1310 int ret;
1311 u32 val;
1312
1313 if (!port->cap_usb4)
1314 return -EINVAL;
1315
1316 val = reg;
1317 val |= size << PORT_CS_1_LENGTH_SHIFT;
1318 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1319 if (target == USB4_SB_TARGET_RETIMER)
1320 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1321 val |= PORT_CS_1_PND;
1322
1323 ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
1324 offset: port->cap_usb4 + PORT_CS_1, length: 1);
1325 if (ret)
1326 return ret;
1327
1328 ret = usb4_port_wait_for_bit(port, offset: port->cap_usb4 + PORT_CS_1,
1329 PORT_CS_1_PND, value: 0, timeout_msec: 500, USB4_PORT_SB_DELAY);
1330 if (ret)
1331 return ret;
1332
1333 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1334 offset: port->cap_usb4 + PORT_CS_1, length: 1);
1335 if (ret)
1336 return ret;
1337
1338 if (val & PORT_CS_1_NR)
1339 return -ENODEV;
1340 if (val & PORT_CS_1_RC)
1341 return -EIO;
1342
1343 return buf ? usb4_port_read_data(port, data: buf, dwords) : 0;
1344}
1345
1346/**
1347 * usb4_port_sb_write() - Write to sideband register
1348 * @port: USB4 port to write
1349 * @target: Sideband target
1350 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1351 * @reg: Sideband register index
1352 * @buf: Data to write
1353 * @size: Size of @buf
1354 *
1355 * Writes @buf to sideband register @reg. Returns %0 in case of success
1356 * and negative errno in case of failure.
1357 */
1358int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1359 u8 index, u8 reg, const void *buf, u8 size)
1360{
1361 size_t dwords = DIV_ROUND_UP(size, 4);
1362 int ret;
1363 u32 val;
1364
1365 if (!port->cap_usb4)
1366 return -EINVAL;
1367
1368 if (buf) {
1369 ret = usb4_port_write_data(port, data: buf, dwords);
1370 if (ret)
1371 return ret;
1372 }
1373
1374 val = reg;
1375 val |= size << PORT_CS_1_LENGTH_SHIFT;
1376 val |= PORT_CS_1_WNR_WRITE;
1377 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1378 if (target == USB4_SB_TARGET_RETIMER)
1379 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1380 val |= PORT_CS_1_PND;
1381
1382 ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
1383 offset: port->cap_usb4 + PORT_CS_1, length: 1);
1384 if (ret)
1385 return ret;
1386
1387 ret = usb4_port_wait_for_bit(port, offset: port->cap_usb4 + PORT_CS_1,
1388 PORT_CS_1_PND, value: 0, timeout_msec: 500, USB4_PORT_SB_DELAY);
1389 if (ret)
1390 return ret;
1391
1392 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1393 offset: port->cap_usb4 + PORT_CS_1, length: 1);
1394 if (ret)
1395 return ret;
1396
1397 if (val & PORT_CS_1_NR)
1398 return -ENODEV;
1399 if (val & PORT_CS_1_RC)
1400 return -EIO;
1401
1402 return 0;
1403}
1404
1405static int usb4_port_sb_opcode_err_to_errno(u32 val)
1406{
1407 switch (val) {
1408 case 0:
1409 return 0;
1410 case USB4_SB_OPCODE_ERR:
1411 return -EAGAIN;
1412 case USB4_SB_OPCODE_ONS:
1413 return -EOPNOTSUPP;
1414 default:
1415 return -EIO;
1416 }
1417}
1418
1419static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1420 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1421{
1422 ktime_t timeout;
1423 u32 val;
1424 int ret;
1425
1426 val = opcode;
1427 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, buf: &val,
1428 size: sizeof(val));
1429 if (ret)
1430 return ret;
1431
1432 timeout = ktime_add_ms(kt: ktime_get(), msec: timeout_msec);
1433
1434 do {
1435 /* Check results */
1436 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1437 buf: &val, size: sizeof(val));
1438 if (ret)
1439 return ret;
1440
1441 if (val != opcode)
1442 return usb4_port_sb_opcode_err_to_errno(val);
1443
1444 fsleep(USB4_PORT_SB_DELAY);
1445 } while (ktime_before(cmp1: ktime_get(), cmp2: timeout));
1446
1447 return -ETIMEDOUT;
1448}
1449
1450static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1451{
1452 u32 val = !offline;
1453 int ret;
1454
1455 ret = usb4_port_sb_write(port, target: USB4_SB_TARGET_ROUTER, index: 0,
1456 USB4_SB_METADATA, buf: &val, size: sizeof(val));
1457 if (ret)
1458 return ret;
1459
1460 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1461 return usb4_port_sb_write(port, target: USB4_SB_TARGET_ROUTER, index: 0,
1462 USB4_SB_OPCODE, buf: &val, size: sizeof(val));
1463}
1464
1465/**
1466 * usb4_port_router_offline() - Put the USB4 port to offline mode
1467 * @port: USB4 port
1468 *
1469 * This function puts the USB4 port into offline mode. In this mode the
1470 * port does not react on hotplug events anymore. This needs to be
1471 * called before retimer access is done when the USB4 links is not up.
1472 *
1473 * Returns %0 in case of success and negative errno if there was an
1474 * error.
1475 */
1476int usb4_port_router_offline(struct tb_port *port)
1477{
1478 return usb4_port_set_router_offline(port, offline: true);
1479}
1480
1481/**
1482 * usb4_port_router_online() - Put the USB4 port back to online
1483 * @port: USB4 port
1484 *
1485 * Makes the USB4 port functional again.
1486 */
1487int usb4_port_router_online(struct tb_port *port)
1488{
1489 return usb4_port_set_router_offline(port, offline: false);
1490}
1491
1492/**
1493 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1494 * @port: USB4 port
1495 *
1496 * This forces the USB4 port to send broadcast RT transaction which
1497 * makes the retimers on the link to assign index to themselves. Returns
1498 * %0 in case of success and negative errno if there was an error.
1499 */
1500int usb4_port_enumerate_retimers(struct tb_port *port)
1501{
1502 u32 val;
1503
1504 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1505 return usb4_port_sb_write(port, target: USB4_SB_TARGET_ROUTER, index: 0,
1506 USB4_SB_OPCODE, buf: &val, size: sizeof(val));
1507}
1508
1509/**
1510 * usb4_port_clx_supported() - Check if CLx is supported by the link
1511 * @port: Port to check for CLx support for
1512 *
1513 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1514 * active cables (if connected on the link).
1515 */
1516bool usb4_port_clx_supported(struct tb_port *port)
1517{
1518 int ret;
1519 u32 val;
1520
1521 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1522 offset: port->cap_usb4 + PORT_CS_18, length: 1);
1523 if (ret)
1524 return false;
1525
1526 return !!(val & PORT_CS_18_CPS);
1527}
1528
1529/**
1530 * usb4_port_asym_supported() - If the port supports asymmetric link
1531 * @port: USB4 port
1532 *
1533 * Checks if the port and the cable supports asymmetric link and returns
1534 * %true in that case.
1535 */
1536bool usb4_port_asym_supported(struct tb_port *port)
1537{
1538 u32 val;
1539
1540 if (!port->cap_usb4)
1541 return false;
1542
1543 if (tb_port_read(port, buffer: &val, space: TB_CFG_PORT, offset: port->cap_usb4 + PORT_CS_18, length: 1))
1544 return false;
1545
1546 return !!(val & PORT_CS_18_CSA);
1547}
1548
1549/**
1550 * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1551 * @port: USB4 port
1552 * @width: Asymmetric width to configure
1553 *
1554 * Sets USB4 port link width to @width. Can be called for widths where
1555 * usb4_port_asym_width_supported() returned @true.
1556 */
1557int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1558{
1559 u32 val;
1560 int ret;
1561
1562 if (!port->cap_phy)
1563 return -EINVAL;
1564
1565 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1566 offset: port->cap_phy + LANE_ADP_CS_1, length: 1);
1567 if (ret)
1568 return ret;
1569
1570 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1571 switch (width) {
1572 case TB_LINK_WIDTH_DUAL:
1573 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1574 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1575 break;
1576 case TB_LINK_WIDTH_ASYM_TX:
1577 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1578 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1579 break;
1580 case TB_LINK_WIDTH_ASYM_RX:
1581 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1582 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1583 break;
1584 default:
1585 return -EINVAL;
1586 }
1587
1588 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
1589 offset: port->cap_phy + LANE_ADP_CS_1, length: 1);
1590}
1591
1592/**
1593 * usb4_port_asym_start() - Start symmetry change and wait for completion
1594 * @port: USB4 port
1595 *
1596 * Start symmetry change of the link to asymmetric or symmetric
1597 * (according to what was previously set in tb_port_set_link_width().
1598 * Wait for completion of the change.
1599 *
1600 * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1601 * a negative errno in case of a failure.
1602 */
1603int usb4_port_asym_start(struct tb_port *port)
1604{
1605 int ret;
1606 u32 val;
1607
1608 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
1609 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1610 if (ret)
1611 return ret;
1612
1613 val &= ~PORT_CS_19_START_ASYM;
1614 val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1615
1616 ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
1617 offset: port->cap_usb4 + PORT_CS_19, length: 1);
1618 if (ret)
1619 return ret;
1620
1621 /*
1622 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1623 * port started the symmetry transition.
1624 */
1625 ret = usb4_port_wait_for_bit(port, offset: port->cap_usb4 + PORT_CS_19,
1626 PORT_CS_19_START_ASYM, value: 0, timeout_msec: 1000,
1627 USB4_PORT_DELAY);
1628 if (ret)
1629 return ret;
1630
1631 /* Then wait for the transtion to be completed */
1632 return usb4_port_wait_for_bit(port, offset: port->cap_usb4 + PORT_CS_18,
1633 PORT_CS_18_TIP, value: 0, timeout_msec: 5000, USB4_PORT_DELAY);
1634}
1635
1636/**
1637 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1638 * @port: USB4 port
1639 * @target: Sideband target
1640 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1641 * @caps: Array with at least two elements to hold the results
1642 * @ncaps: Number of elements in the caps array
1643 *
1644 * Reads the USB4 port lane margining capabilities into @caps.
1645 */
1646int usb4_port_margining_caps(struct tb_port *port, enum usb4_sb_target target,
1647 u8 index, u32 *caps, size_t ncaps)
1648{
1649 int ret;
1650
1651 ret = usb4_port_sb_op(port, target, index,
1652 opcode: USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, timeout_msec: 500);
1653 if (ret)
1654 return ret;
1655
1656 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, buf: caps,
1657 size: sizeof(*caps) * ncaps);
1658}
1659
1660/**
1661 * usb4_port_hw_margin() - Run hardware lane margining on port
1662 * @port: USB4 port
1663 * @target: Sideband target
1664 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1665 * @params: Parameters for USB4 hardware margining
1666 * @results: Array to hold the results
1667 * @nresults: Number of elements in the results array
1668 *
1669 * Runs hardware lane margining on USB4 port and returns the result in
1670 * @results.
1671 */
1672int usb4_port_hw_margin(struct tb_port *port, enum usb4_sb_target target,
1673 u8 index, const struct usb4_port_margining_params *params,
1674 u32 *results, size_t nresults)
1675{
1676 u32 val;
1677 int ret;
1678
1679 if (WARN_ON_ONCE(!params))
1680 return -EINVAL;
1681
1682 val = params->lanes;
1683 if (params->time)
1684 val |= USB4_MARGIN_HW_TIME;
1685 if (params->right_high || params->upper_eye)
1686 val |= USB4_MARGIN_HW_RHU;
1687 if (params->ber_level)
1688 val |= FIELD_PREP(USB4_MARGIN_HW_BER_MASK, params->ber_level);
1689 if (params->optional_voltage_offset_range)
1690 val |= USB4_MARGIN_HW_OPT_VOLTAGE;
1691
1692 ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, buf: &val,
1693 size: sizeof(val));
1694 if (ret)
1695 return ret;
1696
1697 ret = usb4_port_sb_op(port, target, index,
1698 opcode: USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, timeout_msec: 2500);
1699 if (ret)
1700 return ret;
1701
1702 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, buf: results,
1703 size: sizeof(*results) * nresults);
1704}
1705
1706/**
1707 * usb4_port_sw_margin() - Run software lane margining on port
1708 * @port: USB4 port
1709 * @target: Sideband target
1710 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1711 * @params: Parameters for USB4 software margining
1712 * @results: Data word for the operation completion data
1713 *
1714 * Runs software lane margining on USB4 port. Read back the error
1715 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1716 * success and negative errno otherwise.
1717 */
1718int usb4_port_sw_margin(struct tb_port *port, enum usb4_sb_target target,
1719 u8 index, const struct usb4_port_margining_params *params,
1720 u32 *results)
1721{
1722 u32 val;
1723 int ret;
1724
1725 if (WARN_ON_ONCE(!params))
1726 return -EINVAL;
1727
1728 val = params->lanes;
1729 if (params->time)
1730 val |= USB4_MARGIN_SW_TIME;
1731 if (params->optional_voltage_offset_range)
1732 val |= USB4_MARGIN_SW_OPT_VOLTAGE;
1733 if (params->right_high)
1734 val |= USB4_MARGIN_SW_RH;
1735 if (params->upper_eye)
1736 val |= USB4_MARGIN_SW_UPPER_EYE;
1737 val |= FIELD_PREP(USB4_MARGIN_SW_COUNTER_MASK, params->error_counter);
1738 val |= FIELD_PREP(USB4_MARGIN_SW_VT_MASK, params->voltage_time_offset);
1739
1740 ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, buf: &val,
1741 size: sizeof(val));
1742 if (ret)
1743 return ret;
1744
1745 ret = usb4_port_sb_op(port, target, index,
1746 opcode: USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, timeout_msec: 2500);
1747 if (ret)
1748 return ret;
1749
1750 return usb4_port_sb_read(port, target, index, USB4_SB_DATA, buf: results,
1751 size: sizeof(*results));
1752
1753}
1754
1755/**
1756 * usb4_port_sw_margin_errors() - Read the software margining error counters
1757 * @port: USB4 port
1758 * @target: Sideband target
1759 * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1760 * @errors: Error metadata is copied here.
1761 *
1762 * This reads back the software margining error counters from the port.
1763 * Returns %0 in success and negative errno otherwise.
1764 */
1765int usb4_port_sw_margin_errors(struct tb_port *port, enum usb4_sb_target target,
1766 u8 index, u32 *errors)
1767{
1768 int ret;
1769
1770 ret = usb4_port_sb_op(port, target, index,
1771 opcode: USB4_SB_OPCODE_READ_SW_MARGIN_ERR, timeout_msec: 150);
1772 if (ret)
1773 return ret;
1774
1775 return usb4_port_sb_read(port, target, index, USB4_SB_METADATA, buf: errors,
1776 size: sizeof(*errors));
1777}
1778
1779static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1780 enum usb4_sb_opcode opcode,
1781 int timeout_msec)
1782{
1783 return usb4_port_sb_op(port, target: USB4_SB_TARGET_RETIMER, index, opcode,
1784 timeout_msec);
1785}
1786
1787/**
1788 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1789 * @port: USB4 port
1790 * @index: Retimer index
1791 *
1792 * Enables sideband channel transations on SBTX. Can be used when USB4
1793 * link does not go up, for example if there is no device connected.
1794 */
1795int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1796{
1797 int ret;
1798
1799 ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_SET_INBOUND_SBTX,
1800 timeout_msec: 500);
1801
1802 if (ret != -ENODEV)
1803 return ret;
1804
1805 /*
1806 * Per the USB4 retimer spec, the retimer is not required to
1807 * send an RT (Retimer Transaction) response for the first
1808 * SET_INBOUND_SBTX command
1809 */
1810 return usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_SET_INBOUND_SBTX,
1811 timeout_msec: 500);
1812}
1813
1814/**
1815 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1816 * @port: USB4 port
1817 * @index: Retimer index
1818 *
1819 * Disables sideband channel transations on SBTX. The reverse of
1820 * usb4_port_retimer_set_inbound_sbtx().
1821 */
1822int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1823{
1824 return usb4_port_retimer_op(port, index,
1825 opcode: USB4_SB_OPCODE_UNSET_INBOUND_SBTX, timeout_msec: 500);
1826}
1827
1828/**
1829 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1830 * @port: USB4 port
1831 * @index: Retimer index
1832 *
1833 * If the retimer at @index is last one (connected directly to the
1834 * Type-C port) this function returns %1. If it is not returns %0. If
1835 * the retimer is not present returns %-ENODEV. Otherwise returns
1836 * negative errno.
1837 */
1838int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1839{
1840 u32 metadata;
1841 int ret;
1842
1843 ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1844 timeout_msec: 500);
1845 if (ret)
1846 return ret;
1847
1848 ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index,
1849 USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata));
1850 return ret ? ret : metadata & 1;
1851}
1852
1853/**
1854 * usb4_port_retimer_is_cable() - Is the retimer cable retimer
1855 * @port: USB4 port
1856 * @index: Retimer index
1857 *
1858 * If the retimer at @index is last cable retimer this function returns
1859 * %1 and %0 if it is on-board retimer. In case a retimer is not present
1860 * at @index returns %-ENODEV. Otherwise returns negative errno.
1861 */
1862int usb4_port_retimer_is_cable(struct tb_port *port, u8 index)
1863{
1864 u32 metadata;
1865 int ret;
1866
1867 ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_QUERY_CABLE_RETIMER,
1868 timeout_msec: 500);
1869 if (ret)
1870 return ret;
1871
1872 ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index,
1873 USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata));
1874 return ret ? ret : metadata & 1;
1875}
1876
1877/**
1878 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1879 * @port: USB4 port
1880 * @index: Retimer index
1881 *
1882 * Reads NVM sector size (in bytes) of a retimer at @index. This
1883 * operation can be used to determine whether the retimer supports NVM
1884 * upgrade for example. Returns sector size in bytes or negative errno
1885 * in case of error. Specifically returns %-ENODEV if there is no
1886 * retimer at @index.
1887 */
1888int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1889{
1890 u32 metadata;
1891 int ret;
1892
1893 ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1894 timeout_msec: 500);
1895 if (ret)
1896 return ret;
1897
1898 ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index,
1899 USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata));
1900 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1901}
1902
1903/**
1904 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1905 * @port: USB4 port
1906 * @index: Retimer index
1907 * @address: Start offset
1908 *
1909 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1910 * done automatically by usb4_port_retimer_nvm_write().
1911 *
1912 * Returns %0 in success and negative errno if there was a failure.
1913 */
1914int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1915 unsigned int address)
1916{
1917 u32 metadata, dwaddress;
1918 int ret;
1919
1920 dwaddress = address / 4;
1921 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1922 USB4_NVM_SET_OFFSET_MASK;
1923
1924 ret = usb4_port_sb_write(port, target: USB4_SB_TARGET_RETIMER, index,
1925 USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata));
1926 if (ret)
1927 return ret;
1928
1929 return usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_NVM_SET_OFFSET,
1930 timeout_msec: 500);
1931}
1932
1933struct retimer_info {
1934 struct tb_port *port;
1935 u8 index;
1936};
1937
1938static int usb4_port_retimer_nvm_write_next_block(void *data,
1939 unsigned int dwaddress, const void *buf, size_t dwords)
1940
1941{
1942 const struct retimer_info *info = data;
1943 struct tb_port *port = info->port;
1944 u8 index = info->index;
1945 int ret;
1946
1947 ret = usb4_port_sb_write(port, target: USB4_SB_TARGET_RETIMER, index,
1948 USB4_SB_DATA, buf, size: dwords * 4);
1949 if (ret)
1950 return ret;
1951
1952 return usb4_port_retimer_op(port, index,
1953 opcode: USB4_SB_OPCODE_NVM_BLOCK_WRITE, timeout_msec: 1000);
1954}
1955
1956/**
1957 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1958 * @port: USB4 port
1959 * @index: Retimer index
1960 * @address: Byte address where to start the write
1961 * @buf: Data to write
1962 * @size: Size in bytes how much to write
1963 *
1964 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1965 * upgrade. Returns %0 if the data was written successfully and negative
1966 * errno in case of failure. Specifically returns %-ENODEV if there is
1967 * no retimer at @index.
1968 */
1969int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1970 const void *buf, size_t size)
1971{
1972 struct retimer_info info = { .port = port, .index = index };
1973 int ret;
1974
1975 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1976 if (ret)
1977 return ret;
1978
1979 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1980 write_next_block: usb4_port_retimer_nvm_write_next_block, write_block_data: &info);
1981}
1982
1983/**
1984 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1985 * @port: USB4 port
1986 * @index: Retimer index
1987 *
1988 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1989 * this function can be used to trigger the NVM upgrade process. If
1990 * successful the retimer restarts with the new NVM and may not have the
1991 * index set so one needs to call usb4_port_enumerate_retimers() to
1992 * force index to be assigned.
1993 */
1994int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1995{
1996 u32 val;
1997
1998 /*
1999 * We need to use the raw operation here because once the
2000 * authentication completes the retimer index is not set anymore
2001 * so we do not get back the status now.
2002 */
2003 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
2004 return usb4_port_sb_write(port, target: USB4_SB_TARGET_RETIMER, index,
2005 USB4_SB_OPCODE, buf: &val, size: sizeof(val));
2006}
2007
2008/**
2009 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
2010 * @port: USB4 port
2011 * @index: Retimer index
2012 * @status: Raw status code read from metadata
2013 *
2014 * This can be called after usb4_port_retimer_nvm_authenticate() and
2015 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
2016 *
2017 * Returns %0 if the authentication status was successfully read. The
2018 * completion metadata (the result) is then stored into @status. If
2019 * reading the status fails, returns negative errno.
2020 */
2021int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
2022 u32 *status)
2023{
2024 u32 metadata, val;
2025 int ret;
2026
2027 ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index,
2028 USB4_SB_OPCODE, buf: &val, size: sizeof(val));
2029 if (ret)
2030 return ret;
2031
2032 ret = usb4_port_sb_opcode_err_to_errno(val);
2033 switch (ret) {
2034 case 0:
2035 *status = 0;
2036 return 0;
2037
2038 case -EAGAIN:
2039 ret = usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index,
2040 USB4_SB_METADATA, buf: &metadata,
2041 size: sizeof(metadata));
2042 if (ret)
2043 return ret;
2044
2045 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
2046 return 0;
2047
2048 default:
2049 return ret;
2050 }
2051}
2052
2053static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
2054 void *buf, size_t dwords)
2055{
2056 const struct retimer_info *info = data;
2057 struct tb_port *port = info->port;
2058 u8 index = info->index;
2059 u32 metadata;
2060 int ret;
2061
2062 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
2063 if (dwords < USB4_DATA_DWORDS)
2064 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
2065
2066 ret = usb4_port_sb_write(port, target: USB4_SB_TARGET_RETIMER, index,
2067 USB4_SB_METADATA, buf: &metadata, size: sizeof(metadata));
2068 if (ret)
2069 return ret;
2070
2071 ret = usb4_port_retimer_op(port, index, opcode: USB4_SB_OPCODE_NVM_READ, timeout_msec: 500);
2072 if (ret)
2073 return ret;
2074
2075 return usb4_port_sb_read(port, target: USB4_SB_TARGET_RETIMER, index,
2076 USB4_SB_DATA, buf, size: dwords * 4);
2077}
2078
2079/**
2080 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2081 * @port: USB4 port
2082 * @index: Retimer index
2083 * @address: NVM address (in bytes) to start reading
2084 * @buf: Data read from NVM is stored here
2085 * @size: Number of bytes to read
2086 *
2087 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2088 * read was successful and negative errno in case of failure.
2089 * Specifically returns %-ENODEV if there is no retimer at @index.
2090 */
2091int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2092 unsigned int address, void *buf, size_t size)
2093{
2094 struct retimer_info info = { .port = port, .index = index };
2095
2096 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2097 read_block: usb4_port_retimer_nvm_read_block, read_block_data: &info);
2098}
2099
2100static inline unsigned int
2101usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2102{
2103 /* Take the possible bandwidth limitation into account */
2104 if (port->max_bw)
2105 return min(bw, port->max_bw);
2106 return bw;
2107}
2108
2109/**
2110 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2111 * @port: USB3 adapter port
2112 *
2113 * Return maximum supported link rate of a USB3 adapter in Mb/s.
2114 * Negative errno in case of error.
2115 */
2116int usb4_usb3_port_max_link_rate(struct tb_port *port)
2117{
2118 int ret, lr;
2119 u32 val;
2120
2121 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2122 return -EINVAL;
2123
2124 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2125 offset: port->cap_adap + ADP_USB3_CS_4, length: 1);
2126 if (ret)
2127 return ret;
2128
2129 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2130 ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2131
2132 return usb4_usb3_port_max_bandwidth(port, bw: ret);
2133}
2134
2135static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2136{
2137 int ret;
2138 u32 val;
2139
2140 if (!tb_port_is_usb3_down(port))
2141 return -EINVAL;
2142 if (tb_route(sw: port->sw))
2143 return -EINVAL;
2144
2145 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2146 offset: port->cap_adap + ADP_USB3_CS_2, length: 1);
2147 if (ret)
2148 return ret;
2149
2150 if (request)
2151 val |= ADP_USB3_CS_2_CMR;
2152 else
2153 val &= ~ADP_USB3_CS_2_CMR;
2154
2155 ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2156 offset: port->cap_adap + ADP_USB3_CS_2, length: 1);
2157 if (ret)
2158 return ret;
2159
2160 /*
2161 * We can use val here directly as the CMR bit is in the same place
2162 * as HCA. Just mask out others.
2163 */
2164 val &= ADP_USB3_CS_2_CMR;
2165 return usb4_port_wait_for_bit(port, offset: port->cap_adap + ADP_USB3_CS_1,
2166 ADP_USB3_CS_1_HCA, value: val, timeout_msec: 1500,
2167 USB4_PORT_DELAY);
2168}
2169
2170static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2171{
2172 return usb4_usb3_port_cm_request(port, request: true);
2173}
2174
2175static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2176{
2177 return usb4_usb3_port_cm_request(port, request: false);
2178}
2179
2180static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2181{
2182 unsigned long uframes;
2183
2184 uframes = bw * 512UL << scale;
2185 return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2186}
2187
2188static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2189{
2190 unsigned long uframes;
2191
2192 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2193 uframes = ((unsigned long)mbps * MEGA) / 8000;
2194 return DIV_ROUND_UP(uframes, 512UL << scale);
2195}
2196
2197static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2198 int *upstream_bw,
2199 int *downstream_bw)
2200{
2201 u32 val, bw, scale;
2202 int ret;
2203
2204 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2205 offset: port->cap_adap + ADP_USB3_CS_2, length: 1);
2206 if (ret)
2207 return ret;
2208
2209 ret = tb_port_read(port, buffer: &scale, space: TB_CFG_PORT,
2210 offset: port->cap_adap + ADP_USB3_CS_3, length: 1);
2211 if (ret)
2212 return ret;
2213
2214 scale &= ADP_USB3_CS_3_SCALE_MASK;
2215
2216 bw = val & ADP_USB3_CS_2_AUBW_MASK;
2217 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2218
2219 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2220 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2221
2222 return 0;
2223}
2224
2225/**
2226 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2227 * @port: USB3 adapter port
2228 * @upstream_bw: Allocated upstream bandwidth is stored here
2229 * @downstream_bw: Allocated downstream bandwidth is stored here
2230 *
2231 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2232 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2233 * errno in failure.
2234 */
2235int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2236 int *downstream_bw)
2237{
2238 int ret;
2239
2240 ret = usb4_usb3_port_set_cm_request(port);
2241 if (ret)
2242 return ret;
2243
2244 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2245 downstream_bw);
2246 usb4_usb3_port_clear_cm_request(port);
2247
2248 return ret;
2249}
2250
2251static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2252 int *upstream_bw,
2253 int *downstream_bw)
2254{
2255 u32 val, bw, scale;
2256 int ret;
2257
2258 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2259 offset: port->cap_adap + ADP_USB3_CS_1, length: 1);
2260 if (ret)
2261 return ret;
2262
2263 ret = tb_port_read(port, buffer: &scale, space: TB_CFG_PORT,
2264 offset: port->cap_adap + ADP_USB3_CS_3, length: 1);
2265 if (ret)
2266 return ret;
2267
2268 scale &= ADP_USB3_CS_3_SCALE_MASK;
2269
2270 bw = val & ADP_USB3_CS_1_CUBW_MASK;
2271 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2272
2273 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2274 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2275
2276 return 0;
2277}
2278
2279static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2280 int upstream_bw,
2281 int downstream_bw)
2282{
2283 u32 val, ubw, dbw, scale;
2284 int ret, max_bw;
2285
2286 /* Figure out suitable scale */
2287 scale = 0;
2288 max_bw = max(upstream_bw, downstream_bw);
2289 while (scale < 64) {
2290 if (mbps_to_usb3_bw(mbps: max_bw, scale) < 4096)
2291 break;
2292 scale++;
2293 }
2294
2295 if (WARN_ON(scale >= 64))
2296 return -EINVAL;
2297
2298 ret = tb_port_write(port, buffer: &scale, space: TB_CFG_PORT,
2299 offset: port->cap_adap + ADP_USB3_CS_3, length: 1);
2300 if (ret)
2301 return ret;
2302
2303 ubw = mbps_to_usb3_bw(mbps: upstream_bw, scale);
2304 dbw = mbps_to_usb3_bw(mbps: downstream_bw, scale);
2305
2306 tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2307
2308 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2309 offset: port->cap_adap + ADP_USB3_CS_2, length: 1);
2310 if (ret)
2311 return ret;
2312
2313 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2314 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2315 val |= ubw;
2316
2317 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2318 offset: port->cap_adap + ADP_USB3_CS_2, length: 1);
2319}
2320
2321/**
2322 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2323 * @port: USB3 adapter port
2324 * @upstream_bw: New upstream bandwidth
2325 * @downstream_bw: New downstream bandwidth
2326 *
2327 * This can be used to set how much bandwidth is allocated for the USB3
2328 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2329 * new values programmed to the USB3 adapter allocation registers. If
2330 * the values are lower than what is currently consumed the allocation
2331 * is set to what is currently consumed instead (consumed bandwidth
2332 * cannot be taken away by CM). The actual new values are returned in
2333 * @upstream_bw and @downstream_bw.
2334 *
2335 * Returns %0 in case of success and negative errno if there was a
2336 * failure.
2337 */
2338int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2339 int *downstream_bw)
2340{
2341 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2342
2343 ret = usb4_usb3_port_set_cm_request(port);
2344 if (ret)
2345 return ret;
2346
2347 ret = usb4_usb3_port_read_consumed_bandwidth(port, upstream_bw: &consumed_up,
2348 downstream_bw: &consumed_down);
2349 if (ret)
2350 goto err_request;
2351
2352 /* Don't allow it go lower than what is consumed */
2353 allocate_up = max(*upstream_bw, consumed_up);
2354 allocate_down = max(*downstream_bw, consumed_down);
2355
2356 ret = usb4_usb3_port_write_allocated_bandwidth(port, upstream_bw: allocate_up,
2357 downstream_bw: allocate_down);
2358 if (ret)
2359 goto err_request;
2360
2361 *upstream_bw = allocate_up;
2362 *downstream_bw = allocate_down;
2363
2364err_request:
2365 usb4_usb3_port_clear_cm_request(port);
2366 return ret;
2367}
2368
2369/**
2370 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2371 * @port: USB3 adapter port
2372 * @upstream_bw: New allocated upstream bandwidth
2373 * @downstream_bw: New allocated downstream bandwidth
2374 *
2375 * Releases USB3 allocated bandwidth down to what is actually consumed.
2376 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2377 *
2378 * Returns 0% in success and negative errno in case of failure.
2379 */
2380int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2381 int *downstream_bw)
2382{
2383 int ret, consumed_up, consumed_down;
2384
2385 ret = usb4_usb3_port_set_cm_request(port);
2386 if (ret)
2387 return ret;
2388
2389 ret = usb4_usb3_port_read_consumed_bandwidth(port, upstream_bw: &consumed_up,
2390 downstream_bw: &consumed_down);
2391 if (ret)
2392 goto err_request;
2393
2394 /*
2395 * Always keep 900 Mb/s to make sure xHCI has at least some
2396 * bandwidth available for isochronous traffic.
2397 */
2398 if (consumed_up < 900)
2399 consumed_up = 900;
2400 if (consumed_down < 900)
2401 consumed_down = 900;
2402
2403 ret = usb4_usb3_port_write_allocated_bandwidth(port, upstream_bw: consumed_up,
2404 downstream_bw: consumed_down);
2405 if (ret)
2406 goto err_request;
2407
2408 *upstream_bw = consumed_up;
2409 *downstream_bw = consumed_down;
2410
2411err_request:
2412 usb4_usb3_port_clear_cm_request(port);
2413 return ret;
2414}
2415
2416static bool is_usb4_dpin(const struct tb_port *port)
2417{
2418 if (!tb_port_is_dpin(port))
2419 return false;
2420 if (!tb_switch_is_usb4(sw: port->sw))
2421 return false;
2422 return true;
2423}
2424
2425/**
2426 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2427 * @port: DP IN adapter
2428 * @cm_id: CM ID to assign
2429 *
2430 * Sets CM ID for the @port. Returns %0 on success and negative errno
2431 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2432 * support this.
2433 */
2434int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2435{
2436 u32 val;
2437 int ret;
2438
2439 if (!is_usb4_dpin(port))
2440 return -EOPNOTSUPP;
2441
2442 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2443 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2444 if (ret)
2445 return ret;
2446
2447 val &= ~ADP_DP_CS_2_CM_ID_MASK;
2448 val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2449
2450 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2451 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2452}
2453
2454/**
2455 * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2456 * supported
2457 * @port: DP IN adapter to check
2458 *
2459 * Can be called to any DP IN adapter. Returns true if the adapter
2460 * supports USB4 bandwidth allocation mode, false otherwise.
2461 */
2462bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2463{
2464 int ret;
2465 u32 val;
2466
2467 if (!is_usb4_dpin(port))
2468 return false;
2469
2470 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2471 offset: port->cap_adap + DP_LOCAL_CAP, length: 1);
2472 if (ret)
2473 return false;
2474
2475 return !!(val & DP_COMMON_CAP_BW_MODE);
2476}
2477
2478/**
2479 * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2480 * enabled
2481 * @port: DP IN adapter to check
2482 *
2483 * Can be called to any DP IN adapter. Returns true if the bandwidth
2484 * allocation mode has been enabled, false otherwise.
2485 */
2486bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2487{
2488 int ret;
2489 u32 val;
2490
2491 if (!is_usb4_dpin(port))
2492 return false;
2493
2494 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2495 offset: port->cap_adap + ADP_DP_CS_8, length: 1);
2496 if (ret)
2497 return false;
2498
2499 return !!(val & ADP_DP_CS_8_DPME);
2500}
2501
2502/**
2503 * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2504 * bandwidth allocation mode
2505 * @port: DP IN adapter
2506 * @supported: Does the CM support bandwidth allocation mode
2507 *
2508 * Can be called to any DP IN adapter. Sets or clears the CM support bit
2509 * of the DP IN adapter. Returns %0 in success and negative errno
2510 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2511 * does not support this.
2512 */
2513int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2514 bool supported)
2515{
2516 u32 val;
2517 int ret;
2518
2519 if (!is_usb4_dpin(port))
2520 return -EOPNOTSUPP;
2521
2522 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2523 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2524 if (ret)
2525 return ret;
2526
2527 if (supported)
2528 val |= ADP_DP_CS_2_CMMS;
2529 else
2530 val &= ~ADP_DP_CS_2_CMMS;
2531
2532 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2533 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2534}
2535
2536/**
2537 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2538 * @port: DP IN adapter
2539 *
2540 * Reads bandwidth allocation Group ID from the DP IN adapter and
2541 * returns it. If the adapter does not support setting Group_ID
2542 * %-EOPNOTSUPP is returned.
2543 */
2544int usb4_dp_port_group_id(struct tb_port *port)
2545{
2546 u32 val;
2547 int ret;
2548
2549 if (!is_usb4_dpin(port))
2550 return -EOPNOTSUPP;
2551
2552 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2553 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2554 if (ret)
2555 return ret;
2556
2557 return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2558}
2559
2560/**
2561 * usb4_dp_port_set_group_id() - Set adapter Group ID
2562 * @port: DP IN adapter
2563 * @group_id: Group ID for the adapter
2564 *
2565 * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2566 * Returns %0 in case of success and negative errno otherwise.
2567 * Specifically returns %-EOPNOTSUPP if the adapter does not support
2568 * this.
2569 */
2570int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2571{
2572 u32 val;
2573 int ret;
2574
2575 if (!is_usb4_dpin(port))
2576 return -EOPNOTSUPP;
2577
2578 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2579 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2580 if (ret)
2581 return ret;
2582
2583 val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2584 val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2585
2586 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2587 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2588}
2589
2590/**
2591 * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2592 * @port: DP IN adapter
2593 * @rate: Non-reduced rate in Mb/s is placed here
2594 * @lanes: Non-reduced lanes are placed here
2595 *
2596 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2597 * %0 in success and negative errno otherwise. Specifically returns
2598 * %-EOPNOTSUPP if the adapter does not support this.
2599 */
2600int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2601{
2602 u32 val, tmp;
2603 int ret;
2604
2605 if (!is_usb4_dpin(port))
2606 return -EOPNOTSUPP;
2607
2608 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2609 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2610 if (ret)
2611 return ret;
2612
2613 tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2614 switch (tmp) {
2615 case DP_COMMON_CAP_RATE_RBR:
2616 *rate = 1620;
2617 break;
2618 case DP_COMMON_CAP_RATE_HBR:
2619 *rate = 2700;
2620 break;
2621 case DP_COMMON_CAP_RATE_HBR2:
2622 *rate = 5400;
2623 break;
2624 case DP_COMMON_CAP_RATE_HBR3:
2625 *rate = 8100;
2626 break;
2627 }
2628
2629 tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2630 switch (tmp) {
2631 case DP_COMMON_CAP_1_LANE:
2632 *lanes = 1;
2633 break;
2634 case DP_COMMON_CAP_2_LANES:
2635 *lanes = 2;
2636 break;
2637 case DP_COMMON_CAP_4_LANES:
2638 *lanes = 4;
2639 break;
2640 }
2641
2642 return 0;
2643}
2644
2645/**
2646 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2647 * @port: DP IN adapter
2648 * @rate: Non-reduced rate in Mb/s
2649 * @lanes: Non-reduced lanes
2650 *
2651 * Before the capabilities reduction this function can be used to set
2652 * the non-reduced values for the DP IN adapter. Returns %0 in success
2653 * and negative errno otherwise. If the adapter does not support this
2654 * %-EOPNOTSUPP is returned.
2655 */
2656int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2657{
2658 u32 val;
2659 int ret;
2660
2661 if (!is_usb4_dpin(port))
2662 return -EOPNOTSUPP;
2663
2664 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2665 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2666 if (ret)
2667 return ret;
2668
2669 val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2670
2671 switch (rate) {
2672 case 1620:
2673 break;
2674 case 2700:
2675 val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2676 & ADP_DP_CS_2_NRD_MLR_MASK;
2677 break;
2678 case 5400:
2679 val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2680 & ADP_DP_CS_2_NRD_MLR_MASK;
2681 break;
2682 case 8100:
2683 val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2684 & ADP_DP_CS_2_NRD_MLR_MASK;
2685 break;
2686 default:
2687 return -EINVAL;
2688 }
2689
2690 val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2691
2692 switch (lanes) {
2693 case 1:
2694 break;
2695 case 2:
2696 val |= DP_COMMON_CAP_2_LANES;
2697 break;
2698 case 4:
2699 val |= DP_COMMON_CAP_4_LANES;
2700 break;
2701 default:
2702 return -EINVAL;
2703 }
2704
2705 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2706 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2707}
2708
2709/**
2710 * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2711 * @port: DP IN adapter
2712 *
2713 * Reads the programmed granularity from @port. If the DP IN adapter does
2714 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2715 * errno in other error cases.
2716 */
2717int usb4_dp_port_granularity(struct tb_port *port)
2718{
2719 u32 val;
2720 int ret;
2721
2722 if (!is_usb4_dpin(port))
2723 return -EOPNOTSUPP;
2724
2725 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2726 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2727 if (ret)
2728 return ret;
2729
2730 val &= ADP_DP_CS_2_GR_MASK;
2731 val >>= ADP_DP_CS_2_GR_SHIFT;
2732
2733 switch (val) {
2734 case ADP_DP_CS_2_GR_0_25G:
2735 return 250;
2736 case ADP_DP_CS_2_GR_0_5G:
2737 return 500;
2738 case ADP_DP_CS_2_GR_1G:
2739 return 1000;
2740 }
2741
2742 return -EINVAL;
2743}
2744
2745/**
2746 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2747 * @port: DP IN adapter
2748 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2749 *
2750 * Sets the granularity used with the estimated, allocated and requested
2751 * bandwidth. Returns %0 in success and negative errno otherwise. If the
2752 * adapter does not support this %-EOPNOTSUPP is returned.
2753 */
2754int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2755{
2756 u32 val;
2757 int ret;
2758
2759 if (!is_usb4_dpin(port))
2760 return -EOPNOTSUPP;
2761
2762 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2763 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2764 if (ret)
2765 return ret;
2766
2767 val &= ~ADP_DP_CS_2_GR_MASK;
2768
2769 switch (granularity) {
2770 case 250:
2771 val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2772 break;
2773 case 500:
2774 val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2775 break;
2776 case 1000:
2777 val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2778 break;
2779 default:
2780 return -EINVAL;
2781 }
2782
2783 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2784 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2785}
2786
2787/**
2788 * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2789 * @port: DP IN adapter
2790 * @bw: Estimated bandwidth in Mb/s.
2791 *
2792 * Sets the estimated bandwidth to @bw. Set the granularity by calling
2793 * usb4_dp_port_set_granularity() before calling this. The @bw is round
2794 * down to the closest granularity multiplier. Returns %0 in success
2795 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2796 * the adapter does not support this.
2797 */
2798int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2799{
2800 u32 val, granularity;
2801 int ret;
2802
2803 if (!is_usb4_dpin(port))
2804 return -EOPNOTSUPP;
2805
2806 ret = usb4_dp_port_granularity(port);
2807 if (ret < 0)
2808 return ret;
2809 granularity = ret;
2810
2811 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2812 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2813 if (ret)
2814 return ret;
2815
2816 val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2817 val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2818
2819 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2820 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2821}
2822
2823/**
2824 * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2825 * @port: DP IN adapter
2826 *
2827 * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2828 * account the programmed granularity). Returns negative errno in case
2829 * of error.
2830 */
2831int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2832{
2833 u32 val, granularity;
2834 int ret;
2835
2836 if (!is_usb4_dpin(port))
2837 return -EOPNOTSUPP;
2838
2839 ret = usb4_dp_port_granularity(port);
2840 if (ret < 0)
2841 return ret;
2842 granularity = ret;
2843
2844 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2845 offset: port->cap_adap + DP_STATUS, length: 1);
2846 if (ret)
2847 return ret;
2848
2849 val &= DP_STATUS_ALLOCATED_BW_MASK;
2850 val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2851
2852 return val * granularity;
2853}
2854
2855static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2856{
2857 u32 val;
2858 int ret;
2859
2860 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2861 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2862 if (ret)
2863 return ret;
2864
2865 if (ack)
2866 val |= ADP_DP_CS_2_CA;
2867 else
2868 val &= ~ADP_DP_CS_2_CA;
2869
2870 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2871 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2872}
2873
2874static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2875{
2876 return __usb4_dp_port_set_cm_ack(port, ack: true);
2877}
2878
2879static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2880 int timeout_msec)
2881{
2882 ktime_t end;
2883 u32 val;
2884 int ret;
2885
2886 ret = __usb4_dp_port_set_cm_ack(port, ack: false);
2887 if (ret)
2888 return ret;
2889
2890 end = ktime_add_ms(kt: ktime_get(), msec: timeout_msec);
2891 do {
2892 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2893 offset: port->cap_adap + ADP_DP_CS_8, length: 1);
2894 if (ret)
2895 return ret;
2896
2897 if (!(val & ADP_DP_CS_8_DR))
2898 break;
2899
2900 usleep_range(min: 50, max: 100);
2901 } while (ktime_before(cmp1: ktime_get(), cmp2: end));
2902
2903 if (val & ADP_DP_CS_8_DR) {
2904 tb_port_warn(port, "timeout waiting for DPTX request to clear\n");
2905 return -ETIMEDOUT;
2906 }
2907
2908 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2909 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2910 if (ret)
2911 return ret;
2912
2913 val &= ~ADP_DP_CS_2_CA;
2914 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2915 offset: port->cap_adap + ADP_DP_CS_2, length: 1);
2916}
2917
2918/**
2919 * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2920 * @port: DP IN adapter
2921 * @bw: New allocated bandwidth in Mb/s
2922 *
2923 * Communicates the new allocated bandwidth with the DPCD (graphics
2924 * driver). Takes into account the programmed granularity. Returns %0 in
2925 * success and negative errno in case of error.
2926 */
2927int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2928{
2929 u32 val, granularity;
2930 int ret;
2931
2932 if (!is_usb4_dpin(port))
2933 return -EOPNOTSUPP;
2934
2935 ret = usb4_dp_port_granularity(port);
2936 if (ret < 0)
2937 return ret;
2938 granularity = ret;
2939
2940 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2941 offset: port->cap_adap + DP_STATUS, length: 1);
2942 if (ret)
2943 return ret;
2944
2945 val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2946 val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2947
2948 ret = tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
2949 offset: port->cap_adap + DP_STATUS, length: 1);
2950 if (ret)
2951 return ret;
2952
2953 ret = usb4_dp_port_set_cm_ack(port);
2954 if (ret)
2955 return ret;
2956
2957 return usb4_dp_port_wait_and_clear_cm_ack(port, timeout_msec: 500);
2958}
2959
2960/**
2961 * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2962 * @port: DP IN adapter
2963 *
2964 * Reads the DPCD (graphics driver) requested bandwidth and returns it
2965 * in Mb/s. Takes the programmed granularity into account. In case of
2966 * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2967 * the adapter does not support bandwidth allocation mode, and %ENODATA
2968 * if there is no active bandwidth request from the graphics driver.
2969 */
2970int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2971{
2972 u32 val, granularity;
2973 int ret;
2974
2975 if (!is_usb4_dpin(port))
2976 return -EOPNOTSUPP;
2977
2978 ret = usb4_dp_port_granularity(port);
2979 if (ret < 0)
2980 return ret;
2981 granularity = ret;
2982
2983 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
2984 offset: port->cap_adap + ADP_DP_CS_8, length: 1);
2985 if (ret)
2986 return ret;
2987
2988 if (!(val & ADP_DP_CS_8_DR))
2989 return -ENODATA;
2990
2991 return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2992}
2993
2994/**
2995 * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2996 * @port: PCIe adapter
2997 * @enable: Enable/disable extended encapsulation
2998 *
2999 * Enables or disables extended encapsulation used in PCIe tunneling. Caller
3000 * needs to make sure both adapters support this before enabling. Returns %0 on
3001 * success and negative errno otherwise.
3002 */
3003int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
3004{
3005 u32 val;
3006 int ret;
3007
3008 if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
3009 return -EINVAL;
3010
3011 ret = tb_port_read(port, buffer: &val, space: TB_CFG_PORT,
3012 offset: port->cap_adap + ADP_PCIE_CS_1, length: 1);
3013 if (ret)
3014 return ret;
3015
3016 if (enable)
3017 val |= ADP_PCIE_CS_1_EE;
3018 else
3019 val &= ~ADP_PCIE_CS_1_EE;
3020
3021 return tb_port_write(port, buffer: &val, space: TB_CFG_PORT,
3022 offset: port->cap_adap + ADP_PCIE_CS_1, length: 1);
3023}
3024

source code of linux/drivers/thunderbolt/usb4.c