| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/err.h> |
| 7 | #include <linux/uuid.h> |
| 8 | #include "ctree.h" |
| 9 | #include "fs.h" |
| 10 | #include "messages.h" |
| 11 | #include "transaction.h" |
| 12 | #include "disk-io.h" |
| 13 | #include "qgroup.h" |
| 14 | #include "space-info.h" |
| 15 | #include "accessors.h" |
| 16 | #include "root-tree.h" |
| 17 | #include "orphan.h" |
| 18 | |
| 19 | /* |
| 20 | * Read a root item from the tree. In case we detect a root item smaller then |
| 21 | * sizeof(root_item), we know it's an old version of the root structure and |
| 22 | * initialize all new fields to zero. The same happens if we detect mismatching |
| 23 | * generation numbers as then we know the root was once mounted with an older |
| 24 | * kernel that was not aware of the root item structure change. |
| 25 | */ |
| 26 | static void btrfs_read_root_item(struct extent_buffer *eb, int slot, |
| 27 | struct btrfs_root_item *item) |
| 28 | { |
| 29 | u32 len; |
| 30 | int need_reset = 0; |
| 31 | |
| 32 | len = btrfs_item_size(eb, slot); |
| 33 | read_extent_buffer(eb, dst: item, btrfs_item_ptr_offset(eb, slot), |
| 34 | min_t(u32, len, sizeof(*item))); |
| 35 | if (len < sizeof(*item)) |
| 36 | need_reset = 1; |
| 37 | if (!need_reset && btrfs_root_generation(s: item) |
| 38 | != btrfs_root_generation_v2(s: item)) { |
| 39 | if (btrfs_root_generation_v2(s: item) != 0) { |
| 40 | btrfs_warn(eb->fs_info, |
| 41 | "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields." ); |
| 42 | } |
| 43 | need_reset = 1; |
| 44 | } |
| 45 | if (need_reset) { |
| 46 | /* Clear all members from generation_v2 onwards. */ |
| 47 | memset_startat(item, 0, generation_v2); |
| 48 | generate_random_guid(guid: item->uuid); |
| 49 | } |
| 50 | } |
| 51 | |
| 52 | /* |
| 53 | * Lookup the root by the key. |
| 54 | * |
| 55 | * root: the root of the root tree |
| 56 | * search_key: the key to search |
| 57 | * path: the path we search |
| 58 | * root_item: the root item of the tree we look for |
| 59 | * root_key: the root key of the tree we look for |
| 60 | * |
| 61 | * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset |
| 62 | * of the search key, just lookup the root with the highest offset for a |
| 63 | * given objectid. |
| 64 | * |
| 65 | * If we find something return 0, otherwise > 0, < 0 on error. |
| 66 | */ |
| 67 | int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, |
| 68 | struct btrfs_path *path, struct btrfs_root_item *root_item, |
| 69 | struct btrfs_key *root_key) |
| 70 | { |
| 71 | struct btrfs_key found_key; |
| 72 | struct extent_buffer *l; |
| 73 | int ret; |
| 74 | int slot; |
| 75 | |
| 76 | ret = btrfs_search_slot(NULL, root, key: search_key, p: path, ins_len: 0, cow: 0); |
| 77 | if (ret < 0) |
| 78 | return ret; |
| 79 | |
| 80 | if (search_key->offset != -1ULL) { /* the search key is exact */ |
| 81 | if (ret > 0) |
| 82 | goto out; |
| 83 | } else { |
| 84 | /* |
| 85 | * Key with offset -1 found, there would have to exist a root |
| 86 | * with such id, but this is out of the valid range. |
| 87 | */ |
| 88 | if (ret == 0) { |
| 89 | ret = -EUCLEAN; |
| 90 | goto out; |
| 91 | } |
| 92 | if (path->slots[0] == 0) |
| 93 | goto out; |
| 94 | path->slots[0]--; |
| 95 | ret = 0; |
| 96 | } |
| 97 | |
| 98 | l = path->nodes[0]; |
| 99 | slot = path->slots[0]; |
| 100 | |
| 101 | btrfs_item_key_to_cpu(eb: l, cpu_key: &found_key, nr: slot); |
| 102 | if (found_key.objectid != search_key->objectid || |
| 103 | found_key.type != BTRFS_ROOT_ITEM_KEY) { |
| 104 | ret = 1; |
| 105 | goto out; |
| 106 | } |
| 107 | |
| 108 | if (root_item) |
| 109 | btrfs_read_root_item(eb: l, slot, item: root_item); |
| 110 | if (root_key) |
| 111 | memcpy(root_key, &found_key, sizeof(found_key)); |
| 112 | out: |
| 113 | btrfs_release_path(p: path); |
| 114 | return ret; |
| 115 | } |
| 116 | |
| 117 | void btrfs_set_root_node(struct btrfs_root_item *item, |
| 118 | struct extent_buffer *node) |
| 119 | { |
| 120 | btrfs_set_root_bytenr(s: item, val: node->start); |
| 121 | btrfs_set_root_level(s: item, val: btrfs_header_level(eb: node)); |
| 122 | btrfs_set_root_generation(s: item, val: btrfs_header_generation(eb: node)); |
| 123 | } |
| 124 | |
| 125 | /* |
| 126 | * copy the data in 'item' into the btree |
| 127 | */ |
| 128 | int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root |
| 129 | *root, struct btrfs_key *key, struct btrfs_root_item |
| 130 | *item) |
| 131 | { |
| 132 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 133 | struct btrfs_path *path; |
| 134 | struct extent_buffer *l; |
| 135 | int ret; |
| 136 | int slot; |
| 137 | unsigned long ptr; |
| 138 | u32 old_len; |
| 139 | |
| 140 | path = btrfs_alloc_path(); |
| 141 | if (!path) |
| 142 | return -ENOMEM; |
| 143 | |
| 144 | ret = btrfs_search_slot(trans, root, key, p: path, ins_len: 0, cow: 1); |
| 145 | if (ret < 0) |
| 146 | goto out; |
| 147 | |
| 148 | if (ret > 0) { |
| 149 | btrfs_crit(fs_info, |
| 150 | "unable to find root key (%llu %u %llu) in tree %llu" , |
| 151 | key->objectid, key->type, key->offset, btrfs_root_id(root)); |
| 152 | ret = -EUCLEAN; |
| 153 | btrfs_abort_transaction(trans, ret); |
| 154 | goto out; |
| 155 | } |
| 156 | |
| 157 | l = path->nodes[0]; |
| 158 | slot = path->slots[0]; |
| 159 | ptr = btrfs_item_ptr_offset(l, slot); |
| 160 | old_len = btrfs_item_size(eb: l, slot); |
| 161 | |
| 162 | /* |
| 163 | * If this is the first time we update the root item which originated |
| 164 | * from an older kernel, we need to enlarge the item size to make room |
| 165 | * for the added fields. |
| 166 | */ |
| 167 | if (old_len < sizeof(*item)) { |
| 168 | btrfs_release_path(p: path); |
| 169 | ret = btrfs_search_slot(trans, root, key, p: path, |
| 170 | ins_len: -1, cow: 1); |
| 171 | if (ret < 0) { |
| 172 | btrfs_abort_transaction(trans, ret); |
| 173 | goto out; |
| 174 | } |
| 175 | |
| 176 | ret = btrfs_del_item(trans, root, path); |
| 177 | if (ret < 0) { |
| 178 | btrfs_abort_transaction(trans, ret); |
| 179 | goto out; |
| 180 | } |
| 181 | btrfs_release_path(p: path); |
| 182 | ret = btrfs_insert_empty_item(trans, root, path, |
| 183 | key, data_size: sizeof(*item)); |
| 184 | if (ret < 0) { |
| 185 | btrfs_abort_transaction(trans, ret); |
| 186 | goto out; |
| 187 | } |
| 188 | l = path->nodes[0]; |
| 189 | slot = path->slots[0]; |
| 190 | ptr = btrfs_item_ptr_offset(l, slot); |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * Update generation_v2 so at the next mount we know the new root |
| 195 | * fields are valid. |
| 196 | */ |
| 197 | btrfs_set_root_generation_v2(s: item, val: btrfs_root_generation(s: item)); |
| 198 | |
| 199 | write_extent_buffer(eb: l, src: item, start: ptr, len: sizeof(*item)); |
| 200 | out: |
| 201 | btrfs_free_path(p: path); |
| 202 | return ret; |
| 203 | } |
| 204 | |
| 205 | int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 206 | const struct btrfs_key *key, struct btrfs_root_item *item) |
| 207 | { |
| 208 | /* |
| 209 | * Make sure generation v1 and v2 match. See update_root for details. |
| 210 | */ |
| 211 | btrfs_set_root_generation_v2(s: item, val: btrfs_root_generation(s: item)); |
| 212 | return btrfs_insert_item(trans, root, key, data: item, data_size: sizeof(*item)); |
| 213 | } |
| 214 | |
| 215 | int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) |
| 216 | { |
| 217 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 218 | struct extent_buffer *leaf; |
| 219 | struct btrfs_path *path; |
| 220 | struct btrfs_key key; |
| 221 | struct btrfs_root *root; |
| 222 | int err = 0; |
| 223 | int ret; |
| 224 | |
| 225 | path = btrfs_alloc_path(); |
| 226 | if (!path) |
| 227 | return -ENOMEM; |
| 228 | |
| 229 | key.objectid = BTRFS_ORPHAN_OBJECTID; |
| 230 | key.type = BTRFS_ORPHAN_ITEM_KEY; |
| 231 | key.offset = 0; |
| 232 | |
| 233 | while (1) { |
| 234 | u64 root_objectid; |
| 235 | |
| 236 | ret = btrfs_search_slot(NULL, root: tree_root, key: &key, p: path, ins_len: 0, cow: 0); |
| 237 | if (ret < 0) { |
| 238 | err = ret; |
| 239 | break; |
| 240 | } |
| 241 | |
| 242 | leaf = path->nodes[0]; |
| 243 | if (path->slots[0] >= btrfs_header_nritems(eb: leaf)) { |
| 244 | ret = btrfs_next_leaf(root: tree_root, path); |
| 245 | if (ret < 0) |
| 246 | err = ret; |
| 247 | if (ret != 0) |
| 248 | break; |
| 249 | leaf = path->nodes[0]; |
| 250 | } |
| 251 | |
| 252 | btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]); |
| 253 | btrfs_release_path(p: path); |
| 254 | |
| 255 | if (key.objectid != BTRFS_ORPHAN_OBJECTID || |
| 256 | key.type != BTRFS_ORPHAN_ITEM_KEY) |
| 257 | break; |
| 258 | |
| 259 | root_objectid = key.offset; |
| 260 | key.offset++; |
| 261 | |
| 262 | root = btrfs_get_fs_root(fs_info, objectid: root_objectid, check_ref: false); |
| 263 | err = PTR_ERR_OR_ZERO(ptr: root); |
| 264 | if (err && err != -ENOENT) { |
| 265 | break; |
| 266 | } else if (err == -ENOENT) { |
| 267 | struct btrfs_trans_handle *trans; |
| 268 | |
| 269 | btrfs_release_path(p: path); |
| 270 | |
| 271 | trans = btrfs_join_transaction(root: tree_root); |
| 272 | if (IS_ERR(ptr: trans)) { |
| 273 | err = PTR_ERR(ptr: trans); |
| 274 | btrfs_handle_fs_error(fs_info, err, |
| 275 | "Failed to start trans to delete orphan item" ); |
| 276 | break; |
| 277 | } |
| 278 | err = btrfs_del_orphan_item(trans, root: tree_root, |
| 279 | offset: root_objectid); |
| 280 | btrfs_end_transaction(trans); |
| 281 | if (err) { |
| 282 | btrfs_handle_fs_error(fs_info, err, |
| 283 | "Failed to delete root orphan item" ); |
| 284 | break; |
| 285 | } |
| 286 | continue; |
| 287 | } |
| 288 | |
| 289 | WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); |
| 290 | if (btrfs_root_refs(s: &root->root_item) == 0) { |
| 291 | struct btrfs_key drop_key; |
| 292 | |
| 293 | btrfs_disk_key_to_cpu(cpu_key: &drop_key, disk_key: &root->root_item.drop_progress); |
| 294 | /* |
| 295 | * If we have a non-zero drop_progress then we know we |
| 296 | * made it partly through deleting this snapshot, and |
| 297 | * thus we need to make sure we block any balance from |
| 298 | * happening until this snapshot is completely dropped. |
| 299 | */ |
| 300 | if (drop_key.objectid != 0 || drop_key.type != 0 || |
| 301 | drop_key.offset != 0) { |
| 302 | set_bit(nr: BTRFS_FS_UNFINISHED_DROPS, addr: &fs_info->flags); |
| 303 | set_bit(nr: BTRFS_ROOT_UNFINISHED_DROP, addr: &root->state); |
| 304 | } |
| 305 | |
| 306 | set_bit(nr: BTRFS_ROOT_DEAD_TREE, addr: &root->state); |
| 307 | btrfs_add_dead_root(root); |
| 308 | } |
| 309 | btrfs_put_root(root); |
| 310 | } |
| 311 | |
| 312 | btrfs_free_path(p: path); |
| 313 | return err; |
| 314 | } |
| 315 | |
| 316 | /* drop the root item for 'key' from the tree root */ |
| 317 | int btrfs_del_root(struct btrfs_trans_handle *trans, |
| 318 | const struct btrfs_key *key) |
| 319 | { |
| 320 | struct btrfs_root *root = trans->fs_info->tree_root; |
| 321 | struct btrfs_path *path; |
| 322 | int ret; |
| 323 | |
| 324 | path = btrfs_alloc_path(); |
| 325 | if (!path) |
| 326 | return -ENOMEM; |
| 327 | ret = btrfs_search_slot(trans, root, key, p: path, ins_len: -1, cow: 1); |
| 328 | if (ret < 0) |
| 329 | goto out; |
| 330 | if (ret != 0) { |
| 331 | /* The root must exist but we did not find it by the key. */ |
| 332 | ret = -EUCLEAN; |
| 333 | goto out; |
| 334 | } |
| 335 | |
| 336 | ret = btrfs_del_item(trans, root, path); |
| 337 | out: |
| 338 | btrfs_free_path(p: path); |
| 339 | return ret; |
| 340 | } |
| 341 | |
| 342 | int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, |
| 343 | u64 ref_id, u64 dirid, u64 *sequence, |
| 344 | const struct fscrypt_str *name) |
| 345 | { |
| 346 | struct btrfs_root *tree_root = trans->fs_info->tree_root; |
| 347 | struct btrfs_path *path; |
| 348 | struct btrfs_root_ref *ref; |
| 349 | struct extent_buffer *leaf; |
| 350 | struct btrfs_key key; |
| 351 | unsigned long ptr; |
| 352 | int ret; |
| 353 | |
| 354 | path = btrfs_alloc_path(); |
| 355 | if (!path) |
| 356 | return -ENOMEM; |
| 357 | |
| 358 | key.objectid = root_id; |
| 359 | key.type = BTRFS_ROOT_BACKREF_KEY; |
| 360 | key.offset = ref_id; |
| 361 | again: |
| 362 | ret = btrfs_search_slot(trans, root: tree_root, key: &key, p: path, ins_len: -1, cow: 1); |
| 363 | if (ret < 0) { |
| 364 | goto out; |
| 365 | } else if (ret == 0) { |
| 366 | leaf = path->nodes[0]; |
| 367 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 368 | struct btrfs_root_ref); |
| 369 | ptr = (unsigned long)(ref + 1); |
| 370 | if ((btrfs_root_ref_dirid(eb: leaf, s: ref) != dirid) || |
| 371 | (btrfs_root_ref_name_len(eb: leaf, s: ref) != name->len) || |
| 372 | memcmp_extent_buffer(eb: leaf, ptrv: name->name, start: ptr, len: name->len)) { |
| 373 | ret = -ENOENT; |
| 374 | goto out; |
| 375 | } |
| 376 | *sequence = btrfs_root_ref_sequence(eb: leaf, s: ref); |
| 377 | |
| 378 | ret = btrfs_del_item(trans, root: tree_root, path); |
| 379 | if (ret) |
| 380 | goto out; |
| 381 | } else { |
| 382 | ret = -ENOENT; |
| 383 | goto out; |
| 384 | } |
| 385 | |
| 386 | if (key.type == BTRFS_ROOT_BACKREF_KEY) { |
| 387 | btrfs_release_path(p: path); |
| 388 | key.objectid = ref_id; |
| 389 | key.type = BTRFS_ROOT_REF_KEY; |
| 390 | key.offset = root_id; |
| 391 | goto again; |
| 392 | } |
| 393 | |
| 394 | out: |
| 395 | btrfs_free_path(p: path); |
| 396 | return ret; |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY |
| 401 | * or BTRFS_ROOT_BACKREF_KEY. |
| 402 | * |
| 403 | * The dirid, sequence, name and name_len refer to the directory entry |
| 404 | * that is referencing the root. |
| 405 | * |
| 406 | * For a forward ref, the root_id is the id of the tree referencing |
| 407 | * the root and ref_id is the id of the subvol or snapshot. |
| 408 | * |
| 409 | * For a back ref the root_id is the id of the subvol or snapshot and |
| 410 | * ref_id is the id of the tree referencing it. |
| 411 | * |
| 412 | * Will return 0, -ENOMEM, or anything from the CoW path |
| 413 | */ |
| 414 | int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, |
| 415 | u64 ref_id, u64 dirid, u64 sequence, |
| 416 | const struct fscrypt_str *name) |
| 417 | { |
| 418 | struct btrfs_root *tree_root = trans->fs_info->tree_root; |
| 419 | struct btrfs_key key; |
| 420 | int ret; |
| 421 | struct btrfs_path *path; |
| 422 | struct btrfs_root_ref *ref; |
| 423 | struct extent_buffer *leaf; |
| 424 | unsigned long ptr; |
| 425 | |
| 426 | path = btrfs_alloc_path(); |
| 427 | if (!path) |
| 428 | return -ENOMEM; |
| 429 | |
| 430 | key.objectid = root_id; |
| 431 | key.type = BTRFS_ROOT_BACKREF_KEY; |
| 432 | key.offset = ref_id; |
| 433 | again: |
| 434 | ret = btrfs_insert_empty_item(trans, root: tree_root, path, key: &key, |
| 435 | data_size: sizeof(*ref) + name->len); |
| 436 | if (ret) { |
| 437 | btrfs_abort_transaction(trans, ret); |
| 438 | btrfs_free_path(p: path); |
| 439 | return ret; |
| 440 | } |
| 441 | |
| 442 | leaf = path->nodes[0]; |
| 443 | ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); |
| 444 | btrfs_set_root_ref_dirid(eb: leaf, s: ref, val: dirid); |
| 445 | btrfs_set_root_ref_sequence(eb: leaf, s: ref, val: sequence); |
| 446 | btrfs_set_root_ref_name_len(eb: leaf, s: ref, val: name->len); |
| 447 | ptr = (unsigned long)(ref + 1); |
| 448 | write_extent_buffer(eb: leaf, src: name->name, start: ptr, len: name->len); |
| 449 | |
| 450 | if (key.type == BTRFS_ROOT_BACKREF_KEY) { |
| 451 | btrfs_release_path(p: path); |
| 452 | key.objectid = ref_id; |
| 453 | key.type = BTRFS_ROOT_REF_KEY; |
| 454 | key.offset = root_id; |
| 455 | goto again; |
| 456 | } |
| 457 | |
| 458 | btrfs_free_path(p: path); |
| 459 | return 0; |
| 460 | } |
| 461 | |
| 462 | /* |
| 463 | * Old btrfs forgets to init root_item->flags and root_item->byte_limit |
| 464 | * for subvolumes. To work around this problem, we steal a bit from |
| 465 | * root_item->inode_item->flags, and use it to indicate if those fields |
| 466 | * have been properly initialized. |
| 467 | */ |
| 468 | void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) |
| 469 | { |
| 470 | u64 inode_flags = btrfs_stack_inode_flags(s: &root_item->inode); |
| 471 | |
| 472 | if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { |
| 473 | inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; |
| 474 | btrfs_set_stack_inode_flags(s: &root_item->inode, val: inode_flags); |
| 475 | btrfs_set_root_flags(s: root_item, val: 0); |
| 476 | btrfs_set_root_limit(s: root_item, val: 0); |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | void btrfs_update_root_times(struct btrfs_trans_handle *trans, |
| 481 | struct btrfs_root *root) |
| 482 | { |
| 483 | struct btrfs_root_item *item = &root->root_item; |
| 484 | struct timespec64 ct; |
| 485 | |
| 486 | ktime_get_real_ts64(tv: &ct); |
| 487 | spin_lock(lock: &root->root_item_lock); |
| 488 | btrfs_set_root_ctransid(s: item, val: trans->transid); |
| 489 | btrfs_set_stack_timespec_sec(s: &item->ctime, val: ct.tv_sec); |
| 490 | btrfs_set_stack_timespec_nsec(s: &item->ctime, val: ct.tv_nsec); |
| 491 | spin_unlock(lock: &root->root_item_lock); |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * Reserve space for subvolume operation. |
| 496 | * |
| 497 | * root: the root of the parent directory |
| 498 | * rsv: block reservation |
| 499 | * items: the number of items that we need do reservation |
| 500 | * use_global_rsv: allow fallback to the global block reservation |
| 501 | * |
| 502 | * This function is used to reserve the space for snapshot/subvolume |
| 503 | * creation and deletion. Those operations are different with the |
| 504 | * common file/directory operations, they change two fs/file trees |
| 505 | * and root tree, the number of items that the qgroup reserves is |
| 506 | * different with the free space reservation. So we can not use |
| 507 | * the space reservation mechanism in start_transaction(). |
| 508 | */ |
| 509 | int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, |
| 510 | struct btrfs_block_rsv *rsv, int items, |
| 511 | bool use_global_rsv) |
| 512 | { |
| 513 | u64 qgroup_num_bytes = 0; |
| 514 | u64 num_bytes; |
| 515 | int ret; |
| 516 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 517 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 518 | |
| 519 | if (btrfs_qgroup_enabled(fs_info)) { |
| 520 | /* One for parent inode, two for dir entries */ |
| 521 | qgroup_num_bytes = 3 * fs_info->nodesize; |
| 522 | ret = btrfs_qgroup_reserve_meta_prealloc(root, |
| 523 | num_bytes: qgroup_num_bytes, enforce: true, |
| 524 | noflush: false); |
| 525 | if (ret) |
| 526 | return ret; |
| 527 | } |
| 528 | |
| 529 | num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items: items); |
| 530 | rsv->space_info = btrfs_find_space_info(info: fs_info, |
| 531 | BTRFS_BLOCK_GROUP_METADATA); |
| 532 | ret = btrfs_block_rsv_add(fs_info, block_rsv: rsv, num_bytes, |
| 533 | flush: BTRFS_RESERVE_FLUSH_ALL); |
| 534 | |
| 535 | if (ret == -ENOSPC && use_global_rsv) |
| 536 | ret = btrfs_block_rsv_migrate(src_rsv: global_rsv, dst_rsv: rsv, num_bytes, update_size: true); |
| 537 | |
| 538 | if (ret && qgroup_num_bytes) |
| 539 | btrfs_qgroup_free_meta_prealloc(root, num_bytes: qgroup_num_bytes); |
| 540 | |
| 541 | if (!ret) { |
| 542 | spin_lock(lock: &rsv->lock); |
| 543 | rsv->qgroup_rsv_reserved += qgroup_num_bytes; |
| 544 | spin_unlock(lock: &rsv->lock); |
| 545 | } |
| 546 | return ret; |
| 547 | } |
| 548 | |