1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 * on-disk ntfs structs
7 */
8
9// clang-format off
10#ifndef _LINUX_NTFS3_NTFS_H
11#define _LINUX_NTFS3_NTFS_H
12
13#include <linux/blkdev.h>
14#include <linux/build_bug.h>
15#include <linux/kernel.h>
16#include <linux/stddef.h>
17#include <linux/string.h>
18#include <linux/types.h>
19
20#include "debug.h"
21
22/* TODO: Check 4K MFT record and 512 bytes cluster. */
23
24/* Check each run for marked clusters. */
25#define NTFS3_CHECK_FREE_CLST
26
27#define NTFS_NAME_LEN 255
28
29/*
30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31 * xfstest generic/041 creates 3003 hardlinks.
32 */
33#define NTFS_LINK_MAX 4000
34
35/*
36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37 * Logical and virtual cluster number if needed, may be
38 * redefined to use 64 bit value.
39 */
40//#define CONFIG_NTFS3_64BIT_CLUSTER
41
42#define NTFS_LZNT_MAX_CLUSTER 4096
43#define NTFS_LZNT_CUNIT 4
44#define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT)
45
46struct GUID {
47 __le32 Data1;
48 __le16 Data2;
49 __le16 Data3;
50 u8 Data4[8];
51};
52
53/*
54 * This struct repeats layout of ATTR_FILE_NAME
55 * at offset 0x40.
56 * It used to store global constants NAME_MFT/NAME_MIRROR...
57 * most constant names are shorter than 10.
58 */
59struct cpu_str {
60 u8 len;
61 u8 unused;
62 u16 name[10];
63};
64
65struct le_str {
66 u8 len;
67 u8 unused;
68 __le16 name[];
69};
70
71static_assert(SECTOR_SHIFT == 9);
72
73#ifdef CONFIG_NTFS3_64BIT_CLUSTER
74typedef u64 CLST;
75static_assert(sizeof(size_t) == 8);
76#else
77typedef u32 CLST;
78#endif
79
80#define SPARSE_LCN64 ((u64)-1)
81#define SPARSE_LCN ((CLST)-1)
82#define RESIDENT_LCN ((CLST)-2)
83#define COMPRESSED_LCN ((CLST)-3)
84
85#define COMPRESSION_UNIT 4
86#define COMPRESS_MAX_CLUSTER 0x1000
87
88enum RECORD_NUM {
89 MFT_REC_MFT = 0,
90 MFT_REC_MIRR = 1,
91 MFT_REC_LOG = 2,
92 MFT_REC_VOL = 3,
93 MFT_REC_ATTR = 4,
94 MFT_REC_ROOT = 5,
95 MFT_REC_BITMAP = 6,
96 MFT_REC_BOOT = 7,
97 MFT_REC_BADCLUST = 8,
98 MFT_REC_SECURE = 9,
99 MFT_REC_UPCASE = 10,
100 MFT_REC_EXTEND = 11,
101 MFT_REC_RESERVED = 12,
102 MFT_REC_FREE = 16,
103 MFT_REC_USER = 24,
104};
105
106enum ATTR_TYPE {
107 ATTR_ZERO = cpu_to_le32(0x00),
108 ATTR_STD = cpu_to_le32(0x10),
109 ATTR_LIST = cpu_to_le32(0x20),
110 ATTR_NAME = cpu_to_le32(0x30),
111 ATTR_ID = cpu_to_le32(0x40),
112 ATTR_SECURE = cpu_to_le32(0x50),
113 ATTR_LABEL = cpu_to_le32(0x60),
114 ATTR_VOL_INFO = cpu_to_le32(0x70),
115 ATTR_DATA = cpu_to_le32(0x80),
116 ATTR_ROOT = cpu_to_le32(0x90),
117 ATTR_ALLOC = cpu_to_le32(0xA0),
118 ATTR_BITMAP = cpu_to_le32(0xB0),
119 ATTR_REPARSE = cpu_to_le32(0xC0),
120 ATTR_EA_INFO = cpu_to_le32(0xD0),
121 ATTR_EA = cpu_to_le32(0xE0),
122 ATTR_PROPERTYSET = cpu_to_le32(0xF0),
123 ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
124 ATTR_END = cpu_to_le32(0xFFFFFFFF)
125};
126
127static_assert(sizeof(enum ATTR_TYPE) == 4);
128
129enum FILE_ATTRIBUTE {
130 FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001),
131 FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002),
132 FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004),
133 FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020),
134 FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040),
135 FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100),
136 FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200),
137 FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400),
138 FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800),
139 FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000),
140 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
141 FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000),
142 FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7),
143 FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000),
144 FILE_ATTRIBUTE_INDEX = cpu_to_le32(0x20000000)
145};
146
147static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
148
149extern const struct cpu_str NAME_MFT;
150extern const struct cpu_str NAME_MIRROR;
151extern const struct cpu_str NAME_LOGFILE;
152extern const struct cpu_str NAME_VOLUME;
153extern const struct cpu_str NAME_ATTRDEF;
154extern const struct cpu_str NAME_ROOT;
155extern const struct cpu_str NAME_BITMAP;
156extern const struct cpu_str NAME_BOOT;
157extern const struct cpu_str NAME_BADCLUS;
158extern const struct cpu_str NAME_QUOTA;
159extern const struct cpu_str NAME_SECURE;
160extern const struct cpu_str NAME_UPCASE;
161extern const struct cpu_str NAME_EXTEND;
162extern const struct cpu_str NAME_OBJID;
163extern const struct cpu_str NAME_REPARSE;
164extern const struct cpu_str NAME_USNJRNL;
165
166extern const __le16 I30_NAME[4];
167extern const __le16 SII_NAME[4];
168extern const __le16 SDH_NAME[4];
169extern const __le16 SO_NAME[2];
170extern const __le16 SQ_NAME[2];
171extern const __le16 SR_NAME[2];
172
173extern const __le16 BAD_NAME[4];
174extern const __le16 SDS_NAME[4];
175extern const __le16 WOF_NAME[17]; /* WofCompressedData */
176
177/* MFT record number structure. */
178struct MFT_REF {
179 __le32 low; // The low part of the number.
180 __le16 high; // The high part of the number.
181 __le16 seq; // The sequence number of MFT record.
182};
183
184static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
185
186static inline CLST ino_get(const struct MFT_REF *ref)
187{
188#ifdef CONFIG_NTFS3_64BIT_CLUSTER
189 return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
190#else
191 return le32_to_cpu(ref->low);
192#endif
193}
194
195struct NTFS_BOOT {
196 u8 jump_code[3]; // 0x00: Jump to boot code.
197 u8 system_id[8]; // 0x03: System ID, equals "NTFS "
198
199 // NOTE: This member is not aligned(!)
200 // bytes_per_sector[0] must be 0.
201 // bytes_per_sector[1] must be multiplied by 256.
202 u8 bytes_per_sector[2]; // 0x0B: Bytes per sector.
203
204 u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
205 u8 unused1[7];
206 u8 media_type; // 0x15: Media type (0xF8 - harddisk)
207 u8 unused2[2];
208 __le16 sct_per_track; // 0x18: number of sectors per track.
209 __le16 heads; // 0x1A: number of heads per cylinder.
210 __le32 hidden_sectors; // 0x1C: number of 'hidden' sectors.
211 u8 unused3[4];
212 u8 bios_drive_num; // 0x24: BIOS drive number =0x80.
213 u8 unused4;
214 u8 signature_ex; // 0x26: Extended BOOT signature =0x80.
215 u8 unused5;
216 __le64 sectors_per_volume;// 0x28: Size of volume in sectors.
217 __le64 mft_clst; // 0x30: First cluster of $MFT
218 __le64 mft2_clst; // 0x38: First cluster of $MFTMirr
219 s8 record_size; // 0x40: Size of MFT record in clusters(sectors).
220 u8 unused6[3];
221 s8 index_size; // 0x44: Size of INDX record in clusters(sectors).
222 u8 unused7[3];
223 __le64 serial_num; // 0x48: Volume serial number
224 __le32 check_sum; // 0x50: Simple additive checksum of all
225 // of the u32's which precede the 'check_sum'.
226
227 u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
228 u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA
229};
230
231static_assert(sizeof(struct NTFS_BOOT) == 0x200);
232
233enum NTFS_SIGNATURE {
234 NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
235 NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
236 NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
237 NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
238 NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
239 NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
240 NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
241 NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
242};
243
244static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
245
246/* MFT Record header structure. */
247struct NTFS_RECORD_HEADER {
248 /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
249 enum NTFS_SIGNATURE sign; // 0x00:
250 __le16 fix_off; // 0x04:
251 __le16 fix_num; // 0x06:
252 __le64 lsn; // 0x08: Log file sequence number,
253};
254
255static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
256
257static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
258{
259 return hdr->sign == NTFS_BAAD_SIGNATURE;
260}
261
262/* Possible bits in struct MFT_REC.flags. */
263enum RECORD_FLAG {
264 RECORD_FLAG_IN_USE = cpu_to_le16(0x0001),
265 RECORD_FLAG_DIR = cpu_to_le16(0x0002),
266 RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004),
267 RECORD_FLAG_INDEX = cpu_to_le16(0x0008),
268};
269
270/* MFT Record structure. */
271struct MFT_REC {
272 struct NTFS_RECORD_HEADER rhdr; // 'FILE'
273
274 __le16 seq; // 0x10: Sequence number for this record.
275 __le16 hard_links; // 0x12: The number of hard links to record.
276 __le16 attr_off; // 0x14: Offset to attributes.
277 __le16 flags; // 0x16: See RECORD_FLAG.
278 __le32 used; // 0x18: The size of used part.
279 __le32 total; // 0x1C: Total record size.
280
281 struct MFT_REF parent_ref; // 0x20: Parent MFT record.
282 __le16 next_attr_id; // 0x28: The next attribute Id.
283
284 __le16 res; // 0x2A: High part of MFT record?
285 __le32 mft_record; // 0x2C: Current MFT record number.
286 __le16 fixups[]; // 0x30:
287};
288
289#define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
290#define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
291/*
292 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
293 * to format new mft records with bigger header (as current ntfs.sys does)
294 *
295 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
296 * to format new mft records with smaller header (as old ntfs.sys did)
297 * Both variants are valid.
298 */
299#define MFTRECORD_FIXUP_OFFSET MFTRECORD_FIXUP_OFFSET_1
300
301static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
302static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
303
304static inline bool is_rec_base(const struct MFT_REC *rec)
305{
306 const struct MFT_REF *r = &rec->parent_ref;
307
308 return !r->low && !r->high && !r->seq;
309}
310
311static inline bool is_mft_rec5(const struct MFT_REC *rec)
312{
313 return le16_to_cpu(rec->rhdr.fix_off) >=
314 offsetof(struct MFT_REC, fixups);
315}
316
317static inline bool is_rec_inuse(const struct MFT_REC *rec)
318{
319 return rec->flags & RECORD_FLAG_IN_USE;
320}
321
322static inline bool clear_rec_inuse(struct MFT_REC *rec)
323{
324 return rec->flags &= ~RECORD_FLAG_IN_USE;
325}
326
327/* Possible values of ATTR_RESIDENT.flags */
328#define RESIDENT_FLAG_INDEXED 0x01
329
330struct ATTR_RESIDENT {
331 __le32 data_size; // 0x10: The size of data.
332 __le16 data_off; // 0x14: Offset to data.
333 u8 flags; // 0x16: Resident flags ( 1 - indexed ).
334 u8 res; // 0x17:
335}; // sizeof() = 0x18
336
337struct ATTR_NONRESIDENT {
338 __le64 svcn; // 0x10: Starting VCN of this segment.
339 __le64 evcn; // 0x18: End VCN of this segment.
340 __le16 run_off; // 0x20: Offset to packed runs.
341 // Unit of Compression size for this stream, expressed
342 // as a log of the cluster size.
343 //
344 // 0 means file is not compressed
345 // 1, 2, 3, and 4 are potentially legal values if the
346 // stream is compressed, however the implementation
347 // may only choose to use 4, or possibly 3.
348 // Note that 4 means cluster size time 16.
349 // If convenient the implementation may wish to accept a
350 // reasonable range of legal values here (1-5?),
351 // even if the implementation only generates
352 // a smaller set of values itself.
353 u8 c_unit; // 0x22:
354 u8 res1[5]; // 0x23:
355 __le64 alloc_size; // 0x28: The allocated size of attribute in bytes.
356 // (multiple of cluster size)
357 __le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size.
358 __le64 valid_size; // 0x38: The size of valid part in bytes <= data_size.
359 __le64 total_size; // 0x40: The sum of the allocated clusters for a file.
360 // (present only for the first segment (0 == vcn)
361 // of compressed attribute)
362
363}; // sizeof()=0x40 or 0x48 (if compressed)
364
365/* Possible values of ATTRIB.flags: */
366#define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001)
367#define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
368#define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000)
369#define ATTR_FLAG_SPARSED cpu_to_le16(0x8000)
370
371struct ATTRIB {
372 enum ATTR_TYPE type; // 0x00: The type of this attribute.
373 __le32 size; // 0x04: The size of this attribute.
374 u8 non_res; // 0x08: Is this attribute non-resident?
375 u8 name_len; // 0x09: This attribute name length.
376 __le16 name_off; // 0x0A: Offset to the attribute name.
377 __le16 flags; // 0x0C: See ATTR_FLAG_XXX.
378 __le16 id; // 0x0E: Unique id (per record).
379
380 union {
381 struct ATTR_RESIDENT res; // 0x10
382 struct ATTR_NONRESIDENT nres; // 0x10
383 };
384};
385
386/* Define attribute sizes. */
387#define SIZEOF_RESIDENT 0x18
388#define SIZEOF_NONRESIDENT_EX 0x48
389#define SIZEOF_NONRESIDENT 0x40
390
391#define SIZEOF_RESIDENT_LE cpu_to_le16(0x18)
392#define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48)
393#define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40)
394
395static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
396{
397 return attr->non_res ? ((attr->flags &
398 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
399 le64_to_cpu(attr->nres.total_size) :
400 le64_to_cpu(attr->nres.alloc_size))
401 : ALIGN(le32_to_cpu(attr->res.data_size), 8);
402}
403
404static inline u64 attr_size(const struct ATTRIB *attr)
405{
406 return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
407 le32_to_cpu(attr->res.data_size);
408}
409
410static inline bool is_attr_encrypted(const struct ATTRIB *attr)
411{
412 return attr->flags & ATTR_FLAG_ENCRYPTED;
413}
414
415static inline bool is_attr_sparsed(const struct ATTRIB *attr)
416{
417 return attr->flags & ATTR_FLAG_SPARSED;
418}
419
420static inline bool is_attr_compressed(const struct ATTRIB *attr)
421{
422 return attr->flags & ATTR_FLAG_COMPRESSED;
423}
424
425static inline bool is_attr_ext(const struct ATTRIB *attr)
426{
427 return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
428}
429
430static inline bool is_attr_indexed(const struct ATTRIB *attr)
431{
432 return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
433}
434
435static inline __le16 const *attr_name(const struct ATTRIB *attr)
436{
437 return Add2Ptr(attr, le16_to_cpu(attr->name_off));
438}
439
440static inline u64 attr_svcn(const struct ATTRIB *attr)
441{
442 return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
443}
444
445static_assert(sizeof(struct ATTRIB) == 0x48);
446static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
447static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
448
449static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
450{
451 u32 asize, rsize;
452 u16 off;
453
454 if (attr->non_res)
455 return NULL;
456
457 asize = le32_to_cpu(attr->size);
458 off = le16_to_cpu(attr->res.data_off);
459
460 if (asize < datasize + off)
461 return NULL;
462
463 rsize = le32_to_cpu(attr->res.data_size);
464 if (rsize < datasize)
465 return NULL;
466
467 return Add2Ptr(attr, off);
468}
469
470static inline void *resident_data(const struct ATTRIB *attr)
471{
472 return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
473}
474
475static inline void *attr_run(const struct ATTRIB *attr)
476{
477 return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
478}
479
480/* Standard information attribute (0x10). */
481struct ATTR_STD_INFO {
482 __le64 cr_time; // 0x00: File creation file.
483 __le64 m_time; // 0x08: File modification time.
484 __le64 c_time; // 0x10: Last time any attribute was modified.
485 __le64 a_time; // 0x18: File last access time.
486 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
487 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
488 __le32 ver_num; // 0x28: Version Number.
489 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
490};
491
492static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
493
494#define SECURITY_ID_INVALID 0x00000000
495#define SECURITY_ID_FIRST 0x00000100
496
497struct ATTR_STD_INFO5 {
498 __le64 cr_time; // 0x00: File creation file.
499 __le64 m_time; // 0x08: File modification time.
500 __le64 c_time; // 0x10: Last time any attribute was modified.
501 __le64 a_time; // 0x18: File last access time.
502 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
503 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
504 __le32 ver_num; // 0x28: Version Number.
505 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
506
507 __le32 owner_id; // 0x30: Owner Id of the user owning the file.
508 __le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS.
509 __le64 quota_charge; // 0x38:
510 __le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct
511 // index into the file $UsnJrnl. If zero, the USN Journal is
512 // disabled.
513};
514
515static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
516
517/* Attribute list entry structure (0x20) */
518struct ATTR_LIST_ENTRY {
519 enum ATTR_TYPE type; // 0x00: The type of attribute.
520 __le16 size; // 0x04: The size of this record.
521 u8 name_len; // 0x06: The length of attribute name.
522 u8 name_off; // 0x07: The offset to attribute name.
523 __le64 vcn; // 0x08: Starting VCN of this attribute.
524 struct MFT_REF ref; // 0x10: MFT record number with attribute.
525 __le16 id; // 0x18: struct ATTRIB ID.
526 __le16 name[]; // 0x1A: To get real name use name_off.
527
528}; // sizeof(0x20)
529
530static inline u32 le_size(u8 name_len)
531{
532 return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
533 name_len * sizeof(short), 8);
534}
535
536/* Returns 0 if 'attr' has the same type and name. */
537static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
538 const struct ATTRIB *attr)
539{
540 return le->type != attr->type || le->name_len != attr->name_len ||
541 (!le->name_len &&
542 memcmp(Add2Ptr(le, le->name_off),
543 Add2Ptr(attr, le16_to_cpu(attr->name_off)),
544 size: le->name_len * sizeof(short)));
545}
546
547static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
548{
549 return Add2Ptr(le, le->name_off);
550}
551
552/* File name types (the field type in struct ATTR_FILE_NAME). */
553#define FILE_NAME_POSIX 0
554#define FILE_NAME_UNICODE 1
555#define FILE_NAME_DOS 2
556#define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
557
558/* Filename attribute structure (0x30). */
559struct NTFS_DUP_INFO {
560 __le64 cr_time; // 0x00: File creation file.
561 __le64 m_time; // 0x08: File modification time.
562 __le64 c_time; // 0x10: Last time any attribute was modified.
563 __le64 a_time; // 0x18: File last access time.
564 __le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size.
565 __le64 data_size; // 0x28: Data attribute size <= Dataalloc_size.
566 enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more.
567 __le16 ea_size; // 0x34: Packed EAs.
568 __le16 reparse; // 0x36: Used by Reparse.
569
570}; // 0x38
571
572struct ATTR_FILE_NAME {
573 struct MFT_REF home; // 0x00: MFT record for directory.
574 struct NTFS_DUP_INFO dup;// 0x08:
575 u8 name_len; // 0x40: File name length in words.
576 u8 type; // 0x41: File name type.
577 __le16 name[]; // 0x42: File name.
578};
579
580static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
581static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
582#define SIZEOF_ATTRIBUTE_FILENAME 0x44
583#define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
584
585static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
586{
587 return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
588}
589
590static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
591{
592 /* Don't return struct_size(fname, name, fname->name_len); */
593 return offsetof(struct ATTR_FILE_NAME, name) +
594 fname->name_len * sizeof(short);
595}
596
597static inline u8 paired_name(u8 type)
598{
599 if (type == FILE_NAME_UNICODE)
600 return FILE_NAME_DOS;
601 if (type == FILE_NAME_DOS)
602 return FILE_NAME_UNICODE;
603 return FILE_NAME_POSIX;
604}
605
606/* Index entry defines ( the field flags in NtfsDirEntry ). */
607#define NTFS_IE_HAS_SUBNODES cpu_to_le16(1)
608#define NTFS_IE_LAST cpu_to_le16(2)
609
610/* Directory entry structure. */
611struct NTFS_DE {
612 union {
613 struct MFT_REF ref; // 0x00: MFT record number with this file.
614 struct {
615 __le16 data_off; // 0x00:
616 __le16 data_size; // 0x02:
617 __le32 res; // 0x04: Must be 0.
618 } view;
619 };
620 __le16 size; // 0x08: The size of this entry.
621 __le16 key_size; // 0x0A: The size of File name length in bytes + 0x42.
622 __le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX.
623 __le16 res; // 0x0E:
624
625 // Here any indexed attribute can be placed.
626 // One of them is:
627 // struct ATTR_FILE_NAME AttrFileName;
628 //
629
630 // The last 8 bytes of this structure contains
631 // the VBN of subnode.
632 // !!! Note !!!
633 // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
634 // __le64 vbn;
635};
636
637static_assert(sizeof(struct NTFS_DE) == 0x10);
638
639static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
640{
641 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
642
643 *v = vcn;
644}
645
646static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
647{
648 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
649
650 *v = cpu_to_le64(vcn);
651}
652
653static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
654{
655 return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
656}
657
658static inline CLST de_get_vbn(const struct NTFS_DE *e)
659{
660 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
661
662 return le64_to_cpu(*v);
663}
664
665static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
666{
667 return Add2Ptr(e, le16_to_cpu(e->size));
668}
669
670static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
671{
672 return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
673 Add2Ptr(e, sizeof(struct NTFS_DE)) :
674 NULL;
675}
676
677static inline bool de_is_last(const struct NTFS_DE *e)
678{
679 return e->flags & NTFS_IE_LAST;
680}
681
682static inline bool de_has_vcn(const struct NTFS_DE *e)
683{
684 return e->flags & NTFS_IE_HAS_SUBNODES;
685}
686
687static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
688{
689 return (e->flags & NTFS_IE_HAS_SUBNODES) &&
690 (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
691 sizeof(__le64)));
692}
693
694#define MAX_BYTES_PER_NAME_ENTRY \
695 ALIGN(sizeof(struct NTFS_DE) + \
696 offsetof(struct ATTR_FILE_NAME, name) + \
697 NTFS_NAME_LEN * sizeof(short), 8)
698
699struct INDEX_HDR {
700 __le32 de_off; // 0x00: The offset from the start of this structure
701 // to the first NTFS_DE.
702 __le32 used; // 0x04: The size of this structure plus all
703 // entries (quad-word aligned).
704 __le32 total; // 0x08: The allocated size of for this structure plus all entries.
705 u8 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory.
706 u8 res[3];
707
708 //
709 // de_off + used <= total
710 //
711};
712
713static_assert(sizeof(struct INDEX_HDR) == 0x10);
714
715static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
716{
717 u32 de_off = le32_to_cpu(hdr->de_off);
718 u32 used = le32_to_cpu(hdr->used);
719 struct NTFS_DE *e;
720 u16 esize;
721
722 if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
723 return NULL;
724
725 e = Add2Ptr(hdr, de_off);
726 esize = le16_to_cpu(e->size);
727 if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
728 return NULL;
729
730 return e;
731}
732
733static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
734 const struct NTFS_DE *e)
735{
736 size_t off = PtrOffset(hdr, e);
737 u32 used = le32_to_cpu(hdr->used);
738 u16 esize;
739
740 if (off >= used)
741 return NULL;
742
743 esize = le16_to_cpu(e->size);
744
745 if (esize < sizeof(struct NTFS_DE) ||
746 off + esize + sizeof(struct NTFS_DE) > used)
747 return NULL;
748
749 return Add2Ptr(e, esize);
750}
751
752static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
753{
754 return hdr->flags & 1;
755}
756
757struct INDEX_BUFFER {
758 struct NTFS_RECORD_HEADER rhdr; // 'INDX'
759 __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
760 struct INDEX_HDR ihdr; // 0x18:
761};
762
763static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
764
765static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
766{
767 const struct NTFS_DE *first = hdr_first_de(hdr: &ib->ihdr);
768
769 return !first || de_is_last(e: first);
770}
771
772static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
773{
774 return !(ib->ihdr.flags & 1);
775}
776
777/* Index root structure ( 0x90 ). */
778enum COLLATION_RULE {
779 NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0),
780 // $I30
781 NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01),
782 // $SII of $Secure and $Q of Quota
783 NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10),
784 // $O of Quota
785 NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11),
786 // $SDH of $Secure
787 NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
788 // $O of ObjId and "$R" for Reparse
789 NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13)
790};
791
792static_assert(sizeof(enum COLLATION_RULE) == 4);
793
794//
795struct INDEX_ROOT {
796 enum ATTR_TYPE type; // 0x00: The type of attribute to index on.
797 enum COLLATION_RULE rule; // 0x04: The rule.
798 __le32 index_block_size;// 0x08: The size of index record.
799 u8 index_block_clst; // 0x0C: The number of clusters or sectors per index.
800 u8 res[3];
801 struct INDEX_HDR ihdr; // 0x10:
802};
803
804static_assert(sizeof(struct INDEX_ROOT) == 0x20);
805static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
806
807#define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001)
808#define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
809
810struct VOLUME_INFO {
811 __le64 res1; // 0x00
812 u8 major_ver; // 0x08: NTFS major version number (before .)
813 u8 minor_ver; // 0x09: NTFS minor version number (after .)
814 __le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX
815
816}; // sizeof=0xC
817
818#define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
819
820#define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short))
821#define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002)
822#define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004)
823#define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010)
824#define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020)
825#define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040)
826#define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080)
827
828/* $AttrDef file entry. */
829struct ATTR_DEF_ENTRY {
830 __le16 name[0x40]; // 0x00: Attr name.
831 enum ATTR_TYPE type; // 0x80: struct ATTRIB type.
832 __le32 res; // 0x84:
833 enum COLLATION_RULE rule; // 0x88:
834 __le32 flags; // 0x8C: NTFS_ATTR_XXX (see above).
835 __le64 min_sz; // 0x90: Minimum attribute data size.
836 __le64 max_sz; // 0x98: Maximum attribute data size.
837};
838
839static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
840
841/* Object ID (0x40) */
842struct OBJECT_ID {
843 struct GUID ObjId; // 0x00: Unique Id assigned to file.
844
845 // Birth Volume Id is the Object Id of the Volume on.
846 // which the Object Id was allocated. It never changes.
847 struct GUID BirthVolumeId; //0x10:
848
849 // Birth Object Id is the first Object Id that was
850 // ever assigned to this MFT Record. I.e. If the Object Id
851 // is changed for some reason, this field will reflect the
852 // original value of the Object Id.
853 struct GUID BirthObjectId; // 0x20:
854
855 // Domain Id is currently unused but it is intended to be
856 // used in a network environment where the local machine is
857 // part of a Windows 2000 Domain. This may be used in a Windows
858 // 2000 Advanced Server managed domain.
859 struct GUID DomainId; // 0x30:
860};
861
862static_assert(sizeof(struct OBJECT_ID) == 0x40);
863
864/* O Directory entry structure ( rule = 0x13 ) */
865struct NTFS_DE_O {
866 struct NTFS_DE de;
867 struct GUID ObjId; // 0x10: Unique Id assigned to file.
868 struct MFT_REF ref; // 0x20: MFT record number with this file.
869
870 // Birth Volume Id is the Object Id of the Volume on
871 // which the Object Id was allocated. It never changes.
872 struct GUID BirthVolumeId; // 0x28:
873
874 // Birth Object Id is the first Object Id that was
875 // ever assigned to this MFT Record. I.e. If the Object Id
876 // is changed for some reason, this field will reflect the
877 // original value of the Object Id.
878 // This field is valid if data_size == 0x48.
879 struct GUID BirthObjectId; // 0x38:
880
881 // Domain Id is currently unused but it is intended
882 // to be used in a network environment where the local
883 // machine is part of a Windows 2000 Domain. This may be
884 // used in a Windows 2000 Advanced Server managed domain.
885 struct GUID BirthDomainId; // 0x48:
886};
887
888static_assert(sizeof(struct NTFS_DE_O) == 0x58);
889
890/* Q Directory entry structure ( rule = 0x11 ) */
891struct NTFS_DE_Q {
892 struct NTFS_DE de;
893 __le32 owner_id; // 0x10: Unique Id assigned to file
894
895 /* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
896 __le32 Version; // 0x14: 0x02
897 __le32 Flags; // 0x18: Quota flags, see above
898 __le64 BytesUsed; // 0x1C:
899 __le64 ChangeTime; // 0x24:
900 __le64 WarningLimit; // 0x28:
901 __le64 HardLimit; // 0x34:
902 __le64 ExceededTime; // 0x3C:
903
904 // SID is placed here
905}__packed; // sizeof() = 0x44
906
907static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
908
909#define SecurityDescriptorsBlockSize 0x40000 // 256K
910#define SecurityDescriptorMaxSize 0x20000 // 128K
911#define Log2OfSecurityDescriptorsBlockSize 18
912
913struct SECURITY_KEY {
914 __le32 hash; // Hash value for descriptor
915 __le32 sec_id; // Security Id (guaranteed unique)
916};
917
918/* Security descriptors (the content of $Secure::SDS data stream) */
919struct SECURITY_HDR {
920 struct SECURITY_KEY key; // 0x00: Security Key.
921 __le64 off; // 0x08: Offset of this entry in the file.
922 __le32 size; // 0x10: Size of this entry, 8 byte aligned.
923 /*
924 * Security descriptor itself is placed here.
925 * Total size is 16 byte aligned.
926 */
927} __packed;
928
929static_assert(sizeof(struct SECURITY_HDR) == 0x14);
930
931/* SII Directory entry structure */
932struct NTFS_DE_SII {
933 struct NTFS_DE de;
934 __le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize
935 struct SECURITY_HDR sec_hdr; // 0x14:
936} __packed;
937
938static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
939static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
940
941/* SDH Directory entry structure */
942struct NTFS_DE_SDH {
943 struct NTFS_DE de;
944 struct SECURITY_KEY key; // 0x10: Key
945 struct SECURITY_HDR sec_hdr; // 0x18: Data
946 __le16 magic[2]; // 0x2C: 0x00490049 "I I"
947};
948
949#define SIZEOF_SDH_DIRENTRY 0x30
950
951struct REPARSE_KEY {
952 __le32 ReparseTag; // 0x00: Reparse Tag
953 struct MFT_REF ref; // 0x04: MFT record number with this file
954}; // sizeof() = 0x0C
955
956static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
957#define SIZEOF_REPARSE_KEY 0x0C
958
959/* Reparse Directory entry structure */
960struct NTFS_DE_R {
961 struct NTFS_DE de;
962 struct REPARSE_KEY key; // 0x10: Reparse Key.
963 u32 zero; // 0x1c:
964}; // sizeof() = 0x20
965
966static_assert(sizeof(struct NTFS_DE_R) == 0x20);
967
968/* CompressReparseBuffer.WofVersion */
969#define WOF_CURRENT_VERSION cpu_to_le32(1)
970/* CompressReparseBuffer.WofProvider */
971#define WOF_PROVIDER_WIM cpu_to_le32(1)
972/* CompressReparseBuffer.WofProvider */
973#define WOF_PROVIDER_SYSTEM cpu_to_le32(2)
974/* CompressReparseBuffer.ProviderVer */
975#define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1)
976
977#define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k
978#define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k
979#define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k
980#define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k
981
982/*
983 * ATTR_REPARSE (0xC0)
984 *
985 * The reparse struct GUID structure is used by all 3rd party layered drivers to
986 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
987 * cannot be GUID_NULL.
988 * The constraints on reparse tags are defined below.
989 * Microsoft tags can also be used with this format of the reparse point buffer.
990 */
991struct REPARSE_POINT {
992 __le32 ReparseTag; // 0x00:
993 __le16 ReparseDataLength;// 0x04:
994 __le16 Reserved;
995
996 struct GUID Guid; // 0x08:
997
998 //
999 // Here GenericReparseBuffer is placed
1000 //
1001};
1002
1003static_assert(sizeof(struct REPARSE_POINT) == 0x18);
1004
1005/* Maximum allowed size of the reparse data. */
1006#define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024)
1007
1008/*
1009 * The value of the following constant needs to satisfy the following
1010 * conditions:
1011 * (1) Be at least as large as the largest of the reserved tags.
1012 * (2) Be strictly smaller than all the tags in use.
1013 */
1014#define IO_REPARSE_TAG_RESERVED_RANGE 1
1015
1016/*
1017 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1018 *
1019 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1020 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1021 * +-+-+-+-+-----------------------+-------------------------------+
1022 * |M|R|N|R| Reserved bits | Reparse Tag Value |
1023 * +-+-+-+-+-----------------------+-------------------------------+
1024 *
1025 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1026 * All ISVs must use a tag with a 0 in this position.
1027 * Note: If a Microsoft tag is used by non-Microsoft software, the
1028 * behavior is not defined.
1029 *
1030 * R is reserved. Must be zero for non-Microsoft tags.
1031 *
1032 * N is name surrogate. When set to 1, the file represents another named
1033 * entity in the system.
1034 *
1035 * The M and N bits are OR-able.
1036 * The following macros check for the M and N bit values:
1037 */
1038
1039/*
1040 * Macro to determine whether a reparse point tag corresponds to a tag
1041 * owned by Microsoft.
1042 */
1043#define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT))
1044
1045/* Macro to determine whether a reparse point tag is a name surrogate. */
1046#define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1047
1048/*
1049 * The following constant represents the bits that are valid to use in
1050 * reparse tags.
1051 */
1052#define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF
1053
1054/*
1055 * Macro to determine whether a reparse tag is a valid tag.
1056 */
1057#define IsReparseTagValid(_tag) \
1058 (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \
1059 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1060
1061/* Microsoft tags for reparse points. */
1062
1063enum IO_REPARSE_TAG {
1064 IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0),
1065 IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000),
1066 IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000),
1067 IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003),
1068 IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C),
1069 IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004),
1070 IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007),
1071 IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013),
1072 IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017),
1073
1074 /*
1075 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1076 * May be published in the future.
1077 */
1078
1079 /* Microsoft reparse tag reserved for DFS */
1080 IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A),
1081
1082 /* Microsoft reparse tag reserved for the file system filter manager. */
1083 IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B),
1084
1085 /* Non-Microsoft tags for reparse points */
1086
1087 /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1088 IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1089
1090 /* Tag allocated to ARKIVIO. */
1091 IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C),
1092
1093 /* Tag allocated to SOLUTIONSOFT. */
1094 IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D),
1095
1096 /* Tag allocated to COMMVAULT. */
1097 IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E),
1098
1099 /* OneDrive?? */
1100 IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A),
1101 IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A),
1102 IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A),
1103 IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A),
1104 IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A),
1105 IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A),
1106 IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A),
1107 IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A),
1108 IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A),
1109 IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A),
1110 IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A),
1111 IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A),
1112 IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A),
1113 IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A),
1114 IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A),
1115 IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A),
1116
1117};
1118
1119#define SYMLINK_FLAG_RELATIVE 1
1120
1121/* Microsoft reparse buffer. (see DDK for details) */
1122struct REPARSE_DATA_BUFFER {
1123 __le32 ReparseTag; // 0x00:
1124 __le16 ReparseDataLength; // 0x04:
1125 __le16 Reserved;
1126
1127 union {
1128 /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1129 struct {
1130 __le16 SubstituteNameOffset; // 0x08
1131 __le16 SubstituteNameLength; // 0x0A
1132 __le16 PrintNameOffset; // 0x0C
1133 __le16 PrintNameLength; // 0x0E
1134 __le16 PathBuffer[]; // 0x10
1135 } MountPointReparseBuffer;
1136
1137 /*
1138 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1139 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1140 */
1141 struct {
1142 __le16 SubstituteNameOffset; // 0x08
1143 __le16 SubstituteNameLength; // 0x0A
1144 __le16 PrintNameOffset; // 0x0C
1145 __le16 PrintNameLength; // 0x0E
1146 // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1147 __le32 Flags; // 0x10
1148 __le16 PathBuffer[]; // 0x14
1149 } SymbolicLinkReparseBuffer;
1150
1151 /* If ReparseTag == 0x80000017U */
1152 struct {
1153 __le32 WofVersion; // 0x08 == 1
1154 /*
1155 * 1 - WIM backing provider ("WIMBoot"),
1156 * 2 - System compressed file provider
1157 */
1158 __le32 WofProvider; // 0x0C:
1159 __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1160 __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1161 } CompressReparseBuffer;
1162
1163 struct {
1164 u8 DataBuffer[1]; // 0x08:
1165 } GenericReparseBuffer;
1166 };
1167};
1168
1169/* ATTR_EA_INFO (0xD0) */
1170
1171#define FILE_NEED_EA 0x80 // See ntifs.h
1172/*
1173 * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1174 * interpreted without understanding the associated extended attributes.
1175 */
1176struct EA_INFO {
1177 __le16 size_pack; // 0x00: Size of buffer to hold in packed form.
1178 __le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set.
1179 __le32 size; // 0x04: Size of buffer to hold in unpacked form.
1180};
1181
1182static_assert(sizeof(struct EA_INFO) == 8);
1183
1184/* ATTR_EA (0xE0) */
1185struct EA_FULL {
1186 __le32 size; // 0x00: (not in packed)
1187 u8 flags; // 0x04:
1188 u8 name_len; // 0x05:
1189 __le16 elength; // 0x06:
1190 u8 name[]; // 0x08:
1191};
1192
1193static_assert(offsetof(struct EA_FULL, name) == 8);
1194
1195#define ACL_REVISION 2
1196#define ACL_REVISION_DS 4
1197
1198#define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1199
1200struct SECURITY_DESCRIPTOR_RELATIVE {
1201 u8 Revision;
1202 u8 Sbz1;
1203 __le16 Control;
1204 __le32 Owner;
1205 __le32 Group;
1206 __le32 Sacl;
1207 __le32 Dacl;
1208};
1209static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1210
1211struct ACE_HEADER {
1212 u8 AceType;
1213 u8 AceFlags;
1214 __le16 AceSize;
1215};
1216static_assert(sizeof(struct ACE_HEADER) == 4);
1217
1218struct ACL {
1219 u8 AclRevision;
1220 u8 Sbz1;
1221 __le16 AclSize;
1222 __le16 AceCount;
1223 __le16 Sbz2;
1224};
1225static_assert(sizeof(struct ACL) == 8);
1226
1227struct SID {
1228 u8 Revision;
1229 u8 SubAuthorityCount;
1230 u8 IdentifierAuthority[6];
1231 __le32 SubAuthority[];
1232};
1233static_assert(offsetof(struct SID, SubAuthority) == 8);
1234
1235#endif /* _LINUX_NTFS3_NTFS_H */
1236// clang-format on
1237

source code of linux/fs/ntfs3/ntfs.h