1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * super.c
4 *
5 * PURPOSE
6 * Super block routines for the OSTA-UDF(tm) filesystem.
7 *
8 * DESCRIPTION
9 * OSTA-UDF(tm) = Optical Storage Technology Association
10 * Universal Disk Format.
11 *
12 * This code is based on version 2.00 of the UDF specification,
13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 * http://www.osta.org/
15 * https://www.ecma.ch/
16 * https://www.iso.org/
17 *
18 * COPYRIGHT
19 * (C) 1998 Dave Boynton
20 * (C) 1998-2004 Ben Fennema
21 * (C) 2000 Stelias Computing Inc
22 *
23 * HISTORY
24 *
25 * 09/24/98 dgb changed to allow compiling outside of kernel, and
26 * added some debugging.
27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
28 * 10/16/98 attempting some multi-session support
29 * 10/17/98 added freespace count for "df"
30 * 11/11/98 gr added novrs option
31 * 11/26/98 dgb added fileset,anchor mount options
32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
33 * vol descs. rewrote option handling based on isofs
34 * 12/20/98 find the free space bitmap (if it exists)
35 */
36
37#include "udfdecl.h"
38
39#include <linux/blkdev.h>
40#include <linux/slab.h>
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/stat.h>
44#include <linux/cdrom.h>
45#include <linux/nls.h>
46#include <linux/vfs.h>
47#include <linux/vmalloc.h>
48#include <linux/errno.h>
49#include <linux/seq_file.h>
50#include <linux/bitmap.h>
51#include <linux/crc-itu-t.h>
52#include <linux/log2.h>
53#include <asm/byteorder.h>
54#include <linux/iversion.h>
55#include <linux/fs_context.h>
56#include <linux/fs_parser.h>
57
58#include "udf_sb.h"
59#include "udf_i.h"
60
61#include <linux/init.h>
62#include <linux/uaccess.h>
63
64enum {
65 VDS_POS_PRIMARY_VOL_DESC,
66 VDS_POS_UNALLOC_SPACE_DESC,
67 VDS_POS_LOGICAL_VOL_DESC,
68 VDS_POS_IMP_USE_VOL_DESC,
69 VDS_POS_LENGTH
70};
71
72#define VSD_FIRST_SECTOR_OFFSET 32768
73#define VSD_MAX_SECTOR_OFFSET 0x800000
74
75/*
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
80 */
81#define UDF_MAX_TD_NESTING 64
82#define UDF_MAX_LVID_NESTING 1000
83
84enum { UDF_MAX_LINKS = 0xffff };
85/*
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
90 */
91#define UDF_MAX_FILESIZE (1ULL << 42)
92
93/* These are the "meat" - everything else is stuffing */
94static int udf_fill_super(struct super_block *sb, struct fs_context *fc);
95static void udf_put_super(struct super_block *);
96static int udf_sync_fs(struct super_block *, int);
97static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98static void udf_open_lvid(struct super_block *);
99static void udf_close_lvid(struct super_block *);
100static unsigned int udf_count_free(struct super_block *);
101static int udf_statfs(struct dentry *, struct kstatfs *);
102static int udf_show_options(struct seq_file *, struct dentry *);
103static int udf_init_fs_context(struct fs_context *fc);
104static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param);
105static int udf_reconfigure(struct fs_context *fc);
106static void udf_free_fc(struct fs_context *fc);
107static const struct fs_parameter_spec udf_param_spec[];
108
109struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110{
111 struct logicalVolIntegrityDesc *lvid;
112 unsigned int partnum;
113 unsigned int offset;
114
115 if (!UDF_SB(sb)->s_lvid_bh)
116 return NULL;
117 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118 partnum = le32_to_cpu(lvid->numOfPartitions);
119 /* The offset is to skip freeSpaceTable and sizeTable arrays */
120 offset = partnum * 2 * sizeof(uint32_t);
121 return (struct logicalVolIntegrityDescImpUse *)
122 (((uint8_t *)(lvid + 1)) + offset);
123}
124
125/* UDF filesystem type */
126static int udf_get_tree(struct fs_context *fc)
127{
128 return get_tree_bdev(fc, fill_super: udf_fill_super);
129}
130
131static const struct fs_context_operations udf_context_ops = {
132 .parse_param = udf_parse_param,
133 .get_tree = udf_get_tree,
134 .reconfigure = udf_reconfigure,
135 .free = udf_free_fc,
136};
137
138static struct file_system_type udf_fstype = {
139 .owner = THIS_MODULE,
140 .name = "udf",
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143 .init_fs_context = udf_init_fs_context,
144 .parameters = udf_param_spec,
145};
146MODULE_ALIAS_FS("udf");
147
148static struct kmem_cache *udf_inode_cachep;
149
150static struct inode *udf_alloc_inode(struct super_block *sb)
151{
152 struct udf_inode_info *ei;
153 ei = alloc_inode_sb(sb, cache: udf_inode_cachep, GFP_KERNEL);
154 if (!ei)
155 return NULL;
156
157 ei->i_unique = 0;
158 ei->i_lenExtents = 0;
159 ei->i_lenStreams = 0;
160 ei->i_next_alloc_block = 0;
161 ei->i_next_alloc_goal = 0;
162 ei->i_strat4096 = 0;
163 ei->i_streamdir = 0;
164 ei->i_hidden = 0;
165 init_rwsem(&ei->i_data_sem);
166 ei->cached_extent.lstart = -1;
167 spin_lock_init(&ei->i_extent_cache_lock);
168 inode_set_iversion(inode: &ei->vfs_inode, val: 1);
169
170 return &ei->vfs_inode;
171}
172
173static void udf_free_in_core_inode(struct inode *inode)
174{
175 kmem_cache_free(s: udf_inode_cachep, objp: UDF_I(inode));
176}
177
178static void init_once(void *foo)
179{
180 struct udf_inode_info *ei = foo;
181
182 ei->i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184}
185
186static int __init init_inodecache(void)
187{
188 udf_inode_cachep = kmem_cache_create(name: "udf_inode_cache",
189 size: sizeof(struct udf_inode_info),
190 align: 0, flags: (SLAB_RECLAIM_ACCOUNT |
191 SLAB_ACCOUNT),
192 ctor: init_once);
193 if (!udf_inode_cachep)
194 return -ENOMEM;
195 return 0;
196}
197
198static void destroy_inodecache(void)
199{
200 /*
201 * Make sure all delayed rcu free inodes are flushed before we
202 * destroy cache.
203 */
204 rcu_barrier();
205 kmem_cache_destroy(s: udf_inode_cachep);
206}
207
208/* Superblock operations */
209static const struct super_operations udf_sb_ops = {
210 .alloc_inode = udf_alloc_inode,
211 .free_inode = udf_free_in_core_inode,
212 .write_inode = udf_write_inode,
213 .evict_inode = udf_evict_inode,
214 .put_super = udf_put_super,
215 .sync_fs = udf_sync_fs,
216 .statfs = udf_statfs,
217 .show_options = udf_show_options,
218};
219
220struct udf_options {
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232};
233
234/*
235 * UDF has historically preserved prior mount options across
236 * a remount, so copy those here if remounting, otherwise set
237 * initial mount defaults.
238 */
239static void udf_init_options(struct fs_context *fc, struct udf_options *uopt)
240{
241 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
242 struct super_block *sb = fc->root->d_sb;
243 struct udf_sb_info *sbi = UDF_SB(sb);
244
245 uopt->flags = sbi->s_flags;
246 uopt->uid = sbi->s_uid;
247 uopt->gid = sbi->s_gid;
248 uopt->umask = sbi->s_umask;
249 uopt->fmode = sbi->s_fmode;
250 uopt->dmode = sbi->s_dmode;
251 uopt->nls_map = NULL;
252 } else {
253 uopt->flags = (1 << UDF_FLAG_USE_AD_IN_ICB) |
254 (1 << UDF_FLAG_STRICT);
255 /*
256 * By default we'll use overflow[ug]id when UDF
257 * inode [ug]id == -1
258 */
259 uopt->uid = make_kuid(current_user_ns(), uid: overflowuid);
260 uopt->gid = make_kgid(current_user_ns(), gid: overflowgid);
261 uopt->umask = 0;
262 uopt->fmode = UDF_INVALID_MODE;
263 uopt->dmode = UDF_INVALID_MODE;
264 uopt->nls_map = NULL;
265 uopt->session = 0xFFFFFFFF;
266 }
267}
268
269static int udf_init_fs_context(struct fs_context *fc)
270{
271 struct udf_options *uopt;
272
273 uopt = kzalloc(size: sizeof(*uopt), GFP_KERNEL);
274 if (!uopt)
275 return -ENOMEM;
276
277 udf_init_options(fc, uopt);
278
279 fc->fs_private = uopt;
280 fc->ops = &udf_context_ops;
281
282 return 0;
283}
284
285static void udf_free_fc(struct fs_context *fc)
286{
287 struct udf_options *uopt = fc->fs_private;
288
289 unload_nls(uopt->nls_map);
290 kfree(objp: fc->fs_private);
291}
292
293static int __init init_udf_fs(void)
294{
295 int err;
296
297 err = init_inodecache();
298 if (err)
299 goto out1;
300 err = register_filesystem(&udf_fstype);
301 if (err)
302 goto out;
303
304 return 0;
305
306out:
307 destroy_inodecache();
308
309out1:
310 return err;
311}
312
313static void __exit exit_udf_fs(void)
314{
315 unregister_filesystem(&udf_fstype);
316 destroy_inodecache();
317}
318
319static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
320{
321 struct udf_sb_info *sbi = UDF_SB(sb);
322
323 sbi->s_partmaps = kcalloc(n: count, size: sizeof(*sbi->s_partmaps), GFP_KERNEL);
324 if (!sbi->s_partmaps) {
325 sbi->s_partitions = 0;
326 return -ENOMEM;
327 }
328
329 sbi->s_partitions = count;
330 return 0;
331}
332
333static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
334{
335 int i;
336 int nr_groups = bitmap->s_nr_groups;
337
338 for (i = 0; i < nr_groups; i++)
339 brelse(bh: bitmap->s_block_bitmap[i]);
340
341 kvfree(addr: bitmap);
342}
343
344static void udf_free_partition(struct udf_part_map *map)
345{
346 int i;
347 struct udf_meta_data *mdata;
348
349 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
350 iput(map->s_uspace.s_table);
351 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
352 udf_sb_free_bitmap(bitmap: map->s_uspace.s_bitmap);
353 if (map->s_partition_type == UDF_SPARABLE_MAP15)
354 for (i = 0; i < 4; i++)
355 brelse(bh: map->s_type_specific.s_sparing.s_spar_map[i]);
356 else if (map->s_partition_type == UDF_METADATA_MAP25) {
357 mdata = &map->s_type_specific.s_metadata;
358 iput(mdata->s_metadata_fe);
359 mdata->s_metadata_fe = NULL;
360
361 iput(mdata->s_mirror_fe);
362 mdata->s_mirror_fe = NULL;
363
364 iput(mdata->s_bitmap_fe);
365 mdata->s_bitmap_fe = NULL;
366 }
367}
368
369static void udf_sb_free_partitions(struct super_block *sb)
370{
371 struct udf_sb_info *sbi = UDF_SB(sb);
372 int i;
373
374 if (!sbi->s_partmaps)
375 return;
376 for (i = 0; i < sbi->s_partitions; i++)
377 udf_free_partition(map: &sbi->s_partmaps[i]);
378 kfree(objp: sbi->s_partmaps);
379 sbi->s_partmaps = NULL;
380}
381
382static int udf_show_options(struct seq_file *seq, struct dentry *root)
383{
384 struct super_block *sb = root->d_sb;
385 struct udf_sb_info *sbi = UDF_SB(sb);
386
387 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
388 seq_puts(m: seq, s: ",nostrict");
389 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
390 seq_printf(m: seq, fmt: ",bs=%lu", sb->s_blocksize);
391 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
392 seq_puts(m: seq, s: ",unhide");
393 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
394 seq_puts(m: seq, s: ",undelete");
395 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
396 seq_puts(m: seq, s: ",noadinicb");
397 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
398 seq_puts(m: seq, s: ",shortad");
399 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
400 seq_puts(m: seq, s: ",uid=forget");
401 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
402 seq_puts(m: seq, s: ",gid=forget");
403 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
404 seq_printf(m: seq, fmt: ",uid=%u", from_kuid(to: &init_user_ns, uid: sbi->s_uid));
405 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
406 seq_printf(m: seq, fmt: ",gid=%u", from_kgid(to: &init_user_ns, gid: sbi->s_gid));
407 if (sbi->s_umask != 0)
408 seq_printf(m: seq, fmt: ",umask=%ho", sbi->s_umask);
409 if (sbi->s_fmode != UDF_INVALID_MODE)
410 seq_printf(m: seq, fmt: ",mode=%ho", sbi->s_fmode);
411 if (sbi->s_dmode != UDF_INVALID_MODE)
412 seq_printf(m: seq, fmt: ",dmode=%ho", sbi->s_dmode);
413 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
414 seq_printf(m: seq, fmt: ",session=%d", sbi->s_session);
415 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
416 seq_printf(m: seq, fmt: ",lastblock=%u", sbi->s_last_block);
417 if (sbi->s_anchor != 0)
418 seq_printf(m: seq, fmt: ",anchor=%u", sbi->s_anchor);
419 if (sbi->s_nls_map)
420 seq_printf(m: seq, fmt: ",iocharset=%s", sbi->s_nls_map->charset);
421 else
422 seq_puts(m: seq, s: ",iocharset=utf8");
423
424 return 0;
425}
426
427/*
428 * udf_parse_param
429 *
430 * PURPOSE
431 * Parse mount options.
432 *
433 * DESCRIPTION
434 * The following mount options are supported:
435 *
436 * gid= Set the default group.
437 * umask= Set the default umask.
438 * mode= Set the default file permissions.
439 * dmode= Set the default directory permissions.
440 * uid= Set the default user.
441 * bs= Set the block size.
442 * unhide Show otherwise hidden files.
443 * undelete Show deleted files in lists.
444 * adinicb Embed data in the inode (default)
445 * noadinicb Don't embed data in the inode
446 * shortad Use short ad's
447 * longad Use long ad's (default)
448 * nostrict Unset strict conformance
449 * iocharset= Set the NLS character set
450 *
451 * The remaining are for debugging and disaster recovery:
452 *
453 * novrs Skip volume sequence recognition
454 *
455 * The following expect a offset from 0.
456 *
457 * session= Set the CDROM session (default= last session)
458 * anchor= Override standard anchor location. (default= 256)
459 * volume= Override the VolumeDesc location. (unused)
460 * partition= Override the PartitionDesc location. (unused)
461 * lastblock= Set the last block of the filesystem/
462 *
463 * The following expect a offset from the partition root.
464 *
465 * fileset= Override the fileset block location. (unused)
466 * rootdir= Override the root directory location. (unused)
467 * WARNING: overriding the rootdir to a non-directory may
468 * yield highly unpredictable results.
469 *
470 * PRE-CONDITIONS
471 * fc fs_context with pointer to mount options variable.
472 * param Pointer to fs_parameter being parsed.
473 *
474 * POST-CONDITIONS
475 * <return> 0 Mount options parsed okay.
476 * <return> errno Error parsing mount options.
477 *
478 * HISTORY
479 * July 1, 1997 - Andrew E. Mileski
480 * Written, tested, and released.
481 */
482
483enum {
484 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
485 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
486 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
487 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
488 Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_fmode, Opt_dmode
489};
490
491static const struct fs_parameter_spec udf_param_spec[] = {
492 fsparam_flag ("novrs", Opt_novrs),
493 fsparam_flag ("nostrict", Opt_nostrict),
494 fsparam_u32 ("bs", Opt_bs),
495 fsparam_flag ("unhide", Opt_unhide),
496 fsparam_flag ("undelete", Opt_undelete),
497 fsparam_flag_no ("adinicb", Opt_adinicb),
498 fsparam_flag ("shortad", Opt_shortad),
499 fsparam_flag ("longad", Opt_longad),
500 fsparam_string ("gid", Opt_gid),
501 fsparam_string ("uid", Opt_uid),
502 fsparam_u32 ("umask", Opt_umask),
503 fsparam_u32 ("session", Opt_session),
504 fsparam_u32 ("lastblock", Opt_lastblock),
505 fsparam_u32 ("anchor", Opt_anchor),
506 fsparam_u32 ("volume", Opt_volume),
507 fsparam_u32 ("partition", Opt_partition),
508 fsparam_u32 ("fileset", Opt_fileset),
509 fsparam_u32 ("rootdir", Opt_rootdir),
510 fsparam_flag ("utf8", Opt_utf8),
511 fsparam_string ("iocharset", Opt_iocharset),
512 fsparam_u32 ("mode", Opt_fmode),
513 fsparam_u32 ("dmode", Opt_dmode),
514 {}
515 };
516
517static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param)
518{
519 unsigned int uv;
520 unsigned int n;
521 struct udf_options *uopt = fc->fs_private;
522 struct fs_parse_result result;
523 int token;
524 bool remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE);
525
526 token = fs_parse(fc, desc: udf_param_spec, param, result: &result);
527 if (token < 0)
528 return token;
529
530 switch (token) {
531 case Opt_novrs:
532 uopt->flags |= (1 << UDF_FLAG_NOVRS);
533 break;
534 case Opt_bs:
535 n = result.uint_32;
536 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
537 return -EINVAL;
538 uopt->blocksize = n;
539 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
540 break;
541 case Opt_unhide:
542 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
543 break;
544 case Opt_undelete:
545 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
546 break;
547 case Opt_adinicb:
548 if (result.negated)
549 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
550 else
551 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
552 break;
553 case Opt_shortad:
554 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
555 break;
556 case Opt_longad:
557 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
558 break;
559 case Opt_gid:
560 if (kstrtoint(s: param->string, base: 10, res: &uv) == 0) {
561 kgid_t gid = make_kgid(current_user_ns(), gid: uv);
562 if (!gid_valid(gid))
563 return -EINVAL;
564 uopt->gid = gid;
565 uopt->flags |= (1 << UDF_FLAG_GID_SET);
566 } else if (!strcmp(param->string, "forget")) {
567 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
568 } else if (!strcmp(param->string, "ignore")) {
569 /* this option is superseded by gid=<number> */
570 ;
571 } else {
572 return -EINVAL;
573 }
574 break;
575 case Opt_uid:
576 if (kstrtoint(s: param->string, base: 10, res: &uv) == 0) {
577 kuid_t uid = make_kuid(current_user_ns(), uid: uv);
578 if (!uid_valid(uid))
579 return -EINVAL;
580 uopt->uid = uid;
581 uopt->flags |= (1 << UDF_FLAG_UID_SET);
582 } else if (!strcmp(param->string, "forget")) {
583 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
584 } else if (!strcmp(param->string, "ignore")) {
585 /* this option is superseded by uid=<number> */
586 ;
587 } else {
588 return -EINVAL;
589 }
590 break;
591 case Opt_umask:
592 uopt->umask = result.uint_32;
593 break;
594 case Opt_nostrict:
595 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
596 break;
597 case Opt_session:
598 uopt->session = result.uint_32;
599 if (!remount)
600 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
601 break;
602 case Opt_lastblock:
603 uopt->lastblock = result.uint_32;
604 if (!remount)
605 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
606 break;
607 case Opt_anchor:
608 uopt->anchor = result.uint_32;
609 break;
610 case Opt_volume:
611 case Opt_partition:
612 case Opt_fileset:
613 case Opt_rootdir:
614 /* Ignored (never implemented properly) */
615 break;
616 case Opt_utf8:
617 if (!remount) {
618 unload_nls(uopt->nls_map);
619 uopt->nls_map = NULL;
620 }
621 break;
622 case Opt_iocharset:
623 if (!remount) {
624 unload_nls(uopt->nls_map);
625 uopt->nls_map = NULL;
626 }
627 /* When nls_map is not loaded then UTF-8 is used */
628 if (!remount && strcmp(param->string, "utf8") != 0) {
629 uopt->nls_map = load_nls(charset: param->string);
630 if (!uopt->nls_map) {
631 errorf(fc, "iocharset %s not found",
632 param->string);
633 return -EINVAL;;
634 }
635 }
636 break;
637 case Opt_fmode:
638 uopt->fmode = result.uint_32 & 0777;
639 break;
640 case Opt_dmode:
641 uopt->dmode = result.uint_32 & 0777;
642 break;
643 default:
644 return -EINVAL;
645 }
646 return 0;
647}
648
649static int udf_reconfigure(struct fs_context *fc)
650{
651 struct udf_options *uopt = fc->fs_private;
652 struct super_block *sb = fc->root->d_sb;
653 struct udf_sb_info *sbi = UDF_SB(sb);
654 int readonly = fc->sb_flags & SB_RDONLY;
655 int error = 0;
656
657 if (!readonly && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
658 return -EACCES;
659
660 sync_filesystem(sb);
661
662 write_lock(&sbi->s_cred_lock);
663 sbi->s_flags = uopt->flags;
664 sbi->s_uid = uopt->uid;
665 sbi->s_gid = uopt->gid;
666 sbi->s_umask = uopt->umask;
667 sbi->s_fmode = uopt->fmode;
668 sbi->s_dmode = uopt->dmode;
669 write_unlock(&sbi->s_cred_lock);
670
671 if (readonly == sb_rdonly(sb))
672 goto out_unlock;
673
674 if (readonly)
675 udf_close_lvid(sb);
676 else
677 udf_open_lvid(sb);
678
679out_unlock:
680 return error;
681}
682
683/*
684 * Check VSD descriptor. Returns -1 in case we are at the end of volume
685 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
686 * we found one of NSR descriptors we are looking for.
687 */
688static int identify_vsd(const struct volStructDesc *vsd)
689{
690 int ret = 0;
691
692 if (!memcmp(p: vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
693 switch (vsd->structType) {
694 case 0:
695 udf_debug("ISO9660 Boot Record found\n");
696 break;
697 case 1:
698 udf_debug("ISO9660 Primary Volume Descriptor found\n");
699 break;
700 case 2:
701 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
702 break;
703 case 3:
704 udf_debug("ISO9660 Volume Partition Descriptor found\n");
705 break;
706 case 255:
707 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
708 break;
709 default:
710 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
711 break;
712 }
713 } else if (!memcmp(p: vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
714 ; /* ret = 0 */
715 else if (!memcmp(p: vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
716 ret = 1;
717 else if (!memcmp(p: vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
718 ret = 1;
719 else if (!memcmp(p: vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
720 ; /* ret = 0 */
721 else if (!memcmp(p: vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
722 ; /* ret = 0 */
723 else {
724 /* TEA01 or invalid id : end of volume recognition area */
725 ret = -1;
726 }
727
728 return ret;
729}
730
731/*
732 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
733 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
734 * @return 1 if NSR02 or NSR03 found,
735 * -1 if first sector read error, 0 otherwise
736 */
737static int udf_check_vsd(struct super_block *sb)
738{
739 struct volStructDesc *vsd = NULL;
740 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
741 int sectorsize;
742 struct buffer_head *bh = NULL;
743 int nsr = 0;
744 struct udf_sb_info *sbi;
745 loff_t session_offset;
746
747 sbi = UDF_SB(sb);
748 if (sb->s_blocksize < sizeof(struct volStructDesc))
749 sectorsize = sizeof(struct volStructDesc);
750 else
751 sectorsize = sb->s_blocksize;
752
753 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
754 sector += session_offset;
755
756 udf_debug("Starting at sector %u (%lu byte sectors)\n",
757 (unsigned int)(sector >> sb->s_blocksize_bits),
758 sb->s_blocksize);
759 /* Process the sequence (if applicable). The hard limit on the sector
760 * offset is arbitrary, hopefully large enough so that all valid UDF
761 * filesystems will be recognised. There is no mention of an upper
762 * bound to the size of the volume recognition area in the standard.
763 * The limit will prevent the code to read all the sectors of a
764 * specially crafted image (like a bluray disc full of CD001 sectors),
765 * potentially causing minutes or even hours of uninterruptible I/O
766 * activity. This actually happened with uninitialised SSD partitions
767 * (all 0xFF) before the check for the limit and all valid IDs were
768 * added */
769 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
770 /* Read a block */
771 bh = sb_bread(sb, block: sector >> sb->s_blocksize_bits);
772 if (!bh)
773 break;
774
775 vsd = (struct volStructDesc *)(bh->b_data +
776 (sector & (sb->s_blocksize - 1)));
777 nsr = identify_vsd(vsd);
778 /* Found NSR or end? */
779 if (nsr) {
780 brelse(bh);
781 break;
782 }
783 /*
784 * Special handling for improperly formatted VRS (e.g., Win10)
785 * where components are separated by 2048 bytes even though
786 * sectors are 4K
787 */
788 if (sb->s_blocksize == 4096) {
789 nsr = identify_vsd(vsd: vsd + 1);
790 /* Ignore unknown IDs... */
791 if (nsr < 0)
792 nsr = 0;
793 }
794 brelse(bh);
795 }
796
797 if (nsr > 0)
798 return 1;
799 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
800 return -1;
801 else
802 return 0;
803}
804
805static int udf_verify_domain_identifier(struct super_block *sb,
806 struct regid *ident, char *dname)
807{
808 struct domainIdentSuffix *suffix;
809
810 if (memcmp(p: ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
811 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
812 goto force_ro;
813 }
814 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
815 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
816 dname);
817 goto force_ro;
818 }
819 suffix = (struct domainIdentSuffix *)ident->identSuffix;
820 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
821 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
822 if (!sb_rdonly(sb)) {
823 udf_warn(sb, "Descriptor for %s marked write protected."
824 " Forcing read only mount.\n", dname);
825 }
826 goto force_ro;
827 }
828 return 0;
829
830force_ro:
831 if (!sb_rdonly(sb))
832 return -EACCES;
833 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
834 return 0;
835}
836
837static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
838 struct kernel_lb_addr *root)
839{
840 int ret;
841
842 ret = udf_verify_domain_identifier(sb, ident: &fset->domainIdent, dname: "file set");
843 if (ret < 0)
844 return ret;
845
846 *root = lelb_to_cpu(in: fset->rootDirectoryICB.extLocation);
847 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
848
849 udf_debug("Rootdir at block=%u, partition=%u\n",
850 root->logicalBlockNum, root->partitionReferenceNum);
851 return 0;
852}
853
854static int udf_find_fileset(struct super_block *sb,
855 struct kernel_lb_addr *fileset,
856 struct kernel_lb_addr *root)
857{
858 struct buffer_head *bh;
859 uint16_t ident;
860 int ret;
861
862 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
863 fileset->partitionReferenceNum == 0xFFFF)
864 return -EINVAL;
865
866 bh = udf_read_ptagged(sb, fileset, 0, &ident);
867 if (!bh)
868 return -EIO;
869 if (ident != TAG_IDENT_FSD) {
870 brelse(bh);
871 return -EINVAL;
872 }
873
874 udf_debug("Fileset at block=%u, partition=%u\n",
875 fileset->logicalBlockNum, fileset->partitionReferenceNum);
876
877 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
878 ret = udf_load_fileset(sb, fset: (struct fileSetDesc *)bh->b_data, root);
879 brelse(bh);
880 return ret;
881}
882
883/*
884 * Load primary Volume Descriptor Sequence
885 *
886 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
887 * should be tried.
888 */
889static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
890{
891 struct primaryVolDesc *pvoldesc;
892 uint8_t *outstr;
893 struct buffer_head *bh;
894 uint16_t ident;
895 int ret;
896 struct timestamp *ts;
897
898 outstr = kmalloc(size: 128, GFP_KERNEL);
899 if (!outstr)
900 return -ENOMEM;
901
902 bh = udf_read_tagged(sb, block, block, &ident);
903 if (!bh) {
904 ret = -EAGAIN;
905 goto out2;
906 }
907
908 if (ident != TAG_IDENT_PVD) {
909 ret = -EIO;
910 goto out_bh;
911 }
912
913 pvoldesc = (struct primaryVolDesc *)bh->b_data;
914
915 udf_disk_stamp_to_time(dest: &UDF_SB(sb)->s_record_time,
916 src: pvoldesc->recordingDateAndTime);
917 ts = &pvoldesc->recordingDateAndTime;
918 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
919 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
920 ts->minute, le16_to_cpu(ts->typeAndTimezone));
921
922 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
923 if (ret < 0) {
924 strcpy(p: UDF_SB(sb)->s_volume_ident, q: "InvalidName");
925 pr_warn("incorrect volume identification, setting to "
926 "'InvalidName'\n");
927 } else {
928 strncpy(p: UDF_SB(sb)->s_volume_ident, q: outstr, size: ret);
929 }
930 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
931
932 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
933 if (ret < 0) {
934 ret = 0;
935 goto out_bh;
936 }
937 outstr[ret] = 0;
938 udf_debug("volSetIdent[] = '%s'\n", outstr);
939
940 ret = 0;
941out_bh:
942 brelse(bh);
943out2:
944 kfree(objp: outstr);
945 return ret;
946}
947
948struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
949 u32 meta_file_loc, u32 partition_ref)
950{
951 struct kernel_lb_addr addr;
952 struct inode *metadata_fe;
953
954 addr.logicalBlockNum = meta_file_loc;
955 addr.partitionReferenceNum = partition_ref;
956
957 metadata_fe = udf_iget_special(sb, ino: &addr);
958
959 if (IS_ERR(ptr: metadata_fe)) {
960 udf_warn(sb, "metadata inode efe not found\n");
961 return metadata_fe;
962 }
963 if (UDF_I(inode: metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
964 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
965 iput(metadata_fe);
966 return ERR_PTR(error: -EIO);
967 }
968
969 return metadata_fe;
970}
971
972static int udf_load_metadata_files(struct super_block *sb, int partition,
973 int type1_index)
974{
975 struct udf_sb_info *sbi = UDF_SB(sb);
976 struct udf_part_map *map;
977 struct udf_meta_data *mdata;
978 struct kernel_lb_addr addr;
979 struct inode *fe;
980
981 map = &sbi->s_partmaps[partition];
982 mdata = &map->s_type_specific.s_metadata;
983 mdata->s_phys_partition_ref = type1_index;
984
985 /* metadata address */
986 udf_debug("Metadata file location: block = %u part = %u\n",
987 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
988
989 fe = udf_find_metadata_inode_efe(sb, meta_file_loc: mdata->s_meta_file_loc,
990 partition_ref: mdata->s_phys_partition_ref);
991 if (IS_ERR(ptr: fe)) {
992 /* mirror file entry */
993 udf_debug("Mirror metadata file location: block = %u part = %u\n",
994 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
995
996 fe = udf_find_metadata_inode_efe(sb, meta_file_loc: mdata->s_mirror_file_loc,
997 partition_ref: mdata->s_phys_partition_ref);
998
999 if (IS_ERR(ptr: fe)) {
1000 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1001 return PTR_ERR(ptr: fe);
1002 }
1003 mdata->s_mirror_fe = fe;
1004 } else
1005 mdata->s_metadata_fe = fe;
1006
1007
1008 /*
1009 * bitmap file entry
1010 * Note:
1011 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1012 */
1013 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1014 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1015 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1016
1017 udf_debug("Bitmap file location: block = %u part = %u\n",
1018 addr.logicalBlockNum, addr.partitionReferenceNum);
1019
1020 fe = udf_iget_special(sb, ino: &addr);
1021 if (IS_ERR(ptr: fe)) {
1022 if (sb_rdonly(sb))
1023 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1024 else {
1025 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1026 return PTR_ERR(ptr: fe);
1027 }
1028 } else
1029 mdata->s_bitmap_fe = fe;
1030 }
1031
1032 udf_debug("udf_load_metadata_files Ok\n");
1033 return 0;
1034}
1035
1036int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1037{
1038 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1039 return DIV_ROUND_UP(map->s_partition_len +
1040 (sizeof(struct spaceBitmapDesc) << 3),
1041 sb->s_blocksize * 8);
1042}
1043
1044static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1045{
1046 struct udf_bitmap *bitmap;
1047 int nr_groups = udf_compute_nr_groups(sb, partition: index);
1048
1049 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1050 GFP_KERNEL);
1051 if (!bitmap)
1052 return NULL;
1053
1054 bitmap->s_nr_groups = nr_groups;
1055 return bitmap;
1056}
1057
1058static int check_partition_desc(struct super_block *sb,
1059 struct partitionDesc *p,
1060 struct udf_part_map *map)
1061{
1062 bool umap, utable, fmap, ftable;
1063 struct partitionHeaderDesc *phd;
1064
1065 switch (le32_to_cpu(p->accessType)) {
1066 case PD_ACCESS_TYPE_READ_ONLY:
1067 case PD_ACCESS_TYPE_WRITE_ONCE:
1068 case PD_ACCESS_TYPE_NONE:
1069 goto force_ro;
1070 }
1071
1072 /* No Partition Header Descriptor? */
1073 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1074 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1075 goto force_ro;
1076
1077 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1078 utable = phd->unallocSpaceTable.extLength;
1079 umap = phd->unallocSpaceBitmap.extLength;
1080 ftable = phd->freedSpaceTable.extLength;
1081 fmap = phd->freedSpaceBitmap.extLength;
1082
1083 /* No allocation info? */
1084 if (!utable && !umap && !ftable && !fmap)
1085 goto force_ro;
1086
1087 /* We don't support blocks that require erasing before overwrite */
1088 if (ftable || fmap)
1089 goto force_ro;
1090 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1091 if (utable && umap)
1092 goto force_ro;
1093
1094 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1095 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1096 map->s_partition_type == UDF_METADATA_MAP25)
1097 goto force_ro;
1098
1099 return 0;
1100force_ro:
1101 if (!sb_rdonly(sb))
1102 return -EACCES;
1103 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1104 return 0;
1105}
1106
1107static int udf_fill_partdesc_info(struct super_block *sb,
1108 struct partitionDesc *p, int p_index)
1109{
1110 struct udf_part_map *map;
1111 struct udf_sb_info *sbi = UDF_SB(sb);
1112 struct partitionHeaderDesc *phd;
1113 int err;
1114
1115 map = &sbi->s_partmaps[p_index];
1116
1117 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1118 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1119
1120 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1121 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1122 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1123 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1124 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1125 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1126 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1127 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1128
1129 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1130 p_index, map->s_partition_type,
1131 map->s_partition_root, map->s_partition_len);
1132
1133 err = check_partition_desc(sb, p, map);
1134 if (err)
1135 return err;
1136
1137 /*
1138 * Skip loading allocation info it we cannot ever write to the fs.
1139 * This is a correctness thing as we may have decided to force ro mount
1140 * to avoid allocation info we don't support.
1141 */
1142 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1143 return 0;
1144
1145 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1146 if (phd->unallocSpaceTable.extLength) {
1147 struct kernel_lb_addr loc = {
1148 .logicalBlockNum = le32_to_cpu(
1149 phd->unallocSpaceTable.extPosition),
1150 .partitionReferenceNum = p_index,
1151 };
1152 struct inode *inode;
1153
1154 inode = udf_iget_special(sb, ino: &loc);
1155 if (IS_ERR(ptr: inode)) {
1156 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1157 p_index);
1158 return PTR_ERR(ptr: inode);
1159 }
1160 map->s_uspace.s_table = inode;
1161 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1162 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1163 p_index, map->s_uspace.s_table->i_ino);
1164 }
1165
1166 if (phd->unallocSpaceBitmap.extLength) {
1167 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, index: p_index);
1168 if (!bitmap)
1169 return -ENOMEM;
1170 map->s_uspace.s_bitmap = bitmap;
1171 bitmap->s_extPosition = le32_to_cpu(
1172 phd->unallocSpaceBitmap.extPosition);
1173 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1174 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1175 p_index, bitmap->s_extPosition);
1176 }
1177
1178 return 0;
1179}
1180
1181static void udf_find_vat_block(struct super_block *sb, int p_index,
1182 int type1_index, sector_t start_block)
1183{
1184 struct udf_sb_info *sbi = UDF_SB(sb);
1185 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1186 sector_t vat_block;
1187 struct kernel_lb_addr ino;
1188 struct inode *inode;
1189
1190 /*
1191 * VAT file entry is in the last recorded block. Some broken disks have
1192 * it a few blocks before so try a bit harder...
1193 */
1194 ino.partitionReferenceNum = type1_index;
1195 for (vat_block = start_block;
1196 vat_block >= map->s_partition_root &&
1197 vat_block >= start_block - 3; vat_block--) {
1198 ino.logicalBlockNum = vat_block - map->s_partition_root;
1199 inode = udf_iget_special(sb, ino: &ino);
1200 if (!IS_ERR(ptr: inode)) {
1201 sbi->s_vat_inode = inode;
1202 break;
1203 }
1204 }
1205}
1206
1207static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1208{
1209 struct udf_sb_info *sbi = UDF_SB(sb);
1210 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1211 struct buffer_head *bh = NULL;
1212 struct udf_inode_info *vati;
1213 struct virtualAllocationTable20 *vat20;
1214 sector_t blocks = sb_bdev_nr_blocks(sb);
1215
1216 udf_find_vat_block(sb, p_index, type1_index, start_block: sbi->s_last_block);
1217 if (!sbi->s_vat_inode &&
1218 sbi->s_last_block != blocks - 1) {
1219 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1220 (unsigned long)sbi->s_last_block,
1221 (unsigned long)blocks - 1);
1222 udf_find_vat_block(sb, p_index, type1_index, start_block: blocks - 1);
1223 }
1224 if (!sbi->s_vat_inode)
1225 return -EIO;
1226
1227 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1228 map->s_type_specific.s_virtual.s_start_offset = 0;
1229 map->s_type_specific.s_virtual.s_num_entries =
1230 (sbi->s_vat_inode->i_size - 36) >> 2;
1231 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1232 vati = UDF_I(inode: sbi->s_vat_inode);
1233 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1234 int err = 0;
1235
1236 bh = udf_bread(inode: sbi->s_vat_inode, block: 0, create: 0, err: &err);
1237 if (!bh) {
1238 if (!err)
1239 err = -EFSCORRUPTED;
1240 return err;
1241 }
1242 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1243 } else {
1244 vat20 = (struct virtualAllocationTable20 *)
1245 vati->i_data;
1246 }
1247
1248 map->s_type_specific.s_virtual.s_start_offset =
1249 le16_to_cpu(vat20->lengthHeader);
1250 map->s_type_specific.s_virtual.s_num_entries =
1251 (sbi->s_vat_inode->i_size -
1252 map->s_type_specific.s_virtual.
1253 s_start_offset) >> 2;
1254 brelse(bh);
1255 }
1256 return 0;
1257}
1258
1259/*
1260 * Load partition descriptor block
1261 *
1262 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1263 * sequence.
1264 */
1265static int udf_load_partdesc(struct super_block *sb, sector_t block)
1266{
1267 struct buffer_head *bh;
1268 struct partitionDesc *p;
1269 struct udf_part_map *map;
1270 struct udf_sb_info *sbi = UDF_SB(sb);
1271 int i, type1_idx;
1272 uint16_t partitionNumber;
1273 uint16_t ident;
1274 int ret;
1275
1276 bh = udf_read_tagged(sb, block, block, &ident);
1277 if (!bh)
1278 return -EAGAIN;
1279 if (ident != TAG_IDENT_PD) {
1280 ret = 0;
1281 goto out_bh;
1282 }
1283
1284 p = (struct partitionDesc *)bh->b_data;
1285 partitionNumber = le16_to_cpu(p->partitionNumber);
1286
1287 /* First scan for TYPE1 and SPARABLE partitions */
1288 for (i = 0; i < sbi->s_partitions; i++) {
1289 map = &sbi->s_partmaps[i];
1290 udf_debug("Searching map: (%u == %u)\n",
1291 map->s_partition_num, partitionNumber);
1292 if (map->s_partition_num == partitionNumber &&
1293 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1294 map->s_partition_type == UDF_SPARABLE_MAP15))
1295 break;
1296 }
1297
1298 if (i >= sbi->s_partitions) {
1299 udf_debug("Partition (%u) not found in partition map\n",
1300 partitionNumber);
1301 ret = 0;
1302 goto out_bh;
1303 }
1304
1305 ret = udf_fill_partdesc_info(sb, p, p_index: i);
1306 if (ret < 0)
1307 goto out_bh;
1308
1309 /*
1310 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1311 * PHYSICAL partitions are already set up
1312 */
1313 type1_idx = i;
1314 map = NULL; /* supress 'maybe used uninitialized' warning */
1315 for (i = 0; i < sbi->s_partitions; i++) {
1316 map = &sbi->s_partmaps[i];
1317
1318 if (map->s_partition_num == partitionNumber &&
1319 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1320 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1321 map->s_partition_type == UDF_METADATA_MAP25))
1322 break;
1323 }
1324
1325 if (i >= sbi->s_partitions) {
1326 ret = 0;
1327 goto out_bh;
1328 }
1329
1330 ret = udf_fill_partdesc_info(sb, p, p_index: i);
1331 if (ret < 0)
1332 goto out_bh;
1333
1334 if (map->s_partition_type == UDF_METADATA_MAP25) {
1335 ret = udf_load_metadata_files(sb, partition: i, type1_index: type1_idx);
1336 if (ret < 0) {
1337 udf_err(sb, "error loading MetaData partition map %d\n",
1338 i);
1339 goto out_bh;
1340 }
1341 } else {
1342 /*
1343 * If we have a partition with virtual map, we don't handle
1344 * writing to it (we overwrite blocks instead of relocating
1345 * them).
1346 */
1347 if (!sb_rdonly(sb)) {
1348 ret = -EACCES;
1349 goto out_bh;
1350 }
1351 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1352 ret = udf_load_vat(sb, p_index: i, type1_index: type1_idx);
1353 if (ret < 0)
1354 goto out_bh;
1355 }
1356 ret = 0;
1357out_bh:
1358 /* In case loading failed, we handle cleanup in udf_fill_super */
1359 brelse(bh);
1360 return ret;
1361}
1362
1363static int udf_load_sparable_map(struct super_block *sb,
1364 struct udf_part_map *map,
1365 struct sparablePartitionMap *spm)
1366{
1367 uint32_t loc;
1368 uint16_t ident;
1369 struct sparingTable *st;
1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371 int i;
1372 struct buffer_head *bh;
1373
1374 map->s_partition_type = UDF_SPARABLE_MAP15;
1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376 if (!is_power_of_2(n: sdata->s_packet_len)) {
1377 udf_err(sb, "error loading logical volume descriptor: "
1378 "Invalid packet length %u\n",
1379 (unsigned)sdata->s_packet_len);
1380 return -EIO;
1381 }
1382 if (spm->numSparingTables > 4) {
1383 udf_err(sb, "error loading logical volume descriptor: "
1384 "Too many sparing tables (%d)\n",
1385 (int)spm->numSparingTables);
1386 return -EIO;
1387 }
1388 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1389 udf_err(sb, "error loading logical volume descriptor: "
1390 "Too big sparing table size (%u)\n",
1391 le32_to_cpu(spm->sizeSparingTable));
1392 return -EIO;
1393 }
1394
1395 for (i = 0; i < spm->numSparingTables; i++) {
1396 loc = le32_to_cpu(spm->locSparingTable[i]);
1397 bh = udf_read_tagged(sb, loc, loc, &ident);
1398 if (!bh)
1399 continue;
1400
1401 st = (struct sparingTable *)bh->b_data;
1402 if (ident != 0 ||
1403 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1404 strlen(UDF_ID_SPARING)) ||
1405 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1406 sb->s_blocksize) {
1407 brelse(bh);
1408 continue;
1409 }
1410
1411 sdata->s_spar_map[i] = bh;
1412 }
1413 map->s_partition_func = udf_get_pblock_spar15;
1414 return 0;
1415}
1416
1417static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1418 struct kernel_lb_addr *fileset)
1419{
1420 struct logicalVolDesc *lvd;
1421 int i, offset;
1422 uint8_t type;
1423 struct udf_sb_info *sbi = UDF_SB(sb);
1424 struct genericPartitionMap *gpm;
1425 uint16_t ident;
1426 struct buffer_head *bh;
1427 unsigned int table_len;
1428 int ret;
1429
1430 bh = udf_read_tagged(sb, block, block, &ident);
1431 if (!bh)
1432 return -EAGAIN;
1433 BUG_ON(ident != TAG_IDENT_LVD);
1434 lvd = (struct logicalVolDesc *)bh->b_data;
1435 table_len = le32_to_cpu(lvd->mapTableLength);
1436 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1437 udf_err(sb, "error loading logical volume descriptor: "
1438 "Partition table too long (%u > %lu)\n", table_len,
1439 sb->s_blocksize - sizeof(*lvd));
1440 ret = -EIO;
1441 goto out_bh;
1442 }
1443
1444 ret = udf_verify_domain_identifier(sb, ident: &lvd->domainIdent,
1445 dname: "logical volume");
1446 if (ret)
1447 goto out_bh;
1448 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1449 if (ret)
1450 goto out_bh;
1451
1452 for (i = 0, offset = 0;
1453 i < sbi->s_partitions && offset < table_len;
1454 i++, offset += gpm->partitionMapLength) {
1455 struct udf_part_map *map = &sbi->s_partmaps[i];
1456 gpm = (struct genericPartitionMap *)
1457 &(lvd->partitionMaps[offset]);
1458 type = gpm->partitionMapType;
1459 if (type == 1) {
1460 struct genericPartitionMap1 *gpm1 =
1461 (struct genericPartitionMap1 *)gpm;
1462 map->s_partition_type = UDF_TYPE1_MAP15;
1463 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1464 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1465 map->s_partition_func = NULL;
1466 } else if (type == 2) {
1467 struct udfPartitionMap2 *upm2 =
1468 (struct udfPartitionMap2 *)gpm;
1469 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1470 strlen(UDF_ID_VIRTUAL))) {
1471 u16 suf =
1472 le16_to_cpu(((__le16 *)upm2->partIdent.
1473 identSuffix)[0]);
1474 if (suf < 0x0200) {
1475 map->s_partition_type =
1476 UDF_VIRTUAL_MAP15;
1477 map->s_partition_func =
1478 udf_get_pblock_virt15;
1479 } else {
1480 map->s_partition_type =
1481 UDF_VIRTUAL_MAP20;
1482 map->s_partition_func =
1483 udf_get_pblock_virt20;
1484 }
1485 } else if (!strncmp(upm2->partIdent.ident,
1486 UDF_ID_SPARABLE,
1487 strlen(UDF_ID_SPARABLE))) {
1488 ret = udf_load_sparable_map(sb, map,
1489 spm: (struct sparablePartitionMap *)gpm);
1490 if (ret < 0)
1491 goto out_bh;
1492 } else if (!strncmp(upm2->partIdent.ident,
1493 UDF_ID_METADATA,
1494 strlen(UDF_ID_METADATA))) {
1495 struct udf_meta_data *mdata =
1496 &map->s_type_specific.s_metadata;
1497 struct metadataPartitionMap *mdm =
1498 (struct metadataPartitionMap *)
1499 &(lvd->partitionMaps[offset]);
1500 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1501 i, type, UDF_ID_METADATA);
1502
1503 map->s_partition_type = UDF_METADATA_MAP25;
1504 map->s_partition_func = udf_get_pblock_meta25;
1505
1506 mdata->s_meta_file_loc =
1507 le32_to_cpu(mdm->metadataFileLoc);
1508 mdata->s_mirror_file_loc =
1509 le32_to_cpu(mdm->metadataMirrorFileLoc);
1510 mdata->s_bitmap_file_loc =
1511 le32_to_cpu(mdm->metadataBitmapFileLoc);
1512 mdata->s_alloc_unit_size =
1513 le32_to_cpu(mdm->allocUnitSize);
1514 mdata->s_align_unit_size =
1515 le16_to_cpu(mdm->alignUnitSize);
1516 if (mdm->flags & 0x01)
1517 mdata->s_flags |= MF_DUPLICATE_MD;
1518
1519 udf_debug("Metadata Ident suffix=0x%x\n",
1520 le16_to_cpu(*(__le16 *)
1521 mdm->partIdent.identSuffix));
1522 udf_debug("Metadata part num=%u\n",
1523 le16_to_cpu(mdm->partitionNum));
1524 udf_debug("Metadata part alloc unit size=%u\n",
1525 le32_to_cpu(mdm->allocUnitSize));
1526 udf_debug("Metadata file loc=%u\n",
1527 le32_to_cpu(mdm->metadataFileLoc));
1528 udf_debug("Mirror file loc=%u\n",
1529 le32_to_cpu(mdm->metadataMirrorFileLoc));
1530 udf_debug("Bitmap file loc=%u\n",
1531 le32_to_cpu(mdm->metadataBitmapFileLoc));
1532 udf_debug("Flags: %d %u\n",
1533 mdata->s_flags, mdm->flags);
1534 } else {
1535 udf_debug("Unknown ident: %s\n",
1536 upm2->partIdent.ident);
1537 continue;
1538 }
1539 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1540 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1541 }
1542 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1543 i, map->s_partition_num, type, map->s_volumeseqnum);
1544 }
1545
1546 if (fileset) {
1547 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1548
1549 *fileset = lelb_to_cpu(in: la->extLocation);
1550 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1551 fileset->logicalBlockNum,
1552 fileset->partitionReferenceNum);
1553 }
1554 if (lvd->integritySeqExt.extLength)
1555 udf_load_logicalvolint(sb, leea_to_cpu(in: lvd->integritySeqExt));
1556 ret = 0;
1557
1558 if (!sbi->s_lvid_bh) {
1559 /* We can't generate unique IDs without a valid LVID */
1560 if (sb_rdonly(sb)) {
1561 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1562 } else {
1563 udf_warn(sb, "Damaged or missing LVID, forcing "
1564 "readonly mount\n");
1565 ret = -EACCES;
1566 }
1567 }
1568out_bh:
1569 brelse(bh);
1570 return ret;
1571}
1572
1573static bool udf_lvid_valid(struct super_block *sb,
1574 struct logicalVolIntegrityDesc *lvid)
1575{
1576 u32 parts, impuselen;
1577
1578 parts = le32_to_cpu(lvid->numOfPartitions);
1579 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1580 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1581 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1582 2 * parts * sizeof(u32) > sb->s_blocksize)
1583 return false;
1584 return true;
1585}
1586
1587/*
1588 * Find the prevailing Logical Volume Integrity Descriptor.
1589 */
1590static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1591{
1592 struct buffer_head *bh, *final_bh;
1593 uint16_t ident;
1594 struct udf_sb_info *sbi = UDF_SB(sb);
1595 struct logicalVolIntegrityDesc *lvid;
1596 int indirections = 0;
1597
1598 while (++indirections <= UDF_MAX_LVID_NESTING) {
1599 final_bh = NULL;
1600 while (loc.extLength > 0 &&
1601 (bh = udf_read_tagged(sb, loc.extLocation,
1602 loc.extLocation, &ident))) {
1603 if (ident != TAG_IDENT_LVID) {
1604 brelse(bh);
1605 break;
1606 }
1607
1608 brelse(bh: final_bh);
1609 final_bh = bh;
1610
1611 loc.extLength -= sb->s_blocksize;
1612 loc.extLocation++;
1613 }
1614
1615 if (!final_bh)
1616 return;
1617
1618 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1619 if (udf_lvid_valid(sb, lvid)) {
1620 brelse(bh: sbi->s_lvid_bh);
1621 sbi->s_lvid_bh = final_bh;
1622 } else {
1623 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1624 "ignoring.\n",
1625 le32_to_cpu(lvid->numOfPartitions),
1626 le32_to_cpu(lvid->lengthOfImpUse));
1627 }
1628
1629 if (lvid->nextIntegrityExt.extLength == 0)
1630 return;
1631
1632 loc = leea_to_cpu(in: lvid->nextIntegrityExt);
1633 }
1634
1635 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1636 UDF_MAX_LVID_NESTING);
1637 brelse(bh: sbi->s_lvid_bh);
1638 sbi->s_lvid_bh = NULL;
1639}
1640
1641/*
1642 * Step for reallocation of table of partition descriptor sequence numbers.
1643 * Must be power of 2.
1644 */
1645#define PART_DESC_ALLOC_STEP 32
1646
1647struct part_desc_seq_scan_data {
1648 struct udf_vds_record rec;
1649 u32 partnum;
1650};
1651
1652struct desc_seq_scan_data {
1653 struct udf_vds_record vds[VDS_POS_LENGTH];
1654 unsigned int size_part_descs;
1655 unsigned int num_part_descs;
1656 struct part_desc_seq_scan_data *part_descs_loc;
1657};
1658
1659static struct udf_vds_record *handle_partition_descriptor(
1660 struct buffer_head *bh,
1661 struct desc_seq_scan_data *data)
1662{
1663 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1664 int partnum;
1665 int i;
1666
1667 partnum = le16_to_cpu(desc->partitionNumber);
1668 for (i = 0; i < data->num_part_descs; i++)
1669 if (partnum == data->part_descs_loc[i].partnum)
1670 return &(data->part_descs_loc[i].rec);
1671 if (data->num_part_descs >= data->size_part_descs) {
1672 struct part_desc_seq_scan_data *new_loc;
1673 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1674
1675 new_loc = kcalloc(n: new_size, size: sizeof(*new_loc), GFP_KERNEL);
1676 if (!new_loc)
1677 return ERR_PTR(error: -ENOMEM);
1678 memcpy(new_loc, data->part_descs_loc,
1679 data->size_part_descs * sizeof(*new_loc));
1680 kfree(objp: data->part_descs_loc);
1681 data->part_descs_loc = new_loc;
1682 data->size_part_descs = new_size;
1683 }
1684 return &(data->part_descs_loc[data->num_part_descs++].rec);
1685}
1686
1687
1688static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1689 struct buffer_head *bh, struct desc_seq_scan_data *data)
1690{
1691 switch (ident) {
1692 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1693 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1694 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1695 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1696 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1697 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1698 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1699 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1700 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1701 return handle_partition_descriptor(bh, data);
1702 }
1703 return NULL;
1704}
1705
1706/*
1707 * Process a main/reserve volume descriptor sequence.
1708 * @block First block of first extent of the sequence.
1709 * @lastblock Lastblock of first extent of the sequence.
1710 * @fileset There we store extent containing root fileset
1711 *
1712 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1713 * sequence
1714 */
1715static noinline int udf_process_sequence(
1716 struct super_block *sb,
1717 sector_t block, sector_t lastblock,
1718 struct kernel_lb_addr *fileset)
1719{
1720 struct buffer_head *bh = NULL;
1721 struct udf_vds_record *curr;
1722 struct generic_desc *gd;
1723 struct volDescPtr *vdp;
1724 bool done = false;
1725 uint32_t vdsn;
1726 uint16_t ident;
1727 int ret;
1728 unsigned int indirections = 0;
1729 struct desc_seq_scan_data data;
1730 unsigned int i;
1731
1732 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1733 data.size_part_descs = PART_DESC_ALLOC_STEP;
1734 data.num_part_descs = 0;
1735 data.part_descs_loc = kcalloc(n: data.size_part_descs,
1736 size: sizeof(*data.part_descs_loc),
1737 GFP_KERNEL);
1738 if (!data.part_descs_loc)
1739 return -ENOMEM;
1740
1741 /*
1742 * Read the main descriptor sequence and find which descriptors
1743 * are in it.
1744 */
1745 for (; (!done && block <= lastblock); block++) {
1746 bh = udf_read_tagged(sb, block, block, &ident);
1747 if (!bh)
1748 break;
1749
1750 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1751 gd = (struct generic_desc *)bh->b_data;
1752 vdsn = le32_to_cpu(gd->volDescSeqNum);
1753 switch (ident) {
1754 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1755 if (++indirections > UDF_MAX_TD_NESTING) {
1756 udf_err(sb, "too many Volume Descriptor "
1757 "Pointers (max %u supported)\n",
1758 UDF_MAX_TD_NESTING);
1759 brelse(bh);
1760 ret = -EIO;
1761 goto out;
1762 }
1763
1764 vdp = (struct volDescPtr *)bh->b_data;
1765 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1766 lastblock = le32_to_cpu(
1767 vdp->nextVolDescSeqExt.extLength) >>
1768 sb->s_blocksize_bits;
1769 lastblock += block - 1;
1770 /* For loop is going to increment 'block' again */
1771 block--;
1772 break;
1773 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1774 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1775 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1776 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1777 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1778 curr = get_volume_descriptor_record(ident, bh, data: &data);
1779 if (IS_ERR(ptr: curr)) {
1780 brelse(bh);
1781 ret = PTR_ERR(ptr: curr);
1782 goto out;
1783 }
1784 /* Descriptor we don't care about? */
1785 if (!curr)
1786 break;
1787 if (vdsn >= curr->volDescSeqNum) {
1788 curr->volDescSeqNum = vdsn;
1789 curr->block = block;
1790 }
1791 break;
1792 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1793 done = true;
1794 break;
1795 }
1796 brelse(bh);
1797 }
1798 /*
1799 * Now read interesting descriptors again and process them
1800 * in a suitable order
1801 */
1802 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1803 udf_err(sb, "Primary Volume Descriptor not found!\n");
1804 ret = -EAGAIN;
1805 goto out;
1806 }
1807 ret = udf_load_pvoldesc(sb, block: data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1808 if (ret < 0)
1809 goto out;
1810
1811 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1812 ret = udf_load_logicalvol(sb,
1813 block: data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1814 fileset);
1815 if (ret < 0)
1816 goto out;
1817 }
1818
1819 /* Now handle prevailing Partition Descriptors */
1820 for (i = 0; i < data.num_part_descs; i++) {
1821 ret = udf_load_partdesc(sb, block: data.part_descs_loc[i].rec.block);
1822 if (ret < 0)
1823 goto out;
1824 }
1825 ret = 0;
1826out:
1827 kfree(objp: data.part_descs_loc);
1828 return ret;
1829}
1830
1831/*
1832 * Load Volume Descriptor Sequence described by anchor in bh
1833 *
1834 * Returns <0 on error, 0 on success
1835 */
1836static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1837 struct kernel_lb_addr *fileset)
1838{
1839 struct anchorVolDescPtr *anchor;
1840 sector_t main_s, main_e, reserve_s, reserve_e;
1841 int ret;
1842
1843 anchor = (struct anchorVolDescPtr *)bh->b_data;
1844
1845 /* Locate the main sequence */
1846 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1847 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1848 main_e = main_e >> sb->s_blocksize_bits;
1849 main_e += main_s - 1;
1850
1851 /* Locate the reserve sequence */
1852 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1853 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1854 reserve_e = reserve_e >> sb->s_blocksize_bits;
1855 reserve_e += reserve_s - 1;
1856
1857 /* Process the main & reserve sequences */
1858 /* responsible for finding the PartitionDesc(s) */
1859 ret = udf_process_sequence(sb, block: main_s, lastblock: main_e, fileset);
1860 if (ret != -EAGAIN)
1861 return ret;
1862 udf_sb_free_partitions(sb);
1863 ret = udf_process_sequence(sb, block: reserve_s, lastblock: reserve_e, fileset);
1864 if (ret < 0) {
1865 udf_sb_free_partitions(sb);
1866 /* No sequence was OK, return -EIO */
1867 if (ret == -EAGAIN)
1868 ret = -EIO;
1869 }
1870 return ret;
1871}
1872
1873/*
1874 * Check whether there is an anchor block in the given block and
1875 * load Volume Descriptor Sequence if so.
1876 *
1877 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1878 * block
1879 */
1880static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1881 struct kernel_lb_addr *fileset)
1882{
1883 struct buffer_head *bh;
1884 uint16_t ident;
1885 int ret;
1886
1887 bh = udf_read_tagged(sb, block, block, &ident);
1888 if (!bh)
1889 return -EAGAIN;
1890 if (ident != TAG_IDENT_AVDP) {
1891 brelse(bh);
1892 return -EAGAIN;
1893 }
1894 ret = udf_load_sequence(sb, bh, fileset);
1895 brelse(bh);
1896 return ret;
1897}
1898
1899/*
1900 * Search for an anchor volume descriptor pointer.
1901 *
1902 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1903 * of anchors.
1904 */
1905static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1906 struct kernel_lb_addr *fileset)
1907{
1908 udf_pblk_t last[6];
1909 int i;
1910 struct udf_sb_info *sbi = UDF_SB(sb);
1911 int last_count = 0;
1912 int ret;
1913
1914 /* First try user provided anchor */
1915 if (sbi->s_anchor) {
1916 ret = udf_check_anchor_block(sb, block: sbi->s_anchor, fileset);
1917 if (ret != -EAGAIN)
1918 return ret;
1919 }
1920 /*
1921 * according to spec, anchor is in either:
1922 * block 256
1923 * lastblock-256
1924 * lastblock
1925 * however, if the disc isn't closed, it could be 512.
1926 */
1927 ret = udf_check_anchor_block(sb, block: sbi->s_session + 256, fileset);
1928 if (ret != -EAGAIN)
1929 return ret;
1930 /*
1931 * The trouble is which block is the last one. Drives often misreport
1932 * this so we try various possibilities.
1933 */
1934 last[last_count++] = *lastblock;
1935 if (*lastblock >= 1)
1936 last[last_count++] = *lastblock - 1;
1937 last[last_count++] = *lastblock + 1;
1938 if (*lastblock >= 2)
1939 last[last_count++] = *lastblock - 2;
1940 if (*lastblock >= 150)
1941 last[last_count++] = *lastblock - 150;
1942 if (*lastblock >= 152)
1943 last[last_count++] = *lastblock - 152;
1944
1945 for (i = 0; i < last_count; i++) {
1946 if (last[i] >= sb_bdev_nr_blocks(sb))
1947 continue;
1948 ret = udf_check_anchor_block(sb, block: last[i], fileset);
1949 if (ret != -EAGAIN) {
1950 if (!ret)
1951 *lastblock = last[i];
1952 return ret;
1953 }
1954 if (last[i] < 256)
1955 continue;
1956 ret = udf_check_anchor_block(sb, block: last[i] - 256, fileset);
1957 if (ret != -EAGAIN) {
1958 if (!ret)
1959 *lastblock = last[i];
1960 return ret;
1961 }
1962 }
1963
1964 /* Finally try block 512 in case media is open */
1965 return udf_check_anchor_block(sb, block: sbi->s_session + 512, fileset);
1966}
1967
1968/*
1969 * Check Volume Structure Descriptor, find Anchor block and load Volume
1970 * Descriptor Sequence.
1971 *
1972 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1973 * block was not found.
1974 */
1975static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1976 int silent, struct kernel_lb_addr *fileset)
1977{
1978 struct udf_sb_info *sbi = UDF_SB(sb);
1979 int nsr = 0;
1980 int ret;
1981
1982 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1983 if (!silent)
1984 udf_warn(sb, "Bad block size\n");
1985 return -EINVAL;
1986 }
1987 sbi->s_last_block = uopt->lastblock;
1988 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_NOVRS)) {
1989 /* Check that it is NSR02 compliant */
1990 nsr = udf_check_vsd(sb);
1991 if (!nsr) {
1992 if (!silent)
1993 udf_warn(sb, "No VRS found\n");
1994 return -EINVAL;
1995 }
1996 if (nsr == -1)
1997 udf_debug("Failed to read sector at offset %d. "
1998 "Assuming open disc. Skipping validity "
1999 "check\n", VSD_FIRST_SECTOR_OFFSET);
2000 if (!sbi->s_last_block)
2001 sbi->s_last_block = udf_get_last_block(sb);
2002 } else {
2003 udf_debug("Validity check skipped because of novrs option\n");
2004 }
2005
2006 /* Look for anchor block and load Volume Descriptor Sequence */
2007 sbi->s_anchor = uopt->anchor;
2008 ret = udf_scan_anchors(sb, lastblock: &sbi->s_last_block, fileset);
2009 if (ret < 0) {
2010 if (!silent && ret == -EAGAIN)
2011 udf_warn(sb, "No anchor found\n");
2012 return ret;
2013 }
2014 return 0;
2015}
2016
2017static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2018{
2019 struct timespec64 ts;
2020
2021 ktime_get_real_ts64(tv: &ts);
2022 udf_time_to_disk_stamp(dest: &lvid->recordingDateAndTime, src: ts);
2023 lvid->descTag.descCRC = cpu_to_le16(
2024 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2025 le16_to_cpu(lvid->descTag.descCRCLength)));
2026 lvid->descTag.tagChecksum = udf_tag_checksum(t: &lvid->descTag);
2027}
2028
2029static void udf_open_lvid(struct super_block *sb)
2030{
2031 struct udf_sb_info *sbi = UDF_SB(sb);
2032 struct buffer_head *bh = sbi->s_lvid_bh;
2033 struct logicalVolIntegrityDesc *lvid;
2034 struct logicalVolIntegrityDescImpUse *lvidiu;
2035
2036 if (!bh)
2037 return;
2038 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2039 lvidiu = udf_sb_lvidiu(sb);
2040 if (!lvidiu)
2041 return;
2042
2043 mutex_lock(&sbi->s_alloc_mutex);
2044 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2045 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2046 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2047 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2048 else
2049 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2050
2051 udf_finalize_lvid(lvid);
2052 mark_buffer_dirty(bh);
2053 sbi->s_lvid_dirty = 0;
2054 mutex_unlock(lock: &sbi->s_alloc_mutex);
2055 /* Make opening of filesystem visible on the media immediately */
2056 sync_dirty_buffer(bh);
2057}
2058
2059static void udf_close_lvid(struct super_block *sb)
2060{
2061 struct udf_sb_info *sbi = UDF_SB(sb);
2062 struct buffer_head *bh = sbi->s_lvid_bh;
2063 struct logicalVolIntegrityDesc *lvid;
2064 struct logicalVolIntegrityDescImpUse *lvidiu;
2065
2066 if (!bh)
2067 return;
2068 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2069 lvidiu = udf_sb_lvidiu(sb);
2070 if (!lvidiu)
2071 return;
2072
2073 mutex_lock(&sbi->s_alloc_mutex);
2074 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2075 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2076 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2077 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2078 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2079 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2080 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2081 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2082 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2083 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2084
2085 /*
2086 * We set buffer uptodate unconditionally here to avoid spurious
2087 * warnings from mark_buffer_dirty() when previous EIO has marked
2088 * the buffer as !uptodate
2089 */
2090 set_buffer_uptodate(bh);
2091 udf_finalize_lvid(lvid);
2092 mark_buffer_dirty(bh);
2093 sbi->s_lvid_dirty = 0;
2094 mutex_unlock(lock: &sbi->s_alloc_mutex);
2095 /* Make closing of filesystem visible on the media immediately */
2096 sync_dirty_buffer(bh);
2097}
2098
2099u64 lvid_get_unique_id(struct super_block *sb)
2100{
2101 struct buffer_head *bh;
2102 struct udf_sb_info *sbi = UDF_SB(sb);
2103 struct logicalVolIntegrityDesc *lvid;
2104 struct logicalVolHeaderDesc *lvhd;
2105 u64 uniqueID;
2106 u64 ret;
2107
2108 bh = sbi->s_lvid_bh;
2109 if (!bh)
2110 return 0;
2111
2112 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2113 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2114
2115 mutex_lock(&sbi->s_alloc_mutex);
2116 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2117 if (!(++uniqueID & 0xFFFFFFFF))
2118 uniqueID += 16;
2119 lvhd->uniqueID = cpu_to_le64(uniqueID);
2120 udf_updated_lvid(sb);
2121 mutex_unlock(lock: &sbi->s_alloc_mutex);
2122
2123 return ret;
2124}
2125
2126static int udf_fill_super(struct super_block *sb, struct fs_context *fc)
2127{
2128 int ret = -EINVAL;
2129 struct inode *inode = NULL;
2130 struct udf_options *uopt = fc->fs_private;
2131 struct kernel_lb_addr rootdir, fileset;
2132 struct udf_sb_info *sbi;
2133 bool lvid_open = false;
2134 int silent = fc->sb_flags & SB_SILENT;
2135
2136 sbi = kzalloc(size: sizeof(*sbi), GFP_KERNEL);
2137 if (!sbi)
2138 return -ENOMEM;
2139
2140 sb->s_fs_info = sbi;
2141
2142 mutex_init(&sbi->s_alloc_mutex);
2143
2144 fileset.logicalBlockNum = 0xFFFFFFFF;
2145 fileset.partitionReferenceNum = 0xFFFF;
2146
2147 sbi->s_flags = uopt->flags;
2148 sbi->s_uid = uopt->uid;
2149 sbi->s_gid = uopt->gid;
2150 sbi->s_umask = uopt->umask;
2151 sbi->s_fmode = uopt->fmode;
2152 sbi->s_dmode = uopt->dmode;
2153 sbi->s_nls_map = uopt->nls_map;
2154 uopt->nls_map = NULL;
2155 rwlock_init(&sbi->s_cred_lock);
2156
2157 if (uopt->session == 0xFFFFFFFF)
2158 sbi->s_session = udf_get_last_session(sb);
2159 else
2160 sbi->s_session = uopt->session;
2161
2162 udf_debug("Multi-session=%d\n", sbi->s_session);
2163
2164 /* Fill in the rest of the superblock */
2165 sb->s_op = &udf_sb_ops;
2166 sb->s_export_op = &udf_export_ops;
2167
2168 sb->s_magic = UDF_SUPER_MAGIC;
2169 sb->s_time_gran = 1000;
2170
2171 if (uopt->flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2172 ret = udf_load_vrs(sb, uopt, silent, fileset: &fileset);
2173 } else {
2174 uopt->blocksize = bdev_logical_block_size(bdev: sb->s_bdev);
2175 while (uopt->blocksize <= 4096) {
2176 ret = udf_load_vrs(sb, uopt, silent, fileset: &fileset);
2177 if (ret < 0) {
2178 if (!silent && ret != -EACCES) {
2179 pr_notice("Scanning with blocksize %u failed\n",
2180 uopt->blocksize);
2181 }
2182 brelse(bh: sbi->s_lvid_bh);
2183 sbi->s_lvid_bh = NULL;
2184 /*
2185 * EACCES is special - we want to propagate to
2186 * upper layers that we cannot handle RW mount.
2187 */
2188 if (ret == -EACCES)
2189 break;
2190 } else
2191 break;
2192
2193 uopt->blocksize <<= 1;
2194 }
2195 }
2196 if (ret < 0) {
2197 if (ret == -EAGAIN) {
2198 udf_warn(sb, "No partition found (1)\n");
2199 ret = -EINVAL;
2200 }
2201 goto error_out;
2202 }
2203
2204 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2205
2206 if (sbi->s_lvid_bh) {
2207 struct logicalVolIntegrityDescImpUse *lvidiu =
2208 udf_sb_lvidiu(sb);
2209 uint16_t minUDFReadRev;
2210 uint16_t minUDFWriteRev;
2211
2212 if (!lvidiu) {
2213 ret = -EINVAL;
2214 goto error_out;
2215 }
2216 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2217 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2218 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2219 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2220 minUDFReadRev,
2221 UDF_MAX_READ_VERSION);
2222 ret = -EINVAL;
2223 goto error_out;
2224 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2225 if (!sb_rdonly(sb)) {
2226 ret = -EACCES;
2227 goto error_out;
2228 }
2229 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2230 }
2231
2232 sbi->s_udfrev = minUDFWriteRev;
2233
2234 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2235 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2236 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2237 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2238 }
2239
2240 if (!sbi->s_partitions) {
2241 udf_warn(sb, "No partition found (2)\n");
2242 ret = -EINVAL;
2243 goto error_out;
2244 }
2245
2246 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2247 UDF_PART_FLAG_READ_ONLY) {
2248 if (!sb_rdonly(sb)) {
2249 ret = -EACCES;
2250 goto error_out;
2251 }
2252 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2253 }
2254
2255 ret = udf_find_fileset(sb, fileset: &fileset, root: &rootdir);
2256 if (ret < 0) {
2257 udf_warn(sb, "No fileset found\n");
2258 goto error_out;
2259 }
2260
2261 if (!silent) {
2262 struct timestamp ts;
2263 udf_time_to_disk_stamp(dest: &ts, src: sbi->s_record_time);
2264 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2265 sbi->s_volume_ident,
2266 le16_to_cpu(ts.year), ts.month, ts.day,
2267 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2268 }
2269 if (!sb_rdonly(sb)) {
2270 udf_open_lvid(sb);
2271 lvid_open = true;
2272 }
2273
2274 /* Assign the root inode */
2275 /* assign inodes by physical block number */
2276 /* perhaps it's not extensible enough, but for now ... */
2277 inode = udf_iget(sb, ino: &rootdir);
2278 if (IS_ERR(ptr: inode)) {
2279 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2280 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2281 ret = PTR_ERR(ptr: inode);
2282 goto error_out;
2283 }
2284
2285 /* Allocate a dentry for the root inode */
2286 sb->s_root = d_make_root(inode);
2287 if (!sb->s_root) {
2288 udf_err(sb, "Couldn't allocate root dentry\n");
2289 ret = -ENOMEM;
2290 goto error_out;
2291 }
2292 sb->s_maxbytes = UDF_MAX_FILESIZE;
2293 sb->s_max_links = UDF_MAX_LINKS;
2294 return 0;
2295
2296error_out:
2297 iput(sbi->s_vat_inode);
2298 unload_nls(uopt->nls_map);
2299 if (lvid_open)
2300 udf_close_lvid(sb);
2301 brelse(bh: sbi->s_lvid_bh);
2302 udf_sb_free_partitions(sb);
2303 kfree(objp: sbi);
2304 sb->s_fs_info = NULL;
2305
2306 return ret;
2307}
2308
2309void _udf_err(struct super_block *sb, const char *function,
2310 const char *fmt, ...)
2311{
2312 struct va_format vaf;
2313 va_list args;
2314
2315 va_start(args, fmt);
2316
2317 vaf.fmt = fmt;
2318 vaf.va = &args;
2319
2320 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2321
2322 va_end(args);
2323}
2324
2325void _udf_warn(struct super_block *sb, const char *function,
2326 const char *fmt, ...)
2327{
2328 struct va_format vaf;
2329 va_list args;
2330
2331 va_start(args, fmt);
2332
2333 vaf.fmt = fmt;
2334 vaf.va = &args;
2335
2336 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2337
2338 va_end(args);
2339}
2340
2341static void udf_put_super(struct super_block *sb)
2342{
2343 struct udf_sb_info *sbi;
2344
2345 sbi = UDF_SB(sb);
2346
2347 iput(sbi->s_vat_inode);
2348 unload_nls(sbi->s_nls_map);
2349 if (!sb_rdonly(sb))
2350 udf_close_lvid(sb);
2351 brelse(bh: sbi->s_lvid_bh);
2352 udf_sb_free_partitions(sb);
2353 mutex_destroy(lock: &sbi->s_alloc_mutex);
2354 kfree(objp: sb->s_fs_info);
2355 sb->s_fs_info = NULL;
2356}
2357
2358static int udf_sync_fs(struct super_block *sb, int wait)
2359{
2360 struct udf_sb_info *sbi = UDF_SB(sb);
2361
2362 mutex_lock(&sbi->s_alloc_mutex);
2363 if (sbi->s_lvid_dirty) {
2364 struct buffer_head *bh = sbi->s_lvid_bh;
2365 struct logicalVolIntegrityDesc *lvid;
2366
2367 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2368 udf_finalize_lvid(lvid);
2369
2370 /*
2371 * Blockdevice will be synced later so we don't have to submit
2372 * the buffer for IO
2373 */
2374 mark_buffer_dirty(bh);
2375 sbi->s_lvid_dirty = 0;
2376 }
2377 mutex_unlock(lock: &sbi->s_alloc_mutex);
2378
2379 return 0;
2380}
2381
2382static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2383{
2384 struct super_block *sb = dentry->d_sb;
2385 struct udf_sb_info *sbi = UDF_SB(sb);
2386 struct logicalVolIntegrityDescImpUse *lvidiu;
2387 u64 id = huge_encode_dev(dev: sb->s_bdev->bd_dev);
2388
2389 lvidiu = udf_sb_lvidiu(sb);
2390 buf->f_type = UDF_SUPER_MAGIC;
2391 buf->f_bsize = sb->s_blocksize;
2392 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2393 buf->f_bfree = udf_count_free(sb);
2394 buf->f_bavail = buf->f_bfree;
2395 /*
2396 * Let's pretend each free block is also a free 'inode' since UDF does
2397 * not have separate preallocated table of inodes.
2398 */
2399 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2400 le32_to_cpu(lvidiu->numDirs)) : 0)
2401 + buf->f_bfree;
2402 buf->f_ffree = buf->f_bfree;
2403 buf->f_namelen = UDF_NAME_LEN;
2404 buf->f_fsid = u64_to_fsid(v: id);
2405
2406 return 0;
2407}
2408
2409static unsigned int udf_count_free_bitmap(struct super_block *sb,
2410 struct udf_bitmap *bitmap)
2411{
2412 struct buffer_head *bh = NULL;
2413 unsigned int accum = 0;
2414 int index;
2415 udf_pblk_t block = 0, newblock;
2416 struct kernel_lb_addr loc;
2417 uint32_t bytes;
2418 uint8_t *ptr;
2419 uint16_t ident;
2420 struct spaceBitmapDesc *bm;
2421
2422 loc.logicalBlockNum = bitmap->s_extPosition;
2423 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2424 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2425
2426 if (!bh) {
2427 udf_err(sb, "udf_count_free failed\n");
2428 goto out;
2429 } else if (ident != TAG_IDENT_SBD) {
2430 brelse(bh);
2431 udf_err(sb, "udf_count_free failed\n");
2432 goto out;
2433 }
2434
2435 bm = (struct spaceBitmapDesc *)bh->b_data;
2436 bytes = le32_to_cpu(bm->numOfBytes);
2437 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2438 ptr = (uint8_t *)bh->b_data;
2439
2440 while (bytes > 0) {
2441 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2442 accum += bitmap_weight(src: (const unsigned long *)(ptr + index),
2443 nbits: cur_bytes * 8);
2444 bytes -= cur_bytes;
2445 if (bytes) {
2446 brelse(bh);
2447 newblock = udf_get_lb_pblock(sb, loc: &loc, offset: ++block);
2448 bh = sb_bread(sb, block: newblock);
2449 if (!bh) {
2450 udf_debug("read failed\n");
2451 goto out;
2452 }
2453 index = 0;
2454 ptr = (uint8_t *)bh->b_data;
2455 }
2456 }
2457 brelse(bh);
2458out:
2459 return accum;
2460}
2461
2462static unsigned int udf_count_free_table(struct super_block *sb,
2463 struct inode *table)
2464{
2465 unsigned int accum = 0;
2466 uint32_t elen;
2467 struct kernel_lb_addr eloc;
2468 struct extent_position epos;
2469
2470 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2471 epos.block = UDF_I(inode: table)->i_location;
2472 epos.offset = sizeof(struct unallocSpaceEntry);
2473 epos.bh = NULL;
2474
2475 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2476 accum += (elen >> table->i_sb->s_blocksize_bits);
2477
2478 brelse(bh: epos.bh);
2479 mutex_unlock(lock: &UDF_SB(sb)->s_alloc_mutex);
2480
2481 return accum;
2482}
2483
2484static unsigned int udf_count_free(struct super_block *sb)
2485{
2486 unsigned int accum = 0;
2487 struct udf_sb_info *sbi = UDF_SB(sb);
2488 struct udf_part_map *map;
2489 unsigned int part = sbi->s_partition;
2490 int ptype = sbi->s_partmaps[part].s_partition_type;
2491
2492 if (ptype == UDF_METADATA_MAP25) {
2493 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2494 s_phys_partition_ref;
2495 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2496 /*
2497 * Filesystems with VAT are append-only and we cannot write to
2498 * them. Let's just report 0 here.
2499 */
2500 return 0;
2501 }
2502
2503 if (sbi->s_lvid_bh) {
2504 struct logicalVolIntegrityDesc *lvid =
2505 (struct logicalVolIntegrityDesc *)
2506 sbi->s_lvid_bh->b_data;
2507 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2508 accum = le32_to_cpu(
2509 lvid->freeSpaceTable[part]);
2510 if (accum == 0xFFFFFFFF)
2511 accum = 0;
2512 }
2513 }
2514
2515 if (accum)
2516 return accum;
2517
2518 map = &sbi->s_partmaps[part];
2519 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2520 accum += udf_count_free_bitmap(sb,
2521 bitmap: map->s_uspace.s_bitmap);
2522 }
2523 if (accum)
2524 return accum;
2525
2526 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2527 accum += udf_count_free_table(sb,
2528 table: map->s_uspace.s_table);
2529 }
2530 return accum;
2531}
2532
2533MODULE_AUTHOR("Ben Fennema");
2534MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2535MODULE_LICENSE("GPL");
2536module_init(init_udf_fs)
2537module_exit(exit_udf_fs)
2538

source code of linux/fs/udf/super.c