1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_alloc.h"
17#include "xfs_btree.h"
18#include "xfs_btree_staging.h"
19#include "xfs_bmap_btree.h"
20#include "xfs_bmap.h"
21#include "xfs_error.h"
22#include "xfs_quota.h"
23#include "xfs_trace.h"
24#include "xfs_rmap.h"
25#include "xfs_ag.h"
26
27static struct kmem_cache *xfs_bmbt_cur_cache;
28
29void
30xfs_bmbt_init_block(
31 struct xfs_inode *ip,
32 struct xfs_btree_block *buf,
33 struct xfs_buf *bp,
34 __u16 level,
35 __u16 numrecs)
36{
37 if (bp)
38 xfs_btree_init_buf(ip->i_mount, bp, &xfs_bmbt_ops, level,
39 numrecs, ip->i_ino);
40 else
41 xfs_btree_init_block(ip->i_mount, buf, &xfs_bmbt_ops, level,
42 numrecs, ip->i_ino);
43}
44
45/*
46 * Convert on-disk form of btree root to in-memory form.
47 */
48void
49xfs_bmdr_to_bmbt(
50 struct xfs_inode *ip,
51 xfs_bmdr_block_t *dblock,
52 int dblocklen,
53 struct xfs_btree_block *rblock,
54 int rblocklen)
55{
56 struct xfs_mount *mp = ip->i_mount;
57 int dmxr;
58 xfs_bmbt_key_t *fkp;
59 __be64 *fpp;
60 xfs_bmbt_key_t *tkp;
61 __be64 *tpp;
62
63 xfs_bmbt_init_block(ip, rblock, NULL, 0, 0);
64 rblock->bb_level = dblock->bb_level;
65 ASSERT(be16_to_cpu(rblock->bb_level) > 0);
66 rblock->bb_numrecs = dblock->bb_numrecs;
67 dmxr = xfs_bmdr_maxrecs(blocklen: dblocklen, leaf: 0);
68 fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
69 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
70 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
71 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
72 dmxr = be16_to_cpu(dblock->bb_numrecs);
73 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
74 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
75}
76
77void
78xfs_bmbt_disk_get_all(
79 const struct xfs_bmbt_rec *rec,
80 struct xfs_bmbt_irec *irec)
81{
82 uint64_t l0 = get_unaligned_be64(&rec->l0);
83 uint64_t l1 = get_unaligned_be64(&rec->l1);
84
85 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
86 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
87 irec->br_blockcount = l1 & xfs_mask64lo(21);
88 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
89 irec->br_state = XFS_EXT_UNWRITTEN;
90 else
91 irec->br_state = XFS_EXT_NORM;
92}
93
94/*
95 * Extract the blockcount field from an on disk bmap extent record.
96 */
97xfs_filblks_t
98xfs_bmbt_disk_get_blockcount(
99 const struct xfs_bmbt_rec *r)
100{
101 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
102}
103
104/*
105 * Extract the startoff field from a disk format bmap extent record.
106 */
107xfs_fileoff_t
108xfs_bmbt_disk_get_startoff(
109 const struct xfs_bmbt_rec *r)
110{
111 return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
112 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
113}
114
115/*
116 * Set all the fields in a bmap extent record from the uncompressed form.
117 */
118void
119xfs_bmbt_disk_set_all(
120 struct xfs_bmbt_rec *r,
121 struct xfs_bmbt_irec *s)
122{
123 int extent_flag = (s->br_state != XFS_EXT_NORM);
124
125 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
126 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
127 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
128 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
129
130 put_unaligned_be64(
131 ((xfs_bmbt_rec_base_t)extent_flag << 63) |
132 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
133 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
134 put_unaligned_be64(
135 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
136 ((xfs_bmbt_rec_base_t)s->br_blockcount &
137 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
138}
139
140/*
141 * Convert in-memory form of btree root to on-disk form.
142 */
143void
144xfs_bmbt_to_bmdr(
145 struct xfs_mount *mp,
146 struct xfs_btree_block *rblock,
147 int rblocklen,
148 xfs_bmdr_block_t *dblock,
149 int dblocklen)
150{
151 int dmxr;
152 xfs_bmbt_key_t *fkp;
153 __be64 *fpp;
154 xfs_bmbt_key_t *tkp;
155 __be64 *tpp;
156
157 if (xfs_has_crc(mp)) {
158 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
159 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
160 &mp->m_sb.sb_meta_uuid));
161 ASSERT(rblock->bb_u.l.bb_blkno ==
162 cpu_to_be64(XFS_BUF_DADDR_NULL));
163 } else
164 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
165 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
166 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
167 ASSERT(rblock->bb_level != 0);
168 dblock->bb_level = rblock->bb_level;
169 dblock->bb_numrecs = rblock->bb_numrecs;
170 dmxr = xfs_bmdr_maxrecs(blocklen: dblocklen, leaf: 0);
171 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
172 tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
173 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
174 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
175 dmxr = be16_to_cpu(dblock->bb_numrecs);
176 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
177 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
178}
179
180STATIC struct xfs_btree_cur *
181xfs_bmbt_dup_cursor(
182 struct xfs_btree_cur *cur)
183{
184 struct xfs_btree_cur *new;
185
186 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
187 cur->bc_ino.ip, cur->bc_ino.whichfork);
188 new->bc_flags |= (cur->bc_flags &
189 (XFS_BTREE_BMBT_INVALID_OWNER | XFS_BTREE_BMBT_WASDEL));
190 return new;
191}
192
193STATIC void
194xfs_bmbt_update_cursor(
195 struct xfs_btree_cur *src,
196 struct xfs_btree_cur *dst)
197{
198 ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) ||
199 (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
200
201 dst->bc_bmap.allocated += src->bc_bmap.allocated;
202 dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno;
203
204 src->bc_bmap.allocated = 0;
205}
206
207STATIC int
208xfs_bmbt_alloc_block(
209 struct xfs_btree_cur *cur,
210 const union xfs_btree_ptr *start,
211 union xfs_btree_ptr *new,
212 int *stat)
213{
214 struct xfs_alloc_arg args;
215 int error;
216
217 memset(&args, 0, sizeof(args));
218 args.tp = cur->bc_tp;
219 args.mp = cur->bc_mp;
220 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
221 cur->bc_ino.whichfork);
222 args.minlen = args.maxlen = args.prod = 1;
223 args.wasdel = cur->bc_flags & XFS_BTREE_BMBT_WASDEL;
224 if (!args.wasdel && args.tp->t_blk_res == 0)
225 return -ENOSPC;
226
227 /*
228 * If we are coming here from something like unwritten extent
229 * conversion, there has been no data extent allocation already done, so
230 * we have to ensure that we attempt to locate the entire set of bmbt
231 * allocations in the same AG, as xfs_bmapi_write() would have reserved.
232 */
233 if (cur->bc_tp->t_highest_agno == NULLAGNUMBER)
234 args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip,
235 cur->bc_ino.whichfork);
236
237 error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l));
238 if (error)
239 return error;
240
241 if (args.fsbno == NULLFSBLOCK && args.minleft) {
242 /*
243 * Could not find an AG with enough free space to satisfy
244 * a full btree split. Try again and if
245 * successful activate the lowspace algorithm.
246 */
247 args.minleft = 0;
248 error = xfs_alloc_vextent_start_ag(&args, 0);
249 if (error)
250 return error;
251 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
252 }
253 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
254 *stat = 0;
255 return 0;
256 }
257
258 ASSERT(args.len == 1);
259 cur->bc_bmap.allocated++;
260 cur->bc_ino.ip->i_nblocks++;
261 xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
262 xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
263 XFS_TRANS_DQ_BCOUNT, 1L);
264
265 new->l = cpu_to_be64(args.fsbno);
266
267 *stat = 1;
268 return 0;
269}
270
271STATIC int
272xfs_bmbt_free_block(
273 struct xfs_btree_cur *cur,
274 struct xfs_buf *bp)
275{
276 struct xfs_mount *mp = cur->bc_mp;
277 struct xfs_inode *ip = cur->bc_ino.ip;
278 struct xfs_trans *tp = cur->bc_tp;
279 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
280 struct xfs_owner_info oinfo;
281 int error;
282
283 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
284 error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo,
285 XFS_AG_RESV_NONE, false);
286 if (error)
287 return error;
288
289 ip->i_nblocks--;
290 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
291 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
292 return 0;
293}
294
295STATIC int
296xfs_bmbt_get_minrecs(
297 struct xfs_btree_cur *cur,
298 int level)
299{
300 if (level == cur->bc_nlevels - 1) {
301 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
302
303 return xfs_bmbt_maxrecs(cur->bc_mp,
304 blocklen: ifp->if_broot_bytes, leaf: level == 0) / 2;
305 }
306
307 return cur->bc_mp->m_bmap_dmnr[level != 0];
308}
309
310int
311xfs_bmbt_get_maxrecs(
312 struct xfs_btree_cur *cur,
313 int level)
314{
315 if (level == cur->bc_nlevels - 1) {
316 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
317
318 return xfs_bmbt_maxrecs(cur->bc_mp,
319 blocklen: ifp->if_broot_bytes, leaf: level == 0);
320 }
321
322 return cur->bc_mp->m_bmap_dmxr[level != 0];
323
324}
325
326/*
327 * Get the maximum records we could store in the on-disk format.
328 *
329 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
330 * for the root node this checks the available space in the dinode fork
331 * so that we can resize the in-memory buffer to match it. After a
332 * resize to the maximum size this function returns the same value
333 * as xfs_bmbt_get_maxrecs for the root node, too.
334 */
335STATIC int
336xfs_bmbt_get_dmaxrecs(
337 struct xfs_btree_cur *cur,
338 int level)
339{
340 if (level != cur->bc_nlevels - 1)
341 return cur->bc_mp->m_bmap_dmxr[level != 0];
342 return xfs_bmdr_maxrecs(blocklen: cur->bc_ino.forksize, leaf: level == 0);
343}
344
345STATIC void
346xfs_bmbt_init_key_from_rec(
347 union xfs_btree_key *key,
348 const union xfs_btree_rec *rec)
349{
350 key->bmbt.br_startoff =
351 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
352}
353
354STATIC void
355xfs_bmbt_init_high_key_from_rec(
356 union xfs_btree_key *key,
357 const union xfs_btree_rec *rec)
358{
359 key->bmbt.br_startoff = cpu_to_be64(
360 xfs_bmbt_disk_get_startoff(&rec->bmbt) +
361 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
362}
363
364STATIC void
365xfs_bmbt_init_rec_from_cur(
366 struct xfs_btree_cur *cur,
367 union xfs_btree_rec *rec)
368{
369 xfs_bmbt_disk_set_all(r: &rec->bmbt, s: &cur->bc_rec.b);
370}
371
372STATIC int64_t
373xfs_bmbt_key_diff(
374 struct xfs_btree_cur *cur,
375 const union xfs_btree_key *key)
376{
377 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
378 cur->bc_rec.b.br_startoff;
379}
380
381STATIC int64_t
382xfs_bmbt_diff_two_keys(
383 struct xfs_btree_cur *cur,
384 const union xfs_btree_key *k1,
385 const union xfs_btree_key *k2,
386 const union xfs_btree_key *mask)
387{
388 uint64_t a = be64_to_cpu(k1->bmbt.br_startoff);
389 uint64_t b = be64_to_cpu(k2->bmbt.br_startoff);
390
391 ASSERT(!mask || mask->bmbt.br_startoff);
392
393 /*
394 * Note: This routine previously casted a and b to int64 and subtracted
395 * them to generate a result. This lead to problems if b was the
396 * "maximum" key value (all ones) being signed incorrectly, hence this
397 * somewhat less efficient version.
398 */
399 if (a > b)
400 return 1;
401 if (b > a)
402 return -1;
403 return 0;
404}
405
406static xfs_failaddr_t
407xfs_bmbt_verify(
408 struct xfs_buf *bp)
409{
410 struct xfs_mount *mp = bp->b_mount;
411 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
412 xfs_failaddr_t fa;
413 unsigned int level;
414
415 if (!xfs_verify_magic(bp, block->bb_magic))
416 return __this_address;
417
418 if (xfs_has_crc(mp)) {
419 /*
420 * XXX: need a better way of verifying the owner here. Right now
421 * just make sure there has been one set.
422 */
423 fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
424 if (fa)
425 return fa;
426 }
427
428 /*
429 * numrecs and level verification.
430 *
431 * We don't know what fork we belong to, so just verify that the level
432 * is less than the maximum of the two. Later checks will be more
433 * precise.
434 */
435 level = be16_to_cpu(block->bb_level);
436 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
437 return __this_address;
438
439 return xfs_btree_fsblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
440}
441
442static void
443xfs_bmbt_read_verify(
444 struct xfs_buf *bp)
445{
446 xfs_failaddr_t fa;
447
448 if (!xfs_btree_fsblock_verify_crc(bp))
449 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
450 else {
451 fa = xfs_bmbt_verify(bp);
452 if (fa)
453 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
454 }
455
456 if (bp->b_error)
457 trace_xfs_btree_corrupt(bp, _RET_IP_);
458}
459
460static void
461xfs_bmbt_write_verify(
462 struct xfs_buf *bp)
463{
464 xfs_failaddr_t fa;
465
466 fa = xfs_bmbt_verify(bp);
467 if (fa) {
468 trace_xfs_btree_corrupt(bp, _RET_IP_);
469 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
470 return;
471 }
472 xfs_btree_fsblock_calc_crc(bp);
473}
474
475const struct xfs_buf_ops xfs_bmbt_buf_ops = {
476 .name = "xfs_bmbt",
477 .magic = { cpu_to_be32(XFS_BMAP_MAGIC),
478 cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
479 .verify_read = xfs_bmbt_read_verify,
480 .verify_write = xfs_bmbt_write_verify,
481 .verify_struct = xfs_bmbt_verify,
482};
483
484
485STATIC int
486xfs_bmbt_keys_inorder(
487 struct xfs_btree_cur *cur,
488 const union xfs_btree_key *k1,
489 const union xfs_btree_key *k2)
490{
491 return be64_to_cpu(k1->bmbt.br_startoff) <
492 be64_to_cpu(k2->bmbt.br_startoff);
493}
494
495STATIC int
496xfs_bmbt_recs_inorder(
497 struct xfs_btree_cur *cur,
498 const union xfs_btree_rec *r1,
499 const union xfs_btree_rec *r2)
500{
501 return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
502 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
503 xfs_bmbt_disk_get_startoff(&r2->bmbt);
504}
505
506STATIC enum xbtree_key_contig
507xfs_bmbt_keys_contiguous(
508 struct xfs_btree_cur *cur,
509 const union xfs_btree_key *key1,
510 const union xfs_btree_key *key2,
511 const union xfs_btree_key *mask)
512{
513 ASSERT(!mask || mask->bmbt.br_startoff);
514
515 return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff),
516 be64_to_cpu(key2->bmbt.br_startoff));
517}
518
519const struct xfs_btree_ops xfs_bmbt_ops = {
520 .name = "bmap",
521 .type = XFS_BTREE_TYPE_INODE,
522
523 .rec_len = sizeof(xfs_bmbt_rec_t),
524 .key_len = sizeof(xfs_bmbt_key_t),
525 .ptr_len = XFS_BTREE_LONG_PTR_LEN,
526
527 .lru_refs = XFS_BMAP_BTREE_REF,
528 .statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2),
529
530 .dup_cursor = xfs_bmbt_dup_cursor,
531 .update_cursor = xfs_bmbt_update_cursor,
532 .alloc_block = xfs_bmbt_alloc_block,
533 .free_block = xfs_bmbt_free_block,
534 .get_maxrecs = xfs_bmbt_get_maxrecs,
535 .get_minrecs = xfs_bmbt_get_minrecs,
536 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs,
537 .init_key_from_rec = xfs_bmbt_init_key_from_rec,
538 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec,
539 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur,
540 .key_diff = xfs_bmbt_key_diff,
541 .diff_two_keys = xfs_bmbt_diff_two_keys,
542 .buf_ops = &xfs_bmbt_buf_ops,
543 .keys_inorder = xfs_bmbt_keys_inorder,
544 .recs_inorder = xfs_bmbt_recs_inorder,
545 .keys_contiguous = xfs_bmbt_keys_contiguous,
546};
547
548/*
549 * Create a new bmap btree cursor.
550 *
551 * For staging cursors -1 in passed in whichfork.
552 */
553struct xfs_btree_cur *
554xfs_bmbt_init_cursor(
555 struct xfs_mount *mp,
556 struct xfs_trans *tp,
557 struct xfs_inode *ip,
558 int whichfork)
559{
560 struct xfs_btree_cur *cur;
561 unsigned int maxlevels;
562
563 ASSERT(whichfork != XFS_COW_FORK);
564
565 /*
566 * The Data fork always has larger maxlevel, so use that for staging
567 * cursors.
568 */
569 switch (whichfork) {
570 case XFS_STAGING_FORK:
571 maxlevels = mp->m_bm_maxlevels[XFS_DATA_FORK];
572 break;
573 default:
574 maxlevels = mp->m_bm_maxlevels[whichfork];
575 break;
576 }
577 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bmbt_ops, maxlevels,
578 xfs_bmbt_cur_cache);
579 cur->bc_ino.ip = ip;
580 cur->bc_ino.whichfork = whichfork;
581 cur->bc_bmap.allocated = 0;
582 if (whichfork != XFS_STAGING_FORK) {
583 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
584
585 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
586 cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
587 }
588 return cur;
589}
590
591/* Calculate number of records in a block mapping btree block. */
592static inline unsigned int
593xfs_bmbt_block_maxrecs(
594 unsigned int blocklen,
595 bool leaf)
596{
597 if (leaf)
598 return blocklen / sizeof(xfs_bmbt_rec_t);
599 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
600}
601
602/*
603 * Swap in the new inode fork root. Once we pass this point the newly rebuilt
604 * mappings are in place and we have to kill off any old btree blocks.
605 */
606void
607xfs_bmbt_commit_staged_btree(
608 struct xfs_btree_cur *cur,
609 struct xfs_trans *tp,
610 int whichfork)
611{
612 struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake;
613 struct xfs_ifork *ifp;
614 static const short brootflag[2] = {XFS_ILOG_DBROOT, XFS_ILOG_ABROOT};
615 static const short extflag[2] = {XFS_ILOG_DEXT, XFS_ILOG_AEXT};
616 int flags = XFS_ILOG_CORE;
617
618 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
619 ASSERT(whichfork != XFS_COW_FORK);
620
621 /*
622 * Free any resources hanging off the real fork, then shallow-copy the
623 * staging fork's contents into the real fork to transfer everything
624 * we just built.
625 */
626 ifp = xfs_ifork_ptr(cur->bc_ino.ip, whichfork);
627 xfs_idestroy_fork(ifp);
628 memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
629
630 switch (ifp->if_format) {
631 case XFS_DINODE_FMT_EXTENTS:
632 flags |= extflag[whichfork];
633 break;
634 case XFS_DINODE_FMT_BTREE:
635 flags |= brootflag[whichfork];
636 break;
637 default:
638 ASSERT(0);
639 break;
640 }
641 xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
642 xfs_btree_commit_ifakeroot(cur, tp, whichfork);
643}
644
645/*
646 * Calculate number of records in a bmap btree block.
647 */
648int
649xfs_bmbt_maxrecs(
650 struct xfs_mount *mp,
651 int blocklen,
652 int leaf)
653{
654 blocklen -= XFS_BMBT_BLOCK_LEN(mp);
655 return xfs_bmbt_block_maxrecs(blocklen, leaf);
656}
657
658/*
659 * Calculate the maximum possible height of the btree that the on-disk format
660 * supports. This is used for sizing structures large enough to support every
661 * possible configuration of a filesystem that might get mounted.
662 */
663unsigned int
664xfs_bmbt_maxlevels_ondisk(void)
665{
666 unsigned int minrecs[2];
667 unsigned int blocklen;
668
669 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
670 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
671
672 minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
673 minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
674
675 /* One extra level for the inode root. */
676 return xfs_btree_compute_maxlevels(minrecs,
677 XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
678}
679
680/*
681 * Calculate number of records in a bmap btree inode root.
682 */
683int
684xfs_bmdr_maxrecs(
685 int blocklen,
686 int leaf)
687{
688 blocklen -= sizeof(xfs_bmdr_block_t);
689
690 if (leaf)
691 return blocklen / sizeof(xfs_bmdr_rec_t);
692 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
693}
694
695/*
696 * Change the owner of a btree format fork fo the inode passed in. Change it to
697 * the owner of that is passed in so that we can change owners before or after
698 * we switch forks between inodes. The operation that the caller is doing will
699 * determine whether is needs to change owner before or after the switch.
700 *
701 * For demand paged transactional modification, the fork switch should be done
702 * after reading in all the blocks, modifying them and pinning them in the
703 * transaction. For modification when the buffers are already pinned in memory,
704 * the fork switch can be done before changing the owner as we won't need to
705 * validate the owner until the btree buffers are unpinned and writes can occur
706 * again.
707 *
708 * For recovery based ownership change, there is no transactional context and
709 * so a buffer list must be supplied so that we can record the buffers that we
710 * modified for the caller to issue IO on.
711 */
712int
713xfs_bmbt_change_owner(
714 struct xfs_trans *tp,
715 struct xfs_inode *ip,
716 int whichfork,
717 xfs_ino_t new_owner,
718 struct list_head *buffer_list)
719{
720 struct xfs_btree_cur *cur;
721 int error;
722
723 ASSERT(tp || buffer_list);
724 ASSERT(!(tp && buffer_list));
725 ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
726
727 cur = xfs_bmbt_init_cursor(mp: ip->i_mount, tp, ip, whichfork);
728 cur->bc_flags |= XFS_BTREE_BMBT_INVALID_OWNER;
729
730 error = xfs_btree_change_owner(cur, new_owner, buffer_list);
731 xfs_btree_del_cursor(cur, error);
732 return error;
733}
734
735/* Calculate the bmap btree size for some records. */
736unsigned long long
737xfs_bmbt_calc_size(
738 struct xfs_mount *mp,
739 unsigned long long len)
740{
741 return xfs_btree_calc_size(limits: mp->m_bmap_dmnr, records: len);
742}
743
744int __init
745xfs_bmbt_init_cur_cache(void)
746{
747 xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
748 xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
749 0, 0, NULL);
750
751 if (!xfs_bmbt_cur_cache)
752 return -ENOMEM;
753 return 0;
754}
755
756void
757xfs_bmbt_destroy_cur_cache(void)
758{
759 kmem_cache_destroy(xfs_bmbt_cur_cache);
760 xfs_bmbt_cur_cache = NULL;
761}
762

source code of linux/fs/xfs/libxfs/xfs_bmap_btree.c