1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24#include "xfs_ag.h"
25#include "xfs_alloc_btree.h"
26#include "xfs_ialloc_btree.h"
27#include "xfs_bmap_btree.h"
28#include "xfs_rmap_btree.h"
29#include "xfs_refcount_btree.h"
30#include "xfs_health.h"
31#include "xfs_buf_mem.h"
32#include "xfs_btree_mem.h"
33
34/*
35 * Btree magic numbers.
36 */
37uint32_t
38xfs_btree_magic(
39 struct xfs_mount *mp,
40 const struct xfs_btree_ops *ops)
41{
42 int idx = xfs_has_crc(mp) ? 1 : 0;
43 __be32 magic = ops->buf_ops->magic[idx];
44
45 /* Ensure we asked for crc for crc-only magics. */
46 ASSERT(magic != 0);
47 return be32_to_cpu(magic);
48}
49
50/*
51 * These sibling pointer checks are optimised for null sibling pointers. This
52 * happens a lot, and we don't need to byte swap at runtime if the sibling
53 * pointer is NULL.
54 *
55 * These are explicitly marked at inline because the cost of calling them as
56 * functions instead of inlining them is about 36 bytes extra code per call site
57 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
58 * two sibling check functions reduces the compiled code size by over 300
59 * bytes.
60 */
61static inline xfs_failaddr_t
62xfs_btree_check_fsblock_siblings(
63 struct xfs_mount *mp,
64 xfs_fsblock_t fsb,
65 __be64 dsibling)
66{
67 xfs_fsblock_t sibling;
68
69 if (dsibling == cpu_to_be64(NULLFSBLOCK))
70 return NULL;
71
72 sibling = be64_to_cpu(dsibling);
73 if (sibling == fsb)
74 return __this_address;
75 if (!xfs_verify_fsbno(mp, sibling))
76 return __this_address;
77 return NULL;
78}
79
80static inline xfs_failaddr_t
81xfs_btree_check_memblock_siblings(
82 struct xfs_buftarg *btp,
83 xfbno_t bno,
84 __be64 dsibling)
85{
86 xfbno_t sibling;
87
88 if (dsibling == cpu_to_be64(NULLFSBLOCK))
89 return NULL;
90
91 sibling = be64_to_cpu(dsibling);
92 if (sibling == bno)
93 return __this_address;
94 if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
95 return __this_address;
96 return NULL;
97}
98
99static inline xfs_failaddr_t
100xfs_btree_check_agblock_siblings(
101 struct xfs_perag *pag,
102 xfs_agblock_t agbno,
103 __be32 dsibling)
104{
105 xfs_agblock_t sibling;
106
107 if (dsibling == cpu_to_be32(NULLAGBLOCK))
108 return NULL;
109
110 sibling = be32_to_cpu(dsibling);
111 if (sibling == agbno)
112 return __this_address;
113 if (!xfs_verify_agbno(pag, sibling))
114 return __this_address;
115 return NULL;
116}
117
118static xfs_failaddr_t
119__xfs_btree_check_lblock_hdr(
120 struct xfs_btree_cur *cur,
121 struct xfs_btree_block *block,
122 int level,
123 struct xfs_buf *bp)
124{
125 struct xfs_mount *mp = cur->bc_mp;
126
127 if (xfs_has_crc(mp)) {
128 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
129 return __this_address;
130 if (block->bb_u.l.bb_blkno !=
131 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
132 return __this_address;
133 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
134 return __this_address;
135 }
136
137 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
138 return __this_address;
139 if (be16_to_cpu(block->bb_level) != level)
140 return __this_address;
141 if (be16_to_cpu(block->bb_numrecs) >
142 cur->bc_ops->get_maxrecs(cur, level))
143 return __this_address;
144
145 return NULL;
146}
147
148/*
149 * Check a long btree block header. Return the address of the failing check,
150 * or NULL if everything is ok.
151 */
152static xfs_failaddr_t
153__xfs_btree_check_fsblock(
154 struct xfs_btree_cur *cur,
155 struct xfs_btree_block *block,
156 int level,
157 struct xfs_buf *bp)
158{
159 struct xfs_mount *mp = cur->bc_mp;
160 xfs_failaddr_t fa;
161 xfs_fsblock_t fsb;
162
163 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
164 if (fa)
165 return fa;
166
167 /*
168 * For inode-rooted btrees, the root block sits in the inode fork. In
169 * that case bp is NULL, and the block must not have any siblings.
170 */
171 if (!bp) {
172 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
173 return __this_address;
174 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
175 return __this_address;
176 return NULL;
177 }
178
179 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
180 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
181 block->bb_u.l.bb_leftsib);
182 if (!fa)
183 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
184 block->bb_u.l.bb_rightsib);
185 return fa;
186}
187
188/*
189 * Check an in-memory btree block header. Return the address of the failing
190 * check, or NULL if everything is ok.
191 */
192static xfs_failaddr_t
193__xfs_btree_check_memblock(
194 struct xfs_btree_cur *cur,
195 struct xfs_btree_block *block,
196 int level,
197 struct xfs_buf *bp)
198{
199 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
200 xfs_failaddr_t fa;
201 xfbno_t bno;
202
203 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
204 if (fa)
205 return fa;
206
207 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
208 fa = xfs_btree_check_memblock_siblings(btp, bno,
209 block->bb_u.l.bb_leftsib);
210 if (!fa)
211 fa = xfs_btree_check_memblock_siblings(btp, bno,
212 block->bb_u.l.bb_rightsib);
213 return fa;
214}
215
216/*
217 * Check a short btree block header. Return the address of the failing check,
218 * or NULL if everything is ok.
219 */
220static xfs_failaddr_t
221__xfs_btree_check_agblock(
222 struct xfs_btree_cur *cur,
223 struct xfs_btree_block *block,
224 int level,
225 struct xfs_buf *bp)
226{
227 struct xfs_mount *mp = cur->bc_mp;
228 struct xfs_perag *pag = cur->bc_ag.pag;
229 xfs_failaddr_t fa;
230 xfs_agblock_t agbno;
231
232 if (xfs_has_crc(mp)) {
233 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
234 return __this_address;
235 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
236 return __this_address;
237 }
238
239 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
240 return __this_address;
241 if (be16_to_cpu(block->bb_level) != level)
242 return __this_address;
243 if (be16_to_cpu(block->bb_numrecs) >
244 cur->bc_ops->get_maxrecs(cur, level))
245 return __this_address;
246
247 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
248 fa = xfs_btree_check_agblock_siblings(pag, agbno,
249 block->bb_u.s.bb_leftsib);
250 if (!fa)
251 fa = xfs_btree_check_agblock_siblings(pag, agbno,
252 block->bb_u.s.bb_rightsib);
253 return fa;
254}
255
256/*
257 * Internal btree block check.
258 *
259 * Return NULL if the block is ok or the address of the failed check otherwise.
260 */
261xfs_failaddr_t
262__xfs_btree_check_block(
263 struct xfs_btree_cur *cur,
264 struct xfs_btree_block *block,
265 int level,
266 struct xfs_buf *bp)
267{
268 switch (cur->bc_ops->type) {
269 case XFS_BTREE_TYPE_MEM:
270 return __xfs_btree_check_memblock(cur, block, level, bp);
271 case XFS_BTREE_TYPE_AG:
272 return __xfs_btree_check_agblock(cur, block, level, bp);
273 case XFS_BTREE_TYPE_INODE:
274 return __xfs_btree_check_fsblock(cur, block, level, bp);
275 default:
276 ASSERT(0);
277 return __this_address;
278 }
279}
280
281static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
282{
283 if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
284 return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
285 return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
286}
287
288/*
289 * Debug routine: check that block header is ok.
290 */
291int
292xfs_btree_check_block(
293 struct xfs_btree_cur *cur, /* btree cursor */
294 struct xfs_btree_block *block, /* generic btree block pointer */
295 int level, /* level of the btree block */
296 struct xfs_buf *bp) /* buffer containing block, if any */
297{
298 struct xfs_mount *mp = cur->bc_mp;
299 xfs_failaddr_t fa;
300
301 fa = __xfs_btree_check_block(cur, block, level, bp);
302 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
303 XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
304 if (bp)
305 trace_xfs_btree_corrupt(bp, _RET_IP_);
306 xfs_btree_mark_sick(cur);
307 return -EFSCORRUPTED;
308 }
309 return 0;
310}
311
312int
313__xfs_btree_check_ptr(
314 struct xfs_btree_cur *cur,
315 const union xfs_btree_ptr *ptr,
316 int index,
317 int level)
318{
319 if (level <= 0)
320 return -EFSCORRUPTED;
321
322 switch (cur->bc_ops->type) {
323 case XFS_BTREE_TYPE_MEM:
324 if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
325 be64_to_cpu((&ptr->l)[index])))
326 return -EFSCORRUPTED;
327 break;
328 case XFS_BTREE_TYPE_INODE:
329 if (!xfs_verify_fsbno(cur->bc_mp,
330 be64_to_cpu((&ptr->l)[index])))
331 return -EFSCORRUPTED;
332 break;
333 case XFS_BTREE_TYPE_AG:
334 if (!xfs_verify_agbno(cur->bc_ag.pag,
335 be32_to_cpu((&ptr->s)[index])))
336 return -EFSCORRUPTED;
337 break;
338 }
339
340 return 0;
341}
342
343/*
344 * Check that a given (indexed) btree pointer at a certain level of a
345 * btree is valid and doesn't point past where it should.
346 */
347static int
348xfs_btree_check_ptr(
349 struct xfs_btree_cur *cur,
350 const union xfs_btree_ptr *ptr,
351 int index,
352 int level)
353{
354 int error;
355
356 error = __xfs_btree_check_ptr(cur, ptr, index, level);
357 if (error) {
358 switch (cur->bc_ops->type) {
359 case XFS_BTREE_TYPE_MEM:
360 xfs_err(cur->bc_mp,
361"In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
362 cur->bc_ops->name, cur->bc_flags, level, index,
363 __this_address);
364 break;
365 case XFS_BTREE_TYPE_INODE:
366 xfs_err(cur->bc_mp,
367"Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
368 cur->bc_ino.ip->i_ino,
369 cur->bc_ino.whichfork, cur->bc_ops->name,
370 level, index);
371 break;
372 case XFS_BTREE_TYPE_AG:
373 xfs_err(cur->bc_mp,
374"AG %u: Corrupt %sbt pointer at level %d index %d.",
375 cur->bc_ag.pag->pag_agno, cur->bc_ops->name,
376 level, index);
377 break;
378 }
379 xfs_btree_mark_sick(cur);
380 }
381
382 return error;
383}
384
385#ifdef DEBUG
386# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
387#else
388# define xfs_btree_debug_check_ptr(...) (0)
389#endif
390
391/*
392 * Calculate CRC on the whole btree block and stuff it into the
393 * long-form btree header.
394 *
395 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
396 * it into the buffer so recovery knows what the last modification was that made
397 * it to disk.
398 */
399void
400xfs_btree_fsblock_calc_crc(
401 struct xfs_buf *bp)
402{
403 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
404 struct xfs_buf_log_item *bip = bp->b_log_item;
405
406 if (!xfs_has_crc(bp->b_mount))
407 return;
408 if (bip)
409 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
410 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
411}
412
413bool
414xfs_btree_fsblock_verify_crc(
415 struct xfs_buf *bp)
416{
417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
418 struct xfs_mount *mp = bp->b_mount;
419
420 if (xfs_has_crc(mp)) {
421 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
422 return false;
423 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
424 }
425
426 return true;
427}
428
429/*
430 * Calculate CRC on the whole btree block and stuff it into the
431 * short-form btree header.
432 *
433 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
434 * it into the buffer so recovery knows what the last modification was that made
435 * it to disk.
436 */
437void
438xfs_btree_agblock_calc_crc(
439 struct xfs_buf *bp)
440{
441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
442 struct xfs_buf_log_item *bip = bp->b_log_item;
443
444 if (!xfs_has_crc(bp->b_mount))
445 return;
446 if (bip)
447 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
448 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
449}
450
451bool
452xfs_btree_agblock_verify_crc(
453 struct xfs_buf *bp)
454{
455 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
456 struct xfs_mount *mp = bp->b_mount;
457
458 if (xfs_has_crc(mp)) {
459 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
460 return false;
461 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
462 }
463
464 return true;
465}
466
467static int
468xfs_btree_free_block(
469 struct xfs_btree_cur *cur,
470 struct xfs_buf *bp)
471{
472 int error;
473
474 trace_xfs_btree_free_block(cur, bp);
475
476 /*
477 * Don't allow block freeing for a staging cursor, because staging
478 * cursors do not support regular btree modifications.
479 */
480 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
481 ASSERT(0);
482 return -EFSCORRUPTED;
483 }
484
485 error = cur->bc_ops->free_block(cur, bp);
486 if (!error) {
487 xfs_trans_binval(cur->bc_tp, bp);
488 XFS_BTREE_STATS_INC(cur, free);
489 }
490 return error;
491}
492
493/*
494 * Delete the btree cursor.
495 */
496void
497xfs_btree_del_cursor(
498 struct xfs_btree_cur *cur, /* btree cursor */
499 int error) /* del because of error */
500{
501 int i; /* btree level */
502
503 /*
504 * Clear the buffer pointers and release the buffers. If we're doing
505 * this because of an error, inspect all of the entries in the bc_bufs
506 * array for buffers to be unlocked. This is because some of the btree
507 * code works from level n down to 0, and if we get an error along the
508 * way we won't have initialized all the entries down to 0.
509 */
510 for (i = 0; i < cur->bc_nlevels; i++) {
511 if (cur->bc_levels[i].bp)
512 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
513 else if (!error)
514 break;
515 }
516
517 /*
518 * If we are doing a BMBT update, the number of unaccounted blocks
519 * allocated during this cursor life time should be zero. If it's not
520 * zero, then we should be shut down or on our way to shutdown due to
521 * cancelling a dirty transaction on error.
522 */
523 ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
524 xfs_is_shutdown(cur->bc_mp) || error != 0);
525
526 switch (cur->bc_ops->type) {
527 case XFS_BTREE_TYPE_AG:
528 if (cur->bc_ag.pag)
529 xfs_perag_put(pag: cur->bc_ag.pag);
530 break;
531 case XFS_BTREE_TYPE_INODE:
532 /* nothing to do */
533 break;
534 case XFS_BTREE_TYPE_MEM:
535 if (cur->bc_mem.pag)
536 xfs_perag_put(pag: cur->bc_mem.pag);
537 break;
538 }
539
540 kmem_cache_free(cur->bc_cache, cur);
541}
542
543/* Return the buffer target for this btree's buffer. */
544static inline struct xfs_buftarg *
545xfs_btree_buftarg(
546 struct xfs_btree_cur *cur)
547{
548 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
549 return cur->bc_mem.xfbtree->target;
550 return cur->bc_mp->m_ddev_targp;
551}
552
553/* Return the block size (in units of 512b sectors) for this btree. */
554static inline unsigned int
555xfs_btree_bbsize(
556 struct xfs_btree_cur *cur)
557{
558 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
559 return XFBNO_BBSIZE;
560 return cur->bc_mp->m_bsize;
561}
562
563/*
564 * Duplicate the btree cursor.
565 * Allocate a new one, copy the record, re-get the buffers.
566 */
567int /* error */
568xfs_btree_dup_cursor(
569 struct xfs_btree_cur *cur, /* input cursor */
570 struct xfs_btree_cur **ncur) /* output cursor */
571{
572 struct xfs_mount *mp = cur->bc_mp;
573 struct xfs_trans *tp = cur->bc_tp;
574 struct xfs_buf *bp;
575 struct xfs_btree_cur *new;
576 int error;
577 int i;
578
579 /*
580 * Don't allow staging cursors to be duplicated because they're supposed
581 * to be kept private to a single thread.
582 */
583 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
584 ASSERT(0);
585 return -EFSCORRUPTED;
586 }
587
588 /*
589 * Allocate a new cursor like the old one.
590 */
591 new = cur->bc_ops->dup_cursor(cur);
592
593 /*
594 * Copy the record currently in the cursor.
595 */
596 new->bc_rec = cur->bc_rec;
597
598 /*
599 * For each level current, re-get the buffer and copy the ptr value.
600 */
601 for (i = 0; i < new->bc_nlevels; i++) {
602 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
603 new->bc_levels[i].ra = cur->bc_levels[i].ra;
604 bp = cur->bc_levels[i].bp;
605 if (bp) {
606 error = xfs_trans_read_buf(mp, tp,
607 xfs_btree_buftarg(cur),
608 xfs_buf_daddr(bp),
609 xfs_btree_bbsize(cur), 0, &bp,
610 cur->bc_ops->buf_ops);
611 if (xfs_metadata_is_sick(error))
612 xfs_btree_mark_sick(cur: new);
613 if (error) {
614 xfs_btree_del_cursor(cur: new, error);
615 *ncur = NULL;
616 return error;
617 }
618 }
619 new->bc_levels[i].bp = bp;
620 }
621 *ncur = new;
622 return 0;
623}
624
625/*
626 * XFS btree block layout and addressing:
627 *
628 * There are two types of blocks in the btree: leaf and non-leaf blocks.
629 *
630 * The leaf record start with a header then followed by records containing
631 * the values. A non-leaf block also starts with the same header, and
632 * then first contains lookup keys followed by an equal number of pointers
633 * to the btree blocks at the previous level.
634 *
635 * +--------+-------+-------+-------+-------+-------+-------+
636 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
637 * +--------+-------+-------+-------+-------+-------+-------+
638 *
639 * +--------+-------+-------+-------+-------+-------+-------+
640 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
641 * +--------+-------+-------+-------+-------+-------+-------+
642 *
643 * The header is called struct xfs_btree_block for reasons better left unknown
644 * and comes in different versions for short (32bit) and long (64bit) block
645 * pointers. The record and key structures are defined by the btree instances
646 * and opaque to the btree core. The block pointers are simple disk endian
647 * integers, available in a short (32bit) and long (64bit) variant.
648 *
649 * The helpers below calculate the offset of a given record, key or pointer
650 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
651 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
652 * inside the btree block is done using indices starting at one, not zero!
653 *
654 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
655 * overlapping intervals. In such a tree, records are still sorted lowest to
656 * highest and indexed by the smallest key value that refers to the record.
657 * However, nodes are different: each pointer has two associated keys -- one
658 * indexing the lowest key available in the block(s) below (the same behavior
659 * as the key in a regular btree) and another indexing the highest key
660 * available in the block(s) below. Because records are /not/ sorted by the
661 * highest key, all leaf block updates require us to compute the highest key
662 * that matches any record in the leaf and to recursively update the high keys
663 * in the nodes going further up in the tree, if necessary. Nodes look like
664 * this:
665 *
666 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
667 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
668 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
669 *
670 * To perform an interval query on an overlapped tree, perform the usual
671 * depth-first search and use the low and high keys to decide if we can skip
672 * that particular node. If a leaf node is reached, return the records that
673 * intersect the interval. Note that an interval query may return numerous
674 * entries. For a non-overlapped tree, simply search for the record associated
675 * with the lowest key and iterate forward until a non-matching record is
676 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
677 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
678 * more detail.
679 *
680 * Why do we care about overlapping intervals? Let's say you have a bunch of
681 * reverse mapping records on a reflink filesystem:
682 *
683 * 1: +- file A startblock B offset C length D -----------+
684 * 2: +- file E startblock F offset G length H --------------+
685 * 3: +- file I startblock F offset J length K --+
686 * 4: +- file L... --+
687 *
688 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
689 * we'd simply increment the length of record 1. But how do we find the record
690 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
691 * record 3 because the keys are ordered first by startblock. An interval
692 * query would return records 1 and 2 because they both overlap (B+D-1), and
693 * from that we can pick out record 1 as the appropriate left neighbor.
694 *
695 * In the non-overlapped case you can do a LE lookup and decrement the cursor
696 * because a record's interval must end before the next record.
697 */
698
699/*
700 * Return size of the btree block header for this btree instance.
701 */
702static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
703{
704 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
705 if (xfs_has_crc(cur->bc_mp))
706 return XFS_BTREE_LBLOCK_CRC_LEN;
707 return XFS_BTREE_LBLOCK_LEN;
708 }
709 if (xfs_has_crc(cur->bc_mp))
710 return XFS_BTREE_SBLOCK_CRC_LEN;
711 return XFS_BTREE_SBLOCK_LEN;
712}
713
714/*
715 * Calculate offset of the n-th record in a btree block.
716 */
717STATIC size_t
718xfs_btree_rec_offset(
719 struct xfs_btree_cur *cur,
720 int n)
721{
722 return xfs_btree_block_len(cur) +
723 (n - 1) * cur->bc_ops->rec_len;
724}
725
726/*
727 * Calculate offset of the n-th key in a btree block.
728 */
729STATIC size_t
730xfs_btree_key_offset(
731 struct xfs_btree_cur *cur,
732 int n)
733{
734 return xfs_btree_block_len(cur) +
735 (n - 1) * cur->bc_ops->key_len;
736}
737
738/*
739 * Calculate offset of the n-th high key in a btree block.
740 */
741STATIC size_t
742xfs_btree_high_key_offset(
743 struct xfs_btree_cur *cur,
744 int n)
745{
746 return xfs_btree_block_len(cur) +
747 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
748}
749
750/*
751 * Calculate offset of the n-th block pointer in a btree block.
752 */
753STATIC size_t
754xfs_btree_ptr_offset(
755 struct xfs_btree_cur *cur,
756 int n,
757 int level)
758{
759 return xfs_btree_block_len(cur) +
760 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
761 (n - 1) * cur->bc_ops->ptr_len;
762}
763
764/*
765 * Return a pointer to the n-th record in the btree block.
766 */
767union xfs_btree_rec *
768xfs_btree_rec_addr(
769 struct xfs_btree_cur *cur,
770 int n,
771 struct xfs_btree_block *block)
772{
773 return (union xfs_btree_rec *)
774 ((char *)block + xfs_btree_rec_offset(cur, n));
775}
776
777/*
778 * Return a pointer to the n-th key in the btree block.
779 */
780union xfs_btree_key *
781xfs_btree_key_addr(
782 struct xfs_btree_cur *cur,
783 int n,
784 struct xfs_btree_block *block)
785{
786 return (union xfs_btree_key *)
787 ((char *)block + xfs_btree_key_offset(cur, n));
788}
789
790/*
791 * Return a pointer to the n-th high key in the btree block.
792 */
793union xfs_btree_key *
794xfs_btree_high_key_addr(
795 struct xfs_btree_cur *cur,
796 int n,
797 struct xfs_btree_block *block)
798{
799 return (union xfs_btree_key *)
800 ((char *)block + xfs_btree_high_key_offset(cur, n));
801}
802
803/*
804 * Return a pointer to the n-th block pointer in the btree block.
805 */
806union xfs_btree_ptr *
807xfs_btree_ptr_addr(
808 struct xfs_btree_cur *cur,
809 int n,
810 struct xfs_btree_block *block)
811{
812 int level = xfs_btree_get_level(block);
813
814 ASSERT(block->bb_level != 0);
815
816 return (union xfs_btree_ptr *)
817 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
818}
819
820struct xfs_ifork *
821xfs_btree_ifork_ptr(
822 struct xfs_btree_cur *cur)
823{
824 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
825
826 if (cur->bc_flags & XFS_BTREE_STAGING)
827 return cur->bc_ino.ifake->if_fork;
828 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
829}
830
831/*
832 * Get the root block which is stored in the inode.
833 *
834 * For now this btree implementation assumes the btree root is always
835 * stored in the if_broot field of an inode fork.
836 */
837STATIC struct xfs_btree_block *
838xfs_btree_get_iroot(
839 struct xfs_btree_cur *cur)
840{
841 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
842
843 return (struct xfs_btree_block *)ifp->if_broot;
844}
845
846/*
847 * Retrieve the block pointer from the cursor at the given level.
848 * This may be an inode btree root or from a buffer.
849 */
850struct xfs_btree_block * /* generic btree block pointer */
851xfs_btree_get_block(
852 struct xfs_btree_cur *cur, /* btree cursor */
853 int level, /* level in btree */
854 struct xfs_buf **bpp) /* buffer containing the block */
855{
856 if (xfs_btree_at_iroot(cur, level)) {
857 *bpp = NULL;
858 return xfs_btree_get_iroot(cur);
859 }
860
861 *bpp = cur->bc_levels[level].bp;
862 return XFS_BUF_TO_BLOCK(*bpp);
863}
864
865/*
866 * Change the cursor to point to the first record at the given level.
867 * Other levels are unaffected.
868 */
869STATIC int /* success=1, failure=0 */
870xfs_btree_firstrec(
871 struct xfs_btree_cur *cur, /* btree cursor */
872 int level) /* level to change */
873{
874 struct xfs_btree_block *block; /* generic btree block pointer */
875 struct xfs_buf *bp; /* buffer containing block */
876
877 /*
878 * Get the block pointer for this level.
879 */
880 block = xfs_btree_get_block(cur, level, bpp: &bp);
881 if (xfs_btree_check_block(cur, block, level, bp))
882 return 0;
883 /*
884 * It's empty, there is no such record.
885 */
886 if (!block->bb_numrecs)
887 return 0;
888 /*
889 * Set the ptr value to 1, that's the first record/key.
890 */
891 cur->bc_levels[level].ptr = 1;
892 return 1;
893}
894
895/*
896 * Change the cursor to point to the last record in the current block
897 * at the given level. Other levels are unaffected.
898 */
899STATIC int /* success=1, failure=0 */
900xfs_btree_lastrec(
901 struct xfs_btree_cur *cur, /* btree cursor */
902 int level) /* level to change */
903{
904 struct xfs_btree_block *block; /* generic btree block pointer */
905 struct xfs_buf *bp; /* buffer containing block */
906
907 /*
908 * Get the block pointer for this level.
909 */
910 block = xfs_btree_get_block(cur, level, bpp: &bp);
911 if (xfs_btree_check_block(cur, block, level, bp))
912 return 0;
913 /*
914 * It's empty, there is no such record.
915 */
916 if (!block->bb_numrecs)
917 return 0;
918 /*
919 * Set the ptr value to numrecs, that's the last record/key.
920 */
921 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
922 return 1;
923}
924
925/*
926 * Compute first and last byte offsets for the fields given.
927 * Interprets the offsets table, which contains struct field offsets.
928 */
929void
930xfs_btree_offsets(
931 uint32_t fields, /* bitmask of fields */
932 const short *offsets, /* table of field offsets */
933 int nbits, /* number of bits to inspect */
934 int *first, /* output: first byte offset */
935 int *last) /* output: last byte offset */
936{
937 int i; /* current bit number */
938 uint32_t imask; /* mask for current bit number */
939
940 ASSERT(fields != 0);
941 /*
942 * Find the lowest bit, so the first byte offset.
943 */
944 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
945 if (imask & fields) {
946 *first = offsets[i];
947 break;
948 }
949 }
950 /*
951 * Find the highest bit, so the last byte offset.
952 */
953 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
954 if (imask & fields) {
955 *last = offsets[i + 1] - 1;
956 break;
957 }
958 }
959}
960
961STATIC int
962xfs_btree_readahead_fsblock(
963 struct xfs_btree_cur *cur,
964 int lr,
965 struct xfs_btree_block *block)
966{
967 struct xfs_mount *mp = cur->bc_mp;
968 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
969 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
970 int rval = 0;
971
972 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
973 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
974 mp->m_bsize, cur->bc_ops->buf_ops);
975 rval++;
976 }
977
978 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
979 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
980 mp->m_bsize, cur->bc_ops->buf_ops);
981 rval++;
982 }
983
984 return rval;
985}
986
987STATIC int
988xfs_btree_readahead_memblock(
989 struct xfs_btree_cur *cur,
990 int lr,
991 struct xfs_btree_block *block)
992{
993 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
994 xfbno_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
995 xfbno_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
996 int rval = 0;
997
998 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
999 xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
1000 cur->bc_ops->buf_ops);
1001 rval++;
1002 }
1003
1004 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
1005 xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
1006 cur->bc_ops->buf_ops);
1007 rval++;
1008 }
1009
1010 return rval;
1011}
1012
1013STATIC int
1014xfs_btree_readahead_agblock(
1015 struct xfs_btree_cur *cur,
1016 int lr,
1017 struct xfs_btree_block *block)
1018{
1019 struct xfs_mount *mp = cur->bc_mp;
1020 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno;
1021 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1022 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1023 int rval = 0;
1024
1025 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1026 xfs_buf_readahead(mp->m_ddev_targp,
1027 XFS_AGB_TO_DADDR(mp, agno, left),
1028 mp->m_bsize, cur->bc_ops->buf_ops);
1029 rval++;
1030 }
1031
1032 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1033 xfs_buf_readahead(mp->m_ddev_targp,
1034 XFS_AGB_TO_DADDR(mp, agno, right),
1035 mp->m_bsize, cur->bc_ops->buf_ops);
1036 rval++;
1037 }
1038
1039 return rval;
1040}
1041
1042/*
1043 * Read-ahead btree blocks, at the given level.
1044 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1045 */
1046STATIC int
1047xfs_btree_readahead(
1048 struct xfs_btree_cur *cur, /* btree cursor */
1049 int lev, /* level in btree */
1050 int lr) /* left/right bits */
1051{
1052 struct xfs_btree_block *block;
1053
1054 /*
1055 * No readahead needed if we are at the root level and the
1056 * btree root is stored in the inode.
1057 */
1058 if (xfs_btree_at_iroot(cur, lev))
1059 return 0;
1060
1061 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1062 return 0;
1063
1064 cur->bc_levels[lev].ra |= lr;
1065 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1066
1067 switch (cur->bc_ops->type) {
1068 case XFS_BTREE_TYPE_AG:
1069 return xfs_btree_readahead_agblock(cur, lr, block);
1070 case XFS_BTREE_TYPE_INODE:
1071 return xfs_btree_readahead_fsblock(cur, lr, block);
1072 case XFS_BTREE_TYPE_MEM:
1073 return xfs_btree_readahead_memblock(cur, lr, block);
1074 default:
1075 ASSERT(0);
1076 return 0;
1077 }
1078}
1079
1080STATIC int
1081xfs_btree_ptr_to_daddr(
1082 struct xfs_btree_cur *cur,
1083 const union xfs_btree_ptr *ptr,
1084 xfs_daddr_t *daddr)
1085{
1086 int error;
1087
1088 error = xfs_btree_check_ptr(cur, ptr, index: 0, level: 1);
1089 if (error)
1090 return error;
1091
1092 switch (cur->bc_ops->type) {
1093 case XFS_BTREE_TYPE_AG:
1094 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1095 be32_to_cpu(ptr->s));
1096 break;
1097 case XFS_BTREE_TYPE_INODE:
1098 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1099 break;
1100 case XFS_BTREE_TYPE_MEM:
1101 *daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1102 break;
1103 }
1104 return 0;
1105}
1106
1107/*
1108 * Readahead @count btree blocks at the given @ptr location.
1109 *
1110 * We don't need to care about long or short form btrees here as we have a
1111 * method of converting the ptr directly to a daddr available to us.
1112 */
1113STATIC void
1114xfs_btree_readahead_ptr(
1115 struct xfs_btree_cur *cur,
1116 union xfs_btree_ptr *ptr,
1117 xfs_extlen_t count)
1118{
1119 xfs_daddr_t daddr;
1120
1121 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1122 return;
1123 xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1124 xfs_btree_bbsize(cur) * count,
1125 cur->bc_ops->buf_ops);
1126}
1127
1128/*
1129 * Set the buffer for level "lev" in the cursor to bp, releasing
1130 * any previous buffer.
1131 */
1132STATIC void
1133xfs_btree_setbuf(
1134 struct xfs_btree_cur *cur, /* btree cursor */
1135 int lev, /* level in btree */
1136 struct xfs_buf *bp) /* new buffer to set */
1137{
1138 struct xfs_btree_block *b; /* btree block */
1139
1140 if (cur->bc_levels[lev].bp)
1141 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1142 cur->bc_levels[lev].bp = bp;
1143 cur->bc_levels[lev].ra = 0;
1144
1145 b = XFS_BUF_TO_BLOCK(bp);
1146 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1147 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1148 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1149 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1150 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1151 } else {
1152 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1153 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1154 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1155 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1156 }
1157}
1158
1159bool
1160xfs_btree_ptr_is_null(
1161 struct xfs_btree_cur *cur,
1162 const union xfs_btree_ptr *ptr)
1163{
1164 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1165 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1166 else
1167 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1168}
1169
1170void
1171xfs_btree_set_ptr_null(
1172 struct xfs_btree_cur *cur,
1173 union xfs_btree_ptr *ptr)
1174{
1175 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176 ptr->l = cpu_to_be64(NULLFSBLOCK);
1177 else
1178 ptr->s = cpu_to_be32(NULLAGBLOCK);
1179}
1180
1181static inline bool
1182xfs_btree_ptrs_equal(
1183 struct xfs_btree_cur *cur,
1184 union xfs_btree_ptr *ptr1,
1185 union xfs_btree_ptr *ptr2)
1186{
1187 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1188 return ptr1->l == ptr2->l;
1189 return ptr1->s == ptr2->s;
1190}
1191
1192/*
1193 * Get/set/init sibling pointers
1194 */
1195void
1196xfs_btree_get_sibling(
1197 struct xfs_btree_cur *cur,
1198 struct xfs_btree_block *block,
1199 union xfs_btree_ptr *ptr,
1200 int lr)
1201{
1202 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1203
1204 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1205 if (lr == XFS_BB_RIGHTSIB)
1206 ptr->l = block->bb_u.l.bb_rightsib;
1207 else
1208 ptr->l = block->bb_u.l.bb_leftsib;
1209 } else {
1210 if (lr == XFS_BB_RIGHTSIB)
1211 ptr->s = block->bb_u.s.bb_rightsib;
1212 else
1213 ptr->s = block->bb_u.s.bb_leftsib;
1214 }
1215}
1216
1217void
1218xfs_btree_set_sibling(
1219 struct xfs_btree_cur *cur,
1220 struct xfs_btree_block *block,
1221 const union xfs_btree_ptr *ptr,
1222 int lr)
1223{
1224 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1225
1226 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1227 if (lr == XFS_BB_RIGHTSIB)
1228 block->bb_u.l.bb_rightsib = ptr->l;
1229 else
1230 block->bb_u.l.bb_leftsib = ptr->l;
1231 } else {
1232 if (lr == XFS_BB_RIGHTSIB)
1233 block->bb_u.s.bb_rightsib = ptr->s;
1234 else
1235 block->bb_u.s.bb_leftsib = ptr->s;
1236 }
1237}
1238
1239static void
1240__xfs_btree_init_block(
1241 struct xfs_mount *mp,
1242 struct xfs_btree_block *buf,
1243 const struct xfs_btree_ops *ops,
1244 xfs_daddr_t blkno,
1245 __u16 level,
1246 __u16 numrecs,
1247 __u64 owner)
1248{
1249 bool crc = xfs_has_crc(mp);
1250 __u32 magic = xfs_btree_magic(mp, ops);
1251
1252 buf->bb_magic = cpu_to_be32(magic);
1253 buf->bb_level = cpu_to_be16(level);
1254 buf->bb_numrecs = cpu_to_be16(numrecs);
1255
1256 if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1257 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1258 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1259 if (crc) {
1260 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1261 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1262 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1263 buf->bb_u.l.bb_pad = 0;
1264 buf->bb_u.l.bb_lsn = 0;
1265 }
1266 } else {
1267 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1268 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1269 if (crc) {
1270 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1271 /* owner is a 32 bit value on short blocks */
1272 buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1273 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1274 buf->bb_u.s.bb_lsn = 0;
1275 }
1276 }
1277}
1278
1279void
1280xfs_btree_init_block(
1281 struct xfs_mount *mp,
1282 struct xfs_btree_block *block,
1283 const struct xfs_btree_ops *ops,
1284 __u16 level,
1285 __u16 numrecs,
1286 __u64 owner)
1287{
1288 __xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1289 numrecs, owner);
1290}
1291
1292void
1293xfs_btree_init_buf(
1294 struct xfs_mount *mp,
1295 struct xfs_buf *bp,
1296 const struct xfs_btree_ops *ops,
1297 __u16 level,
1298 __u16 numrecs,
1299 __u64 owner)
1300{
1301 __xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1302 xfs_buf_daddr(bp), level, numrecs, owner);
1303 bp->b_ops = ops->buf_ops;
1304}
1305
1306static inline __u64
1307xfs_btree_owner(
1308 struct xfs_btree_cur *cur)
1309{
1310 switch (cur->bc_ops->type) {
1311 case XFS_BTREE_TYPE_MEM:
1312 return cur->bc_mem.xfbtree->owner;
1313 case XFS_BTREE_TYPE_INODE:
1314 return cur->bc_ino.ip->i_ino;
1315 case XFS_BTREE_TYPE_AG:
1316 return cur->bc_ag.pag->pag_agno;
1317 default:
1318 ASSERT(0);
1319 return 0;
1320 }
1321}
1322
1323void
1324xfs_btree_init_block_cur(
1325 struct xfs_btree_cur *cur,
1326 struct xfs_buf *bp,
1327 int level,
1328 int numrecs)
1329{
1330 xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1331 xfs_btree_owner(cur));
1332}
1333
1334/*
1335 * Return true if ptr is the last record in the btree and
1336 * we need to track updates to this record. The decision
1337 * will be further refined in the update_lastrec method.
1338 */
1339STATIC int
1340xfs_btree_is_lastrec(
1341 struct xfs_btree_cur *cur,
1342 struct xfs_btree_block *block,
1343 int level)
1344{
1345 union xfs_btree_ptr ptr;
1346
1347 if (level > 0)
1348 return 0;
1349 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_LASTREC_UPDATE))
1350 return 0;
1351
1352 xfs_btree_get_sibling(cur, block, ptr: &ptr, XFS_BB_RIGHTSIB);
1353 if (!xfs_btree_ptr_is_null(cur, &ptr))
1354 return 0;
1355 return 1;
1356}
1357
1358STATIC void
1359xfs_btree_buf_to_ptr(
1360 struct xfs_btree_cur *cur,
1361 struct xfs_buf *bp,
1362 union xfs_btree_ptr *ptr)
1363{
1364 switch (cur->bc_ops->type) {
1365 case XFS_BTREE_TYPE_AG:
1366 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1367 xfs_buf_daddr(bp)));
1368 break;
1369 case XFS_BTREE_TYPE_INODE:
1370 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1371 xfs_buf_daddr(bp)));
1372 break;
1373 case XFS_BTREE_TYPE_MEM:
1374 ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1375 break;
1376 }
1377}
1378
1379static inline void
1380xfs_btree_set_refs(
1381 struct xfs_btree_cur *cur,
1382 struct xfs_buf *bp)
1383{
1384 xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1385}
1386
1387int
1388xfs_btree_get_buf_block(
1389 struct xfs_btree_cur *cur,
1390 const union xfs_btree_ptr *ptr,
1391 struct xfs_btree_block **block,
1392 struct xfs_buf **bpp)
1393{
1394 xfs_daddr_t d;
1395 int error;
1396
1397 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1398 if (error)
1399 return error;
1400 error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1401 xfs_btree_bbsize(cur), 0, bpp);
1402 if (error)
1403 return error;
1404
1405 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1406 *block = XFS_BUF_TO_BLOCK(*bpp);
1407 return 0;
1408}
1409
1410/*
1411 * Read in the buffer at the given ptr and return the buffer and
1412 * the block pointer within the buffer.
1413 */
1414int
1415xfs_btree_read_buf_block(
1416 struct xfs_btree_cur *cur,
1417 const union xfs_btree_ptr *ptr,
1418 int flags,
1419 struct xfs_btree_block **block,
1420 struct xfs_buf **bpp)
1421{
1422 struct xfs_mount *mp = cur->bc_mp;
1423 xfs_daddr_t d;
1424 int error;
1425
1426 /* need to sort out how callers deal with failures first */
1427 ASSERT(!(flags & XBF_TRYLOCK));
1428
1429 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1430 if (error)
1431 return error;
1432 error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1433 xfs_btree_bbsize(cur), flags, bpp,
1434 cur->bc_ops->buf_ops);
1435 if (xfs_metadata_is_sick(error))
1436 xfs_btree_mark_sick(cur);
1437 if (error)
1438 return error;
1439
1440 xfs_btree_set_refs(cur, bp: *bpp);
1441 *block = XFS_BUF_TO_BLOCK(*bpp);
1442 return 0;
1443}
1444
1445/*
1446 * Copy keys from one btree block to another.
1447 */
1448void
1449xfs_btree_copy_keys(
1450 struct xfs_btree_cur *cur,
1451 union xfs_btree_key *dst_key,
1452 const union xfs_btree_key *src_key,
1453 int numkeys)
1454{
1455 ASSERT(numkeys >= 0);
1456 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1457}
1458
1459/*
1460 * Copy records from one btree block to another.
1461 */
1462STATIC void
1463xfs_btree_copy_recs(
1464 struct xfs_btree_cur *cur,
1465 union xfs_btree_rec *dst_rec,
1466 union xfs_btree_rec *src_rec,
1467 int numrecs)
1468{
1469 ASSERT(numrecs >= 0);
1470 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1471}
1472
1473/*
1474 * Copy block pointers from one btree block to another.
1475 */
1476void
1477xfs_btree_copy_ptrs(
1478 struct xfs_btree_cur *cur,
1479 union xfs_btree_ptr *dst_ptr,
1480 const union xfs_btree_ptr *src_ptr,
1481 int numptrs)
1482{
1483 ASSERT(numptrs >= 0);
1484 memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1485}
1486
1487/*
1488 * Shift keys one index left/right inside a single btree block.
1489 */
1490STATIC void
1491xfs_btree_shift_keys(
1492 struct xfs_btree_cur *cur,
1493 union xfs_btree_key *key,
1494 int dir,
1495 int numkeys)
1496{
1497 char *dst_key;
1498
1499 ASSERT(numkeys >= 0);
1500 ASSERT(dir == 1 || dir == -1);
1501
1502 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1503 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1504}
1505
1506/*
1507 * Shift records one index left/right inside a single btree block.
1508 */
1509STATIC void
1510xfs_btree_shift_recs(
1511 struct xfs_btree_cur *cur,
1512 union xfs_btree_rec *rec,
1513 int dir,
1514 int numrecs)
1515{
1516 char *dst_rec;
1517
1518 ASSERT(numrecs >= 0);
1519 ASSERT(dir == 1 || dir == -1);
1520
1521 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1522 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1523}
1524
1525/*
1526 * Shift block pointers one index left/right inside a single btree block.
1527 */
1528STATIC void
1529xfs_btree_shift_ptrs(
1530 struct xfs_btree_cur *cur,
1531 union xfs_btree_ptr *ptr,
1532 int dir,
1533 int numptrs)
1534{
1535 char *dst_ptr;
1536
1537 ASSERT(numptrs >= 0);
1538 ASSERT(dir == 1 || dir == -1);
1539
1540 dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1541 memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1542}
1543
1544/*
1545 * Log key values from the btree block.
1546 */
1547STATIC void
1548xfs_btree_log_keys(
1549 struct xfs_btree_cur *cur,
1550 struct xfs_buf *bp,
1551 int first,
1552 int last)
1553{
1554
1555 if (bp) {
1556 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1557 xfs_trans_log_buf(cur->bc_tp, bp,
1558 xfs_btree_key_offset(cur, first),
1559 xfs_btree_key_offset(cur, last + 1) - 1);
1560 } else {
1561 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1562 xfs_ilog_fbroot(w: cur->bc_ino.whichfork));
1563 }
1564}
1565
1566/*
1567 * Log record values from the btree block.
1568 */
1569void
1570xfs_btree_log_recs(
1571 struct xfs_btree_cur *cur,
1572 struct xfs_buf *bp,
1573 int first,
1574 int last)
1575{
1576
1577 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1578 xfs_trans_log_buf(cur->bc_tp, bp,
1579 xfs_btree_rec_offset(cur, first),
1580 xfs_btree_rec_offset(cur, last + 1) - 1);
1581
1582}
1583
1584/*
1585 * Log block pointer fields from a btree block (nonleaf).
1586 */
1587STATIC void
1588xfs_btree_log_ptrs(
1589 struct xfs_btree_cur *cur, /* btree cursor */
1590 struct xfs_buf *bp, /* buffer containing btree block */
1591 int first, /* index of first pointer to log */
1592 int last) /* index of last pointer to log */
1593{
1594
1595 if (bp) {
1596 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1597 int level = xfs_btree_get_level(block);
1598
1599 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1600 xfs_trans_log_buf(cur->bc_tp, bp,
1601 xfs_btree_ptr_offset(cur, first, level),
1602 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1603 } else {
1604 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1605 xfs_ilog_fbroot(w: cur->bc_ino.whichfork));
1606 }
1607
1608}
1609
1610/*
1611 * Log fields from a btree block header.
1612 */
1613void
1614xfs_btree_log_block(
1615 struct xfs_btree_cur *cur, /* btree cursor */
1616 struct xfs_buf *bp, /* buffer containing btree block */
1617 uint32_t fields) /* mask of fields: XFS_BB_... */
1618{
1619 int first; /* first byte offset logged */
1620 int last; /* last byte offset logged */
1621 static const short soffsets[] = { /* table of offsets (short) */
1622 offsetof(struct xfs_btree_block, bb_magic),
1623 offsetof(struct xfs_btree_block, bb_level),
1624 offsetof(struct xfs_btree_block, bb_numrecs),
1625 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1626 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1627 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1628 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1629 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1630 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1631 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1632 XFS_BTREE_SBLOCK_CRC_LEN
1633 };
1634 static const short loffsets[] = { /* table of offsets (long) */
1635 offsetof(struct xfs_btree_block, bb_magic),
1636 offsetof(struct xfs_btree_block, bb_level),
1637 offsetof(struct xfs_btree_block, bb_numrecs),
1638 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1639 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1640 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1641 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1642 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1643 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1644 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1645 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1646 XFS_BTREE_LBLOCK_CRC_LEN
1647 };
1648
1649 if (bp) {
1650 int nbits;
1651
1652 if (xfs_has_crc(cur->bc_mp)) {
1653 /*
1654 * We don't log the CRC when updating a btree
1655 * block but instead recreate it during log
1656 * recovery. As the log buffers have checksums
1657 * of their own this is safe and avoids logging a crc
1658 * update in a lot of places.
1659 */
1660 if (fields == XFS_BB_ALL_BITS)
1661 fields = XFS_BB_ALL_BITS_CRC;
1662 nbits = XFS_BB_NUM_BITS_CRC;
1663 } else {
1664 nbits = XFS_BB_NUM_BITS;
1665 }
1666 xfs_btree_offsets(fields,
1667 (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1668 loffsets : soffsets,
1669 nbits, &first, &last);
1670 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1671 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1672 } else {
1673 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1674 xfs_ilog_fbroot(w: cur->bc_ino.whichfork));
1675 }
1676}
1677
1678/*
1679 * Increment cursor by one record at the level.
1680 * For nonzero levels the leaf-ward information is untouched.
1681 */
1682int /* error */
1683xfs_btree_increment(
1684 struct xfs_btree_cur *cur,
1685 int level,
1686 int *stat) /* success/failure */
1687{
1688 struct xfs_btree_block *block;
1689 union xfs_btree_ptr ptr;
1690 struct xfs_buf *bp;
1691 int error; /* error return value */
1692 int lev;
1693
1694 ASSERT(level < cur->bc_nlevels);
1695
1696 /* Read-ahead to the right at this level. */
1697 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1698
1699 /* Get a pointer to the btree block. */
1700 block = xfs_btree_get_block(cur, level, bpp: &bp);
1701
1702#ifdef DEBUG
1703 error = xfs_btree_check_block(cur, block, level, bp);
1704 if (error)
1705 goto error0;
1706#endif
1707
1708 /* We're done if we remain in the block after the increment. */
1709 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1710 goto out1;
1711
1712 /* Fail if we just went off the right edge of the tree. */
1713 xfs_btree_get_sibling(cur, block, ptr: &ptr, XFS_BB_RIGHTSIB);
1714 if (xfs_btree_ptr_is_null(cur, &ptr))
1715 goto out0;
1716
1717 XFS_BTREE_STATS_INC(cur, increment);
1718
1719 /*
1720 * March up the tree incrementing pointers.
1721 * Stop when we don't go off the right edge of a block.
1722 */
1723 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1724 block = xfs_btree_get_block(cur, level: lev, bpp: &bp);
1725
1726#ifdef DEBUG
1727 error = xfs_btree_check_block(cur, block, lev, bp);
1728 if (error)
1729 goto error0;
1730#endif
1731
1732 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1733 break;
1734
1735 /* Read-ahead the right block for the next loop. */
1736 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1737 }
1738
1739 /*
1740 * If we went off the root then we are either seriously
1741 * confused or have the tree root in an inode.
1742 */
1743 if (lev == cur->bc_nlevels) {
1744 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1745 goto out0;
1746 ASSERT(0);
1747 xfs_btree_mark_sick(cur);
1748 error = -EFSCORRUPTED;
1749 goto error0;
1750 }
1751 ASSERT(lev < cur->bc_nlevels);
1752
1753 /*
1754 * Now walk back down the tree, fixing up the cursor's buffer
1755 * pointers and key numbers.
1756 */
1757 for (block = xfs_btree_get_block(cur, level: lev, bpp: &bp); lev > level; ) {
1758 union xfs_btree_ptr *ptrp;
1759
1760 ptrp = xfs_btree_ptr_addr(cur, n: cur->bc_levels[lev].ptr, block);
1761 --lev;
1762 error = xfs_btree_read_buf_block(cur, ptr: ptrp, flags: 0, block: &block, bpp: &bp);
1763 if (error)
1764 goto error0;
1765
1766 xfs_btree_setbuf(cur, lev, bp);
1767 cur->bc_levels[lev].ptr = 1;
1768 }
1769out1:
1770 *stat = 1;
1771 return 0;
1772
1773out0:
1774 *stat = 0;
1775 return 0;
1776
1777error0:
1778 return error;
1779}
1780
1781/*
1782 * Decrement cursor by one record at the level.
1783 * For nonzero levels the leaf-ward information is untouched.
1784 */
1785int /* error */
1786xfs_btree_decrement(
1787 struct xfs_btree_cur *cur,
1788 int level,
1789 int *stat) /* success/failure */
1790{
1791 struct xfs_btree_block *block;
1792 struct xfs_buf *bp;
1793 int error; /* error return value */
1794 int lev;
1795 union xfs_btree_ptr ptr;
1796
1797 ASSERT(level < cur->bc_nlevels);
1798
1799 /* Read-ahead to the left at this level. */
1800 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1801
1802 /* We're done if we remain in the block after the decrement. */
1803 if (--cur->bc_levels[level].ptr > 0)
1804 goto out1;
1805
1806 /* Get a pointer to the btree block. */
1807 block = xfs_btree_get_block(cur, level, bpp: &bp);
1808
1809#ifdef DEBUG
1810 error = xfs_btree_check_block(cur, block, level, bp);
1811 if (error)
1812 goto error0;
1813#endif
1814
1815 /* Fail if we just went off the left edge of the tree. */
1816 xfs_btree_get_sibling(cur, block, ptr: &ptr, XFS_BB_LEFTSIB);
1817 if (xfs_btree_ptr_is_null(cur, &ptr))
1818 goto out0;
1819
1820 XFS_BTREE_STATS_INC(cur, decrement);
1821
1822 /*
1823 * March up the tree decrementing pointers.
1824 * Stop when we don't go off the left edge of a block.
1825 */
1826 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1827 if (--cur->bc_levels[lev].ptr > 0)
1828 break;
1829 /* Read-ahead the left block for the next loop. */
1830 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1831 }
1832
1833 /*
1834 * If we went off the root then we are seriously confused.
1835 * or the root of the tree is in an inode.
1836 */
1837 if (lev == cur->bc_nlevels) {
1838 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1839 goto out0;
1840 ASSERT(0);
1841 xfs_btree_mark_sick(cur);
1842 error = -EFSCORRUPTED;
1843 goto error0;
1844 }
1845 ASSERT(lev < cur->bc_nlevels);
1846
1847 /*
1848 * Now walk back down the tree, fixing up the cursor's buffer
1849 * pointers and key numbers.
1850 */
1851 for (block = xfs_btree_get_block(cur, level: lev, bpp: &bp); lev > level; ) {
1852 union xfs_btree_ptr *ptrp;
1853
1854 ptrp = xfs_btree_ptr_addr(cur, n: cur->bc_levels[lev].ptr, block);
1855 --lev;
1856 error = xfs_btree_read_buf_block(cur, ptr: ptrp, flags: 0, block: &block, bpp: &bp);
1857 if (error)
1858 goto error0;
1859 xfs_btree_setbuf(cur, lev, bp);
1860 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1861 }
1862out1:
1863 *stat = 1;
1864 return 0;
1865
1866out0:
1867 *stat = 0;
1868 return 0;
1869
1870error0:
1871 return error;
1872}
1873
1874/*
1875 * Check the btree block owner now that we have the context to know who the
1876 * real owner is.
1877 */
1878static inline xfs_failaddr_t
1879xfs_btree_check_block_owner(
1880 struct xfs_btree_cur *cur,
1881 struct xfs_btree_block *block)
1882{
1883 __u64 owner;
1884
1885 if (!xfs_has_crc(cur->bc_mp) ||
1886 (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1887 return NULL;
1888
1889 owner = xfs_btree_owner(cur);
1890 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1891 if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1892 return __this_address;
1893 } else {
1894 if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1895 return __this_address;
1896 }
1897
1898 return NULL;
1899}
1900
1901int
1902xfs_btree_lookup_get_block(
1903 struct xfs_btree_cur *cur, /* btree cursor */
1904 int level, /* level in the btree */
1905 const union xfs_btree_ptr *pp, /* ptr to btree block */
1906 struct xfs_btree_block **blkp) /* return btree block */
1907{
1908 struct xfs_buf *bp; /* buffer pointer for btree block */
1909 xfs_daddr_t daddr;
1910 int error = 0;
1911
1912 /* special case the root block if in an inode */
1913 if (xfs_btree_at_iroot(cur, level)) {
1914 *blkp = xfs_btree_get_iroot(cur);
1915 return 0;
1916 }
1917
1918 /*
1919 * If the old buffer at this level for the disk address we are
1920 * looking for re-use it.
1921 *
1922 * Otherwise throw it away and get a new one.
1923 */
1924 bp = cur->bc_levels[level].bp;
1925 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1926 if (error)
1927 return error;
1928 if (bp && xfs_buf_daddr(bp) == daddr) {
1929 *blkp = XFS_BUF_TO_BLOCK(bp);
1930 return 0;
1931 }
1932
1933 error = xfs_btree_read_buf_block(cur, ptr: pp, flags: 0, block: blkp, bpp: &bp);
1934 if (error)
1935 return error;
1936
1937 /* Check the inode owner since the verifiers don't. */
1938 if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1939 goto out_bad;
1940
1941 /* Did we get the level we were looking for? */
1942 if (be16_to_cpu((*blkp)->bb_level) != level)
1943 goto out_bad;
1944
1945 /* Check that internal nodes have at least one record. */
1946 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1947 goto out_bad;
1948
1949 xfs_btree_setbuf(cur, level, bp);
1950 return 0;
1951
1952out_bad:
1953 *blkp = NULL;
1954 xfs_buf_mark_corrupt(bp);
1955 xfs_trans_brelse(cur->bc_tp, bp);
1956 xfs_btree_mark_sick(cur);
1957 return -EFSCORRUPTED;
1958}
1959
1960/*
1961 * Get current search key. For level 0 we don't actually have a key
1962 * structure so we make one up from the record. For all other levels
1963 * we just return the right key.
1964 */
1965STATIC union xfs_btree_key *
1966xfs_lookup_get_search_key(
1967 struct xfs_btree_cur *cur,
1968 int level,
1969 int keyno,
1970 struct xfs_btree_block *block,
1971 union xfs_btree_key *kp)
1972{
1973 if (level == 0) {
1974 cur->bc_ops->init_key_from_rec(kp,
1975 xfs_btree_rec_addr(cur, n: keyno, block));
1976 return kp;
1977 }
1978
1979 return xfs_btree_key_addr(cur, n: keyno, block);
1980}
1981
1982/*
1983 * Initialize a pointer to the root block.
1984 */
1985void
1986xfs_btree_init_ptr_from_cur(
1987 struct xfs_btree_cur *cur,
1988 union xfs_btree_ptr *ptr)
1989{
1990 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1991 /*
1992 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1993 * in xfs_btree_lookup_get_block and don't need a pointer here.
1994 */
1995 ptr->l = 0;
1996 } else if (cur->bc_flags & XFS_BTREE_STAGING) {
1997 ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1998 } else {
1999 cur->bc_ops->init_ptr_from_cur(cur, ptr);
2000 }
2001}
2002
2003/*
2004 * Lookup the record. The cursor is made to point to it, based on dir.
2005 * stat is set to 0 if can't find any such record, 1 for success.
2006 */
2007int /* error */
2008xfs_btree_lookup(
2009 struct xfs_btree_cur *cur, /* btree cursor */
2010 xfs_lookup_t dir, /* <=, ==, or >= */
2011 int *stat) /* success/failure */
2012{
2013 struct xfs_btree_block *block; /* current btree block */
2014 int64_t diff; /* difference for the current key */
2015 int error; /* error return value */
2016 int keyno; /* current key number */
2017 int level; /* level in the btree */
2018 union xfs_btree_ptr *pp; /* ptr to btree block */
2019 union xfs_btree_ptr ptr; /* ptr to btree block */
2020
2021 XFS_BTREE_STATS_INC(cur, lookup);
2022
2023 /* No such thing as a zero-level tree. */
2024 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
2025 xfs_btree_mark_sick(cur);
2026 return -EFSCORRUPTED;
2027 }
2028
2029 block = NULL;
2030 keyno = 0;
2031
2032 /* initialise start pointer from cursor */
2033 xfs_btree_init_ptr_from_cur(cur, ptr: &ptr);
2034 pp = &ptr;
2035
2036 /*
2037 * Iterate over each level in the btree, starting at the root.
2038 * For each level above the leaves, find the key we need, based
2039 * on the lookup record, then follow the corresponding block
2040 * pointer down to the next level.
2041 */
2042 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2043 /* Get the block we need to do the lookup on. */
2044 error = xfs_btree_lookup_get_block(cur, level, pp, blkp: &block);
2045 if (error)
2046 goto error0;
2047
2048 if (diff == 0) {
2049 /*
2050 * If we already had a key match at a higher level, we
2051 * know we need to use the first entry in this block.
2052 */
2053 keyno = 1;
2054 } else {
2055 /* Otherwise search this block. Do a binary search. */
2056
2057 int high; /* high entry number */
2058 int low; /* low entry number */
2059
2060 /* Set low and high entry numbers, 1-based. */
2061 low = 1;
2062 high = xfs_btree_get_numrecs(block);
2063 if (!high) {
2064 /* Block is empty, must be an empty leaf. */
2065 if (level != 0 || cur->bc_nlevels != 1) {
2066 XFS_CORRUPTION_ERROR(__func__,
2067 XFS_ERRLEVEL_LOW,
2068 cur->bc_mp, block,
2069 sizeof(*block));
2070 xfs_btree_mark_sick(cur);
2071 return -EFSCORRUPTED;
2072 }
2073
2074 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2075 *stat = 0;
2076 return 0;
2077 }
2078
2079 /* Binary search the block. */
2080 while (low <= high) {
2081 union xfs_btree_key key;
2082 union xfs_btree_key *kp;
2083
2084 XFS_BTREE_STATS_INC(cur, compare);
2085
2086 /* keyno is average of low and high. */
2087 keyno = (low + high) >> 1;
2088
2089 /* Get current search key */
2090 kp = xfs_lookup_get_search_key(cur, level,
2091 keyno, block, &key);
2092
2093 /*
2094 * Compute difference to get next direction:
2095 * - less than, move right
2096 * - greater than, move left
2097 * - equal, we're done
2098 */
2099 diff = cur->bc_ops->key_diff(cur, kp);
2100 if (diff < 0)
2101 low = keyno + 1;
2102 else if (diff > 0)
2103 high = keyno - 1;
2104 else
2105 break;
2106 }
2107 }
2108
2109 /*
2110 * If there are more levels, set up for the next level
2111 * by getting the block number and filling in the cursor.
2112 */
2113 if (level > 0) {
2114 /*
2115 * If we moved left, need the previous key number,
2116 * unless there isn't one.
2117 */
2118 if (diff > 0 && --keyno < 1)
2119 keyno = 1;
2120 pp = xfs_btree_ptr_addr(cur, n: keyno, block);
2121
2122 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2123 if (error)
2124 goto error0;
2125
2126 cur->bc_levels[level].ptr = keyno;
2127 }
2128 }
2129
2130 /* Done with the search. See if we need to adjust the results. */
2131 if (dir != XFS_LOOKUP_LE && diff < 0) {
2132 keyno++;
2133 /*
2134 * If ge search and we went off the end of the block, but it's
2135 * not the last block, we're in the wrong block.
2136 */
2137 xfs_btree_get_sibling(cur, block, ptr: &ptr, XFS_BB_RIGHTSIB);
2138 if (dir == XFS_LOOKUP_GE &&
2139 keyno > xfs_btree_get_numrecs(block) &&
2140 !xfs_btree_ptr_is_null(cur, &ptr)) {
2141 int i;
2142
2143 cur->bc_levels[0].ptr = keyno;
2144 error = xfs_btree_increment(cur, level: 0, stat: &i);
2145 if (error)
2146 goto error0;
2147 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2148 xfs_btree_mark_sick(cur);
2149 return -EFSCORRUPTED;
2150 }
2151 *stat = 1;
2152 return 0;
2153 }
2154 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2155 keyno--;
2156 cur->bc_levels[0].ptr = keyno;
2157
2158 /* Return if we succeeded or not. */
2159 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2160 *stat = 0;
2161 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2162 *stat = 1;
2163 else
2164 *stat = 0;
2165 return 0;
2166
2167error0:
2168 return error;
2169}
2170
2171/* Find the high key storage area from a regular key. */
2172union xfs_btree_key *
2173xfs_btree_high_key_from_key(
2174 struct xfs_btree_cur *cur,
2175 union xfs_btree_key *key)
2176{
2177 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2178 return (union xfs_btree_key *)((char *)key +
2179 (cur->bc_ops->key_len / 2));
2180}
2181
2182/* Determine the low (and high if overlapped) keys of a leaf block */
2183STATIC void
2184xfs_btree_get_leaf_keys(
2185 struct xfs_btree_cur *cur,
2186 struct xfs_btree_block *block,
2187 union xfs_btree_key *key)
2188{
2189 union xfs_btree_key max_hkey;
2190 union xfs_btree_key hkey;
2191 union xfs_btree_rec *rec;
2192 union xfs_btree_key *high;
2193 int n;
2194
2195 rec = xfs_btree_rec_addr(cur, n: 1, block);
2196 cur->bc_ops->init_key_from_rec(key, rec);
2197
2198 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2199
2200 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2201 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2202 rec = xfs_btree_rec_addr(cur, n, block);
2203 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2204 if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2205 max_hkey = hkey;
2206 }
2207
2208 high = xfs_btree_high_key_from_key(cur, key);
2209 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2210 }
2211}
2212
2213/* Determine the low (and high if overlapped) keys of a node block */
2214STATIC void
2215xfs_btree_get_node_keys(
2216 struct xfs_btree_cur *cur,
2217 struct xfs_btree_block *block,
2218 union xfs_btree_key *key)
2219{
2220 union xfs_btree_key *hkey;
2221 union xfs_btree_key *max_hkey;
2222 union xfs_btree_key *high;
2223 int n;
2224
2225 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2226 memcpy(key, xfs_btree_key_addr(cur, n: 1, block),
2227 cur->bc_ops->key_len / 2);
2228
2229 max_hkey = xfs_btree_high_key_addr(cur, n: 1, block);
2230 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2231 hkey = xfs_btree_high_key_addr(cur, n, block);
2232 if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2233 max_hkey = hkey;
2234 }
2235
2236 high = xfs_btree_high_key_from_key(cur, key);
2237 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2238 } else {
2239 memcpy(key, xfs_btree_key_addr(cur, n: 1, block),
2240 cur->bc_ops->key_len);
2241 }
2242}
2243
2244/* Derive the keys for any btree block. */
2245void
2246xfs_btree_get_keys(
2247 struct xfs_btree_cur *cur,
2248 struct xfs_btree_block *block,
2249 union xfs_btree_key *key)
2250{
2251 if (be16_to_cpu(block->bb_level) == 0)
2252 xfs_btree_get_leaf_keys(cur, block, key);
2253 else
2254 xfs_btree_get_node_keys(cur, block, key);
2255}
2256
2257/*
2258 * Decide if we need to update the parent keys of a btree block. For
2259 * a standard btree this is only necessary if we're updating the first
2260 * record/key. For an overlapping btree, we must always update the
2261 * keys because the highest key can be in any of the records or keys
2262 * in the block.
2263 */
2264static inline bool
2265xfs_btree_needs_key_update(
2266 struct xfs_btree_cur *cur,
2267 int ptr)
2268{
2269 return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2270}
2271
2272/*
2273 * Update the low and high parent keys of the given level, progressing
2274 * towards the root. If force_all is false, stop if the keys for a given
2275 * level do not need updating.
2276 */
2277STATIC int
2278__xfs_btree_updkeys(
2279 struct xfs_btree_cur *cur,
2280 int level,
2281 struct xfs_btree_block *block,
2282 struct xfs_buf *bp0,
2283 bool force_all)
2284{
2285 union xfs_btree_key key; /* keys from current level */
2286 union xfs_btree_key *lkey; /* keys from the next level up */
2287 union xfs_btree_key *hkey;
2288 union xfs_btree_key *nlkey; /* keys from the next level up */
2289 union xfs_btree_key *nhkey;
2290 struct xfs_buf *bp;
2291 int ptr;
2292
2293 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2294
2295 /* Exit if there aren't any parent levels to update. */
2296 if (level + 1 >= cur->bc_nlevels)
2297 return 0;
2298
2299 trace_xfs_btree_updkeys(cur, level, bp0);
2300
2301 lkey = &key;
2302 hkey = xfs_btree_high_key_from_key(cur, key: lkey);
2303 xfs_btree_get_keys(cur, block, key: lkey);
2304 for (level++; level < cur->bc_nlevels; level++) {
2305#ifdef DEBUG
2306 int error;
2307#endif
2308 block = xfs_btree_get_block(cur, level, bpp: &bp);
2309 trace_xfs_btree_updkeys(cur, level, bp);
2310#ifdef DEBUG
2311 error = xfs_btree_check_block(cur, block, level, bp);
2312 if (error)
2313 return error;
2314#endif
2315 ptr = cur->bc_levels[level].ptr;
2316 nlkey = xfs_btree_key_addr(cur, n: ptr, block);
2317 nhkey = xfs_btree_high_key_addr(cur, n: ptr, block);
2318 if (!force_all &&
2319 xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2320 xfs_btree_keycmp_eq(cur, nhkey, hkey))
2321 break;
2322 xfs_btree_copy_keys(cur, dst_key: nlkey, src_key: lkey, numkeys: 1);
2323 xfs_btree_log_keys(cur, bp, ptr, ptr);
2324 if (level + 1 >= cur->bc_nlevels)
2325 break;
2326 xfs_btree_get_node_keys(cur, block, lkey);
2327 }
2328
2329 return 0;
2330}
2331
2332/* Update all the keys from some level in cursor back to the root. */
2333STATIC int
2334xfs_btree_updkeys_force(
2335 struct xfs_btree_cur *cur,
2336 int level)
2337{
2338 struct xfs_buf *bp;
2339 struct xfs_btree_block *block;
2340
2341 block = xfs_btree_get_block(cur, level, bpp: &bp);
2342 return __xfs_btree_updkeys(cur, level, block, bp, true);
2343}
2344
2345/*
2346 * Update the parent keys of the given level, progressing towards the root.
2347 */
2348STATIC int
2349xfs_btree_update_keys(
2350 struct xfs_btree_cur *cur,
2351 int level)
2352{
2353 struct xfs_btree_block *block;
2354 struct xfs_buf *bp;
2355 union xfs_btree_key *kp;
2356 union xfs_btree_key key;
2357 int ptr;
2358
2359 ASSERT(level >= 0);
2360
2361 block = xfs_btree_get_block(cur, level, bpp: &bp);
2362 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2363 return __xfs_btree_updkeys(cur, level, block, bp, false);
2364
2365 /*
2366 * Go up the tree from this level toward the root.
2367 * At each level, update the key value to the value input.
2368 * Stop when we reach a level where the cursor isn't pointing
2369 * at the first entry in the block.
2370 */
2371 xfs_btree_get_keys(cur, block, key: &key);
2372 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2373#ifdef DEBUG
2374 int error;
2375#endif
2376 block = xfs_btree_get_block(cur, level, bpp: &bp);
2377#ifdef DEBUG
2378 error = xfs_btree_check_block(cur, block, level, bp);
2379 if (error)
2380 return error;
2381#endif
2382 ptr = cur->bc_levels[level].ptr;
2383 kp = xfs_btree_key_addr(cur, n: ptr, block);
2384 xfs_btree_copy_keys(cur, dst_key: kp, src_key: &key, numkeys: 1);
2385 xfs_btree_log_keys(cur, bp, ptr, ptr);
2386 }
2387
2388 return 0;
2389}
2390
2391/*
2392 * Update the record referred to by cur to the value in the
2393 * given record. This either works (return 0) or gets an
2394 * EFSCORRUPTED error.
2395 */
2396int
2397xfs_btree_update(
2398 struct xfs_btree_cur *cur,
2399 union xfs_btree_rec *rec)
2400{
2401 struct xfs_btree_block *block;
2402 struct xfs_buf *bp;
2403 int error;
2404 int ptr;
2405 union xfs_btree_rec *rp;
2406
2407 /* Pick up the current block. */
2408 block = xfs_btree_get_block(cur, level: 0, bpp: &bp);
2409
2410#ifdef DEBUG
2411 error = xfs_btree_check_block(cur, block, 0, bp);
2412 if (error)
2413 goto error0;
2414#endif
2415 /* Get the address of the rec to be updated. */
2416 ptr = cur->bc_levels[0].ptr;
2417 rp = xfs_btree_rec_addr(cur, n: ptr, block);
2418
2419 /* Fill in the new contents and log them. */
2420 xfs_btree_copy_recs(cur, rp, rec, 1);
2421 xfs_btree_log_recs(cur, bp, first: ptr, last: ptr);
2422
2423 /*
2424 * If we are tracking the last record in the tree and
2425 * we are at the far right edge of the tree, update it.
2426 */
2427 if (xfs_btree_is_lastrec(cur, block, 0)) {
2428 cur->bc_ops->update_lastrec(cur, block, rec,
2429 ptr, LASTREC_UPDATE);
2430 }
2431
2432 /* Pass new key value up to our parent. */
2433 if (xfs_btree_needs_key_update(cur, ptr)) {
2434 error = xfs_btree_update_keys(cur, 0);
2435 if (error)
2436 goto error0;
2437 }
2438
2439 return 0;
2440
2441error0:
2442 return error;
2443}
2444
2445/*
2446 * Move 1 record left from cur/level if possible.
2447 * Update cur to reflect the new path.
2448 */
2449STATIC int /* error */
2450xfs_btree_lshift(
2451 struct xfs_btree_cur *cur,
2452 int level,
2453 int *stat) /* success/failure */
2454{
2455 struct xfs_buf *lbp; /* left buffer pointer */
2456 struct xfs_btree_block *left; /* left btree block */
2457 int lrecs; /* left record count */
2458 struct xfs_buf *rbp; /* right buffer pointer */
2459 struct xfs_btree_block *right; /* right btree block */
2460 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2461 int rrecs; /* right record count */
2462 union xfs_btree_ptr lptr; /* left btree pointer */
2463 union xfs_btree_key *rkp = NULL; /* right btree key */
2464 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2465 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2466 int error; /* error return value */
2467 int i;
2468
2469 if (xfs_btree_at_iroot(cur, level))
2470 goto out0;
2471
2472 /* Set up variables for this block as "right". */
2473 right = xfs_btree_get_block(cur, level, bpp: &rbp);
2474
2475#ifdef DEBUG
2476 error = xfs_btree_check_block(cur, right, level, rbp);
2477 if (error)
2478 goto error0;
2479#endif
2480
2481 /* If we've got no left sibling then we can't shift an entry left. */
2482 xfs_btree_get_sibling(cur, block: right, ptr: &lptr, XFS_BB_LEFTSIB);
2483 if (xfs_btree_ptr_is_null(cur, &lptr))
2484 goto out0;
2485
2486 /*
2487 * If the cursor entry is the one that would be moved, don't
2488 * do it... it's too complicated.
2489 */
2490 if (cur->bc_levels[level].ptr <= 1)
2491 goto out0;
2492
2493 /* Set up the left neighbor as "left". */
2494 error = xfs_btree_read_buf_block(cur, ptr: &lptr, flags: 0, block: &left, bpp: &lbp);
2495 if (error)
2496 goto error0;
2497
2498 /* If it's full, it can't take another entry. */
2499 lrecs = xfs_btree_get_numrecs(block: left);
2500 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2501 goto out0;
2502
2503 rrecs = xfs_btree_get_numrecs(block: right);
2504
2505 /*
2506 * We add one entry to the left side and remove one for the right side.
2507 * Account for it here, the changes will be updated on disk and logged
2508 * later.
2509 */
2510 lrecs++;
2511 rrecs--;
2512
2513 XFS_BTREE_STATS_INC(cur, lshift);
2514 XFS_BTREE_STATS_ADD(cur, moves, 1);
2515
2516 /*
2517 * If non-leaf, copy a key and a ptr to the left block.
2518 * Log the changes to the left block.
2519 */
2520 if (level > 0) {
2521 /* It's a non-leaf. Move keys and pointers. */
2522 union xfs_btree_key *lkp; /* left btree key */
2523 union xfs_btree_ptr *lpp; /* left address pointer */
2524
2525 lkp = xfs_btree_key_addr(cur, n: lrecs, block: left);
2526 rkp = xfs_btree_key_addr(cur, n: 1, block: right);
2527
2528 lpp = xfs_btree_ptr_addr(cur, n: lrecs, block: left);
2529 rpp = xfs_btree_ptr_addr(cur, n: 1, block: right);
2530
2531 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2532 if (error)
2533 goto error0;
2534
2535 xfs_btree_copy_keys(cur, dst_key: lkp, src_key: rkp, numkeys: 1);
2536 xfs_btree_copy_ptrs(cur, dst_ptr: lpp, src_ptr: rpp, numptrs: 1);
2537
2538 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2539 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2540
2541 ASSERT(cur->bc_ops->keys_inorder(cur,
2542 xfs_btree_key_addr(cur, n: lrecs - 1, block: left), lkp));
2543 } else {
2544 /* It's a leaf. Move records. */
2545 union xfs_btree_rec *lrp; /* left record pointer */
2546
2547 lrp = xfs_btree_rec_addr(cur, n: lrecs, block: left);
2548 rrp = xfs_btree_rec_addr(cur, n: 1, block: right);
2549
2550 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2551 xfs_btree_log_recs(cur, bp: lbp, first: lrecs, last: lrecs);
2552
2553 ASSERT(cur->bc_ops->recs_inorder(cur,
2554 xfs_btree_rec_addr(cur, n: lrecs - 1, block: left), lrp));
2555 }
2556
2557 xfs_btree_set_numrecs(left, lrecs);
2558 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2559
2560 xfs_btree_set_numrecs(right, rrecs);
2561 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2562
2563 /*
2564 * Slide the contents of right down one entry.
2565 */
2566 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2567 if (level > 0) {
2568 /* It's a nonleaf. operate on keys and ptrs */
2569 for (i = 0; i < rrecs; i++) {
2570 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2571 if (error)
2572 goto error0;
2573 }
2574
2575 xfs_btree_shift_keys(cur,
2576 xfs_btree_key_addr(cur, n: 2, block: right),
2577 -1, rrecs);
2578 xfs_btree_shift_ptrs(cur,
2579 xfs_btree_ptr_addr(cur, n: 2, block: right),
2580 -1, rrecs);
2581
2582 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2583 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2584 } else {
2585 /* It's a leaf. operate on records */
2586 xfs_btree_shift_recs(cur,
2587 xfs_btree_rec_addr(cur, n: 2, block: right),
2588 -1, rrecs);
2589 xfs_btree_log_recs(cur, bp: rbp, first: 1, last: rrecs);
2590 }
2591
2592 /*
2593 * Using a temporary cursor, update the parent key values of the
2594 * block on the left.
2595 */
2596 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2597 error = xfs_btree_dup_cursor(cur, ncur: &tcur);
2598 if (error)
2599 goto error0;
2600 i = xfs_btree_firstrec(tcur, level);
2601 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2602 xfs_btree_mark_sick(cur);
2603 error = -EFSCORRUPTED;
2604 goto error0;
2605 }
2606
2607 error = xfs_btree_decrement(cur: tcur, level, stat: &i);
2608 if (error)
2609 goto error1;
2610
2611 /* Update the parent high keys of the left block, if needed. */
2612 error = xfs_btree_update_keys(tcur, level);
2613 if (error)
2614 goto error1;
2615
2616 xfs_btree_del_cursor(cur: tcur, XFS_BTREE_NOERROR);
2617 }
2618
2619 /* Update the parent keys of the right block. */
2620 error = xfs_btree_update_keys(cur, level);
2621 if (error)
2622 goto error0;
2623
2624 /* Slide the cursor value left one. */
2625 cur->bc_levels[level].ptr--;
2626
2627 *stat = 1;
2628 return 0;
2629
2630out0:
2631 *stat = 0;
2632 return 0;
2633
2634error0:
2635 return error;
2636
2637error1:
2638 xfs_btree_del_cursor(cur: tcur, XFS_BTREE_ERROR);
2639 return error;
2640}
2641
2642/*
2643 * Move 1 record right from cur/level if possible.
2644 * Update cur to reflect the new path.
2645 */
2646STATIC int /* error */
2647xfs_btree_rshift(
2648 struct xfs_btree_cur *cur,
2649 int level,
2650 int *stat) /* success/failure */
2651{
2652 struct xfs_buf *lbp; /* left buffer pointer */
2653 struct xfs_btree_block *left; /* left btree block */
2654 struct xfs_buf *rbp; /* right buffer pointer */
2655 struct xfs_btree_block *right; /* right btree block */
2656 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2657 union xfs_btree_ptr rptr; /* right block pointer */
2658 union xfs_btree_key *rkp; /* right btree key */
2659 int rrecs; /* right record count */
2660 int lrecs; /* left record count */
2661 int error; /* error return value */
2662 int i; /* loop counter */
2663
2664 if (xfs_btree_at_iroot(cur, level))
2665 goto out0;
2666
2667 /* Set up variables for this block as "left". */
2668 left = xfs_btree_get_block(cur, level, bpp: &lbp);
2669
2670#ifdef DEBUG
2671 error = xfs_btree_check_block(cur, left, level, lbp);
2672 if (error)
2673 goto error0;
2674#endif
2675
2676 /* If we've got no right sibling then we can't shift an entry right. */
2677 xfs_btree_get_sibling(cur, block: left, ptr: &rptr, XFS_BB_RIGHTSIB);
2678 if (xfs_btree_ptr_is_null(cur, &rptr))
2679 goto out0;
2680
2681 /*
2682 * If the cursor entry is the one that would be moved, don't
2683 * do it... it's too complicated.
2684 */
2685 lrecs = xfs_btree_get_numrecs(block: left);
2686 if (cur->bc_levels[level].ptr >= lrecs)
2687 goto out0;
2688
2689 /* Set up the right neighbor as "right". */
2690 error = xfs_btree_read_buf_block(cur, ptr: &rptr, flags: 0, block: &right, bpp: &rbp);
2691 if (error)
2692 goto error0;
2693
2694 /* If it's full, it can't take another entry. */
2695 rrecs = xfs_btree_get_numrecs(block: right);
2696 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2697 goto out0;
2698
2699 XFS_BTREE_STATS_INC(cur, rshift);
2700 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2701
2702 /*
2703 * Make a hole at the start of the right neighbor block, then
2704 * copy the last left block entry to the hole.
2705 */
2706 if (level > 0) {
2707 /* It's a nonleaf. make a hole in the keys and ptrs */
2708 union xfs_btree_key *lkp;
2709 union xfs_btree_ptr *lpp;
2710 union xfs_btree_ptr *rpp;
2711
2712 lkp = xfs_btree_key_addr(cur, n: lrecs, block: left);
2713 lpp = xfs_btree_ptr_addr(cur, n: lrecs, block: left);
2714 rkp = xfs_btree_key_addr(cur, n: 1, block: right);
2715 rpp = xfs_btree_ptr_addr(cur, n: 1, block: right);
2716
2717 for (i = rrecs - 1; i >= 0; i--) {
2718 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2719 if (error)
2720 goto error0;
2721 }
2722
2723 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2724 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2725
2726 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2727 if (error)
2728 goto error0;
2729
2730 /* Now put the new data in, and log it. */
2731 xfs_btree_copy_keys(cur, dst_key: rkp, src_key: lkp, numkeys: 1);
2732 xfs_btree_copy_ptrs(cur, dst_ptr: rpp, src_ptr: lpp, numptrs: 1);
2733
2734 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2735 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2736
2737 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2738 xfs_btree_key_addr(cur, n: 2, block: right)));
2739 } else {
2740 /* It's a leaf. make a hole in the records */
2741 union xfs_btree_rec *lrp;
2742 union xfs_btree_rec *rrp;
2743
2744 lrp = xfs_btree_rec_addr(cur, n: lrecs, block: left);
2745 rrp = xfs_btree_rec_addr(cur, n: 1, block: right);
2746
2747 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2748
2749 /* Now put the new data in, and log it. */
2750 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2751 xfs_btree_log_recs(cur, bp: rbp, first: 1, last: rrecs + 1);
2752 }
2753
2754 /*
2755 * Decrement and log left's numrecs, bump and log right's numrecs.
2756 */
2757 xfs_btree_set_numrecs(left, --lrecs);
2758 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2759
2760 xfs_btree_set_numrecs(right, ++rrecs);
2761 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2762
2763 /*
2764 * Using a temporary cursor, update the parent key values of the
2765 * block on the right.
2766 */
2767 error = xfs_btree_dup_cursor(cur, ncur: &tcur);
2768 if (error)
2769 goto error0;
2770 i = xfs_btree_lastrec(tcur, level);
2771 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2772 xfs_btree_mark_sick(cur);
2773 error = -EFSCORRUPTED;
2774 goto error0;
2775 }
2776
2777 error = xfs_btree_increment(cur: tcur, level, stat: &i);
2778 if (error)
2779 goto error1;
2780
2781 /* Update the parent high keys of the left block, if needed. */
2782 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2783 error = xfs_btree_update_keys(cur, level);
2784 if (error)
2785 goto error1;
2786 }
2787
2788 /* Update the parent keys of the right block. */
2789 error = xfs_btree_update_keys(tcur, level);
2790 if (error)
2791 goto error1;
2792
2793 xfs_btree_del_cursor(cur: tcur, XFS_BTREE_NOERROR);
2794
2795 *stat = 1;
2796 return 0;
2797
2798out0:
2799 *stat = 0;
2800 return 0;
2801
2802error0:
2803 return error;
2804
2805error1:
2806 xfs_btree_del_cursor(cur: tcur, XFS_BTREE_ERROR);
2807 return error;
2808}
2809
2810static inline int
2811xfs_btree_alloc_block(
2812 struct xfs_btree_cur *cur,
2813 const union xfs_btree_ptr *hint_block,
2814 union xfs_btree_ptr *new_block,
2815 int *stat)
2816{
2817 int error;
2818
2819 /*
2820 * Don't allow block allocation for a staging cursor, because staging
2821 * cursors do not support regular btree modifications.
2822 *
2823 * Bulk loading uses a separate callback to obtain new blocks from a
2824 * preallocated list, which prevents ENOSPC failures during loading.
2825 */
2826 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2827 ASSERT(0);
2828 return -EFSCORRUPTED;
2829 }
2830
2831 error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2832 trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2833 return error;
2834}
2835
2836/*
2837 * Split cur/level block in half.
2838 * Return new block number and the key to its first
2839 * record (to be inserted into parent).
2840 */
2841STATIC int /* error */
2842__xfs_btree_split(
2843 struct xfs_btree_cur *cur,
2844 int level,
2845 union xfs_btree_ptr *ptrp,
2846 union xfs_btree_key *key,
2847 struct xfs_btree_cur **curp,
2848 int *stat) /* success/failure */
2849{
2850 union xfs_btree_ptr lptr; /* left sibling block ptr */
2851 struct xfs_buf *lbp; /* left buffer pointer */
2852 struct xfs_btree_block *left; /* left btree block */
2853 union xfs_btree_ptr rptr; /* right sibling block ptr */
2854 struct xfs_buf *rbp; /* right buffer pointer */
2855 struct xfs_btree_block *right; /* right btree block */
2856 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2857 struct xfs_buf *rrbp; /* right-right buffer pointer */
2858 struct xfs_btree_block *rrblock; /* right-right btree block */
2859 int lrecs;
2860 int rrecs;
2861 int src_index;
2862 int error; /* error return value */
2863 int i;
2864
2865 XFS_BTREE_STATS_INC(cur, split);
2866
2867 /* Set up left block (current one). */
2868 left = xfs_btree_get_block(cur, level, bpp: &lbp);
2869
2870#ifdef DEBUG
2871 error = xfs_btree_check_block(cur, left, level, lbp);
2872 if (error)
2873 goto error0;
2874#endif
2875
2876 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2877
2878 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2879 error = xfs_btree_alloc_block(cur, hint_block: &lptr, new_block: &rptr, stat);
2880 if (error)
2881 goto error0;
2882 if (*stat == 0)
2883 goto out0;
2884 XFS_BTREE_STATS_INC(cur, alloc);
2885
2886 /* Set up the new block as "right". */
2887 error = xfs_btree_get_buf_block(cur, ptr: &rptr, block: &right, bpp: &rbp);
2888 if (error)
2889 goto error0;
2890
2891 /* Fill in the btree header for the new right block. */
2892 xfs_btree_init_block_cur(cur, bp: rbp, level: xfs_btree_get_level(block: left), numrecs: 0);
2893
2894 /*
2895 * Split the entries between the old and the new block evenly.
2896 * Make sure that if there's an odd number of entries now, that
2897 * each new block will have the same number of entries.
2898 */
2899 lrecs = xfs_btree_get_numrecs(block: left);
2900 rrecs = lrecs / 2;
2901 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2902 rrecs++;
2903 src_index = (lrecs - rrecs + 1);
2904
2905 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2906
2907 /* Adjust numrecs for the later get_*_keys() calls. */
2908 lrecs -= rrecs;
2909 xfs_btree_set_numrecs(left, lrecs);
2910 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(block: right) + rrecs);
2911
2912 /*
2913 * Copy btree block entries from the left block over to the
2914 * new block, the right. Update the right block and log the
2915 * changes.
2916 */
2917 if (level > 0) {
2918 /* It's a non-leaf. Move keys and pointers. */
2919 union xfs_btree_key *lkp; /* left btree key */
2920 union xfs_btree_ptr *lpp; /* left address pointer */
2921 union xfs_btree_key *rkp; /* right btree key */
2922 union xfs_btree_ptr *rpp; /* right address pointer */
2923
2924 lkp = xfs_btree_key_addr(cur, n: src_index, block: left);
2925 lpp = xfs_btree_ptr_addr(cur, n: src_index, block: left);
2926 rkp = xfs_btree_key_addr(cur, n: 1, block: right);
2927 rpp = xfs_btree_ptr_addr(cur, n: 1, block: right);
2928
2929 for (i = src_index; i < rrecs; i++) {
2930 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2931 if (error)
2932 goto error0;
2933 }
2934
2935 /* Copy the keys & pointers to the new block. */
2936 xfs_btree_copy_keys(cur, dst_key: rkp, src_key: lkp, numkeys: rrecs);
2937 xfs_btree_copy_ptrs(cur, dst_ptr: rpp, src_ptr: lpp, numptrs: rrecs);
2938
2939 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2940 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2941
2942 /* Stash the keys of the new block for later insertion. */
2943 xfs_btree_get_node_keys(cur, right, key);
2944 } else {
2945 /* It's a leaf. Move records. */
2946 union xfs_btree_rec *lrp; /* left record pointer */
2947 union xfs_btree_rec *rrp; /* right record pointer */
2948
2949 lrp = xfs_btree_rec_addr(cur, n: src_index, block: left);
2950 rrp = xfs_btree_rec_addr(cur, n: 1, block: right);
2951
2952 /* Copy records to the new block. */
2953 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2954 xfs_btree_log_recs(cur, bp: rbp, first: 1, last: rrecs);
2955
2956 /* Stash the keys of the new block for later insertion. */
2957 xfs_btree_get_leaf_keys(cur, right, key);
2958 }
2959
2960 /*
2961 * Find the left block number by looking in the buffer.
2962 * Adjust sibling pointers.
2963 */
2964 xfs_btree_get_sibling(cur, block: left, ptr: &rrptr, XFS_BB_RIGHTSIB);
2965 xfs_btree_set_sibling(cur, block: right, ptr: &rrptr, XFS_BB_RIGHTSIB);
2966 xfs_btree_set_sibling(cur, block: right, ptr: &lptr, XFS_BB_LEFTSIB);
2967 xfs_btree_set_sibling(cur, block: left, ptr: &rptr, XFS_BB_RIGHTSIB);
2968
2969 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2970 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2971
2972 /*
2973 * If there's a block to the new block's right, make that block
2974 * point back to right instead of to left.
2975 */
2976 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2977 error = xfs_btree_read_buf_block(cur, ptr: &rrptr,
2978 flags: 0, block: &rrblock, bpp: &rrbp);
2979 if (error)
2980 goto error0;
2981 xfs_btree_set_sibling(cur, block: rrblock, ptr: &rptr, XFS_BB_LEFTSIB);
2982 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2983 }
2984
2985 /* Update the parent high keys of the left block, if needed. */
2986 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2987 error = xfs_btree_update_keys(cur, level);
2988 if (error)
2989 goto error0;
2990 }
2991
2992 /*
2993 * If the cursor is really in the right block, move it there.
2994 * If it's just pointing past the last entry in left, then we'll
2995 * insert there, so don't change anything in that case.
2996 */
2997 if (cur->bc_levels[level].ptr > lrecs + 1) {
2998 xfs_btree_setbuf(cur, level, rbp);
2999 cur->bc_levels[level].ptr -= lrecs;
3000 }
3001 /*
3002 * If there are more levels, we'll need another cursor which refers
3003 * the right block, no matter where this cursor was.
3004 */
3005 if (level + 1 < cur->bc_nlevels) {
3006 error = xfs_btree_dup_cursor(cur, ncur: curp);
3007 if (error)
3008 goto error0;
3009 (*curp)->bc_levels[level + 1].ptr++;
3010 }
3011 *ptrp = rptr;
3012 *stat = 1;
3013 return 0;
3014out0:
3015 *stat = 0;
3016 return 0;
3017
3018error0:
3019 return error;
3020}
3021
3022#ifdef __KERNEL__
3023struct xfs_btree_split_args {
3024 struct xfs_btree_cur *cur;
3025 int level;
3026 union xfs_btree_ptr *ptrp;
3027 union xfs_btree_key *key;
3028 struct xfs_btree_cur **curp;
3029 int *stat; /* success/failure */
3030 int result;
3031 bool kswapd; /* allocation in kswapd context */
3032 struct completion *done;
3033 struct work_struct work;
3034};
3035
3036/*
3037 * Stack switching interfaces for allocation
3038 */
3039static void
3040xfs_btree_split_worker(
3041 struct work_struct *work)
3042{
3043 struct xfs_btree_split_args *args = container_of(work,
3044 struct xfs_btree_split_args, work);
3045 unsigned long pflags;
3046 unsigned long new_pflags = 0;
3047
3048 /*
3049 * we are in a transaction context here, but may also be doing work
3050 * in kswapd context, and hence we may need to inherit that state
3051 * temporarily to ensure that we don't block waiting for memory reclaim
3052 * in any way.
3053 */
3054 if (args->kswapd)
3055 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3056
3057 current_set_flags_nested(&pflags, new_pflags);
3058 xfs_trans_set_context(args->cur->bc_tp);
3059
3060 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3061 args->key, args->curp, args->stat);
3062
3063 xfs_trans_clear_context(args->cur->bc_tp);
3064 current_restore_flags_nested(&pflags, new_pflags);
3065
3066 /*
3067 * Do not access args after complete() has run here. We don't own args
3068 * and the owner may run and free args before we return here.
3069 */
3070 complete(args->done);
3071
3072}
3073
3074/*
3075 * BMBT split requests often come in with little stack to work on so we push
3076 * them off to a worker thread so there is lots of stack to use. For the other
3077 * btree types, just call directly to avoid the context switch overhead here.
3078 *
3079 * Care must be taken here - the work queue rescuer thread introduces potential
3080 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3081 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3082 * lock an AGF that is already locked by a task queued to run by the rescuer,
3083 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3084 * release it until the current thread it is running gains the lock.
3085 *
3086 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3087 * already locked to allocate from. The only place that doesn't hold an AGF
3088 * locked is unwritten extent conversion at IO completion, but that has already
3089 * been offloaded to a worker thread and hence has no stack consumption issues
3090 * we have to worry about.
3091 */
3092STATIC int /* error */
3093xfs_btree_split(
3094 struct xfs_btree_cur *cur,
3095 int level,
3096 union xfs_btree_ptr *ptrp,
3097 union xfs_btree_key *key,
3098 struct xfs_btree_cur **curp,
3099 int *stat) /* success/failure */
3100{
3101 struct xfs_btree_split_args args;
3102 DECLARE_COMPLETION_ONSTACK(done);
3103
3104 if (!xfs_btree_is_bmap(cur->bc_ops) ||
3105 cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3106 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3107
3108 args.cur = cur;
3109 args.level = level;
3110 args.ptrp = ptrp;
3111 args.key = key;
3112 args.curp = curp;
3113 args.stat = stat;
3114 args.done = &done;
3115 args.kswapd = current_is_kswapd();
3116 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3117 queue_work(xfs_alloc_wq, &args.work);
3118 wait_for_completion(&done);
3119 destroy_work_on_stack(&args.work);
3120 return args.result;
3121}
3122#else
3123#define xfs_btree_split __xfs_btree_split
3124#endif /* __KERNEL__ */
3125
3126/*
3127 * Copy the old inode root contents into a real block and make the
3128 * broot point to it.
3129 */
3130int /* error */
3131xfs_btree_new_iroot(
3132 struct xfs_btree_cur *cur, /* btree cursor */
3133 int *logflags, /* logging flags for inode */
3134 int *stat) /* return status - 0 fail */
3135{
3136 struct xfs_buf *cbp; /* buffer for cblock */
3137 struct xfs_btree_block *block; /* btree block */
3138 struct xfs_btree_block *cblock; /* child btree block */
3139 union xfs_btree_key *ckp; /* child key pointer */
3140 union xfs_btree_ptr *cpp; /* child ptr pointer */
3141 union xfs_btree_key *kp; /* pointer to btree key */
3142 union xfs_btree_ptr *pp; /* pointer to block addr */
3143 union xfs_btree_ptr nptr; /* new block addr */
3144 int level; /* btree level */
3145 int error; /* error return code */
3146 int i; /* loop counter */
3147
3148 XFS_BTREE_STATS_INC(cur, newroot);
3149
3150 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3151
3152 level = cur->bc_nlevels - 1;
3153
3154 block = xfs_btree_get_iroot(cur);
3155 pp = xfs_btree_ptr_addr(cur, n: 1, block);
3156
3157 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3158 error = xfs_btree_alloc_block(cur, hint_block: pp, new_block: &nptr, stat);
3159 if (error)
3160 goto error0;
3161 if (*stat == 0)
3162 return 0;
3163
3164 XFS_BTREE_STATS_INC(cur, alloc);
3165
3166 /* Copy the root into a real block. */
3167 error = xfs_btree_get_buf_block(cur, ptr: &nptr, block: &cblock, bpp: &cbp);
3168 if (error)
3169 goto error0;
3170
3171 /*
3172 * we can't just memcpy() the root in for CRC enabled btree blocks.
3173 * In that case have to also ensure the blkno remains correct
3174 */
3175 memcpy(cblock, block, xfs_btree_block_len(cur));
3176 if (xfs_has_crc(cur->bc_mp)) {
3177 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3178 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3179 cblock->bb_u.l.bb_blkno = bno;
3180 else
3181 cblock->bb_u.s.bb_blkno = bno;
3182 }
3183
3184 be16_add_cpu(&block->bb_level, 1);
3185 xfs_btree_set_numrecs(block, 1);
3186 cur->bc_nlevels++;
3187 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3188 cur->bc_levels[level + 1].ptr = 1;
3189
3190 kp = xfs_btree_key_addr(cur, n: 1, block);
3191 ckp = xfs_btree_key_addr(cur, n: 1, block: cblock);
3192 xfs_btree_copy_keys(cur, dst_key: ckp, src_key: kp, numkeys: xfs_btree_get_numrecs(block: cblock));
3193
3194 cpp = xfs_btree_ptr_addr(cur, n: 1, block: cblock);
3195 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3196 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3197 if (error)
3198 goto error0;
3199 }
3200
3201 xfs_btree_copy_ptrs(cur, dst_ptr: cpp, src_ptr: pp, numptrs: xfs_btree_get_numrecs(block: cblock));
3202
3203 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3204 if (error)
3205 goto error0;
3206
3207 xfs_btree_copy_ptrs(cur, dst_ptr: pp, src_ptr: &nptr, numptrs: 1);
3208
3209 xfs_iroot_realloc(cur->bc_ino.ip,
3210 1 - xfs_btree_get_numrecs(block: cblock),
3211 cur->bc_ino.whichfork);
3212
3213 xfs_btree_setbuf(cur, level, cbp);
3214
3215 /*
3216 * Do all this logging at the end so that
3217 * the root is at the right level.
3218 */
3219 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3220 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3221 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3222
3223 *logflags |=
3224 XFS_ILOG_CORE | xfs_ilog_fbroot(w: cur->bc_ino.whichfork);
3225 *stat = 1;
3226 return 0;
3227error0:
3228 return error;
3229}
3230
3231static void
3232xfs_btree_set_root(
3233 struct xfs_btree_cur *cur,
3234 const union xfs_btree_ptr *ptr,
3235 int inc)
3236{
3237 if (cur->bc_flags & XFS_BTREE_STAGING) {
3238 /* Update the btree root information for a per-AG fake root. */
3239 cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3240 cur->bc_ag.afake->af_levels += inc;
3241 } else {
3242 cur->bc_ops->set_root(cur, ptr, inc);
3243 }
3244}
3245
3246/*
3247 * Allocate a new root block, fill it in.
3248 */
3249STATIC int /* error */
3250xfs_btree_new_root(
3251 struct xfs_btree_cur *cur, /* btree cursor */
3252 int *stat) /* success/failure */
3253{
3254 struct xfs_btree_block *block; /* one half of the old root block */
3255 struct xfs_buf *bp; /* buffer containing block */
3256 int error; /* error return value */
3257 struct xfs_buf *lbp; /* left buffer pointer */
3258 struct xfs_btree_block *left; /* left btree block */
3259 struct xfs_buf *nbp; /* new (root) buffer */
3260 struct xfs_btree_block *new; /* new (root) btree block */
3261 int nptr; /* new value for key index, 1 or 2 */
3262 struct xfs_buf *rbp; /* right buffer pointer */
3263 struct xfs_btree_block *right; /* right btree block */
3264 union xfs_btree_ptr rptr;
3265 union xfs_btree_ptr lptr;
3266
3267 XFS_BTREE_STATS_INC(cur, newroot);
3268
3269 /* initialise our start point from the cursor */
3270 xfs_btree_init_ptr_from_cur(cur, ptr: &rptr);
3271
3272 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3273 error = xfs_btree_alloc_block(cur, hint_block: &rptr, new_block: &lptr, stat);
3274 if (error)
3275 goto error0;
3276 if (*stat == 0)
3277 goto out0;
3278 XFS_BTREE_STATS_INC(cur, alloc);
3279
3280 /* Set up the new block. */
3281 error = xfs_btree_get_buf_block(cur, ptr: &lptr, block: &new, bpp: &nbp);
3282 if (error)
3283 goto error0;
3284
3285 /* Set the root in the holding structure increasing the level by 1. */
3286 xfs_btree_set_root(cur, ptr: &lptr, inc: 1);
3287
3288 /*
3289 * At the previous root level there are now two blocks: the old root,
3290 * and the new block generated when it was split. We don't know which
3291 * one the cursor is pointing at, so we set up variables "left" and
3292 * "right" for each case.
3293 */
3294 block = xfs_btree_get_block(cur, level: cur->bc_nlevels - 1, bpp: &bp);
3295
3296#ifdef DEBUG
3297 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3298 if (error)
3299 goto error0;
3300#endif
3301
3302 xfs_btree_get_sibling(cur, block, ptr: &rptr, XFS_BB_RIGHTSIB);
3303 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3304 /* Our block is left, pick up the right block. */
3305 lbp = bp;
3306 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3307 left = block;
3308 error = xfs_btree_read_buf_block(cur, ptr: &rptr, flags: 0, block: &right, bpp: &rbp);
3309 if (error)
3310 goto error0;
3311 bp = rbp;
3312 nptr = 1;
3313 } else {
3314 /* Our block is right, pick up the left block. */
3315 rbp = bp;
3316 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3317 right = block;
3318 xfs_btree_get_sibling(cur, block: right, ptr: &lptr, XFS_BB_LEFTSIB);
3319 error = xfs_btree_read_buf_block(cur, ptr: &lptr, flags: 0, block: &left, bpp: &lbp);
3320 if (error)
3321 goto error0;
3322 bp = lbp;
3323 nptr = 2;
3324 }
3325
3326 /* Fill in the new block's btree header and log it. */
3327 xfs_btree_init_block_cur(cur, bp: nbp, level: cur->bc_nlevels, numrecs: 2);
3328 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3329 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3330 !xfs_btree_ptr_is_null(cur, &rptr));
3331
3332 /* Fill in the key data in the new root. */
3333 if (xfs_btree_get_level(block: left) > 0) {
3334 /*
3335 * Get the keys for the left block's keys and put them directly
3336 * in the parent block. Do the same for the right block.
3337 */
3338 xfs_btree_get_node_keys(cur, left,
3339 xfs_btree_key_addr(cur, n: 1, block: new));
3340 xfs_btree_get_node_keys(cur, right,
3341 xfs_btree_key_addr(cur, n: 2, block: new));
3342 } else {
3343 /*
3344 * Get the keys for the left block's records and put them
3345 * directly in the parent block. Do the same for the right
3346 * block.
3347 */
3348 xfs_btree_get_leaf_keys(cur, left,
3349 xfs_btree_key_addr(cur, n: 1, block: new));
3350 xfs_btree_get_leaf_keys(cur, right,
3351 xfs_btree_key_addr(cur, n: 2, block: new));
3352 }
3353 xfs_btree_log_keys(cur, nbp, 1, 2);
3354
3355 /* Fill in the pointer data in the new root. */
3356 xfs_btree_copy_ptrs(cur,
3357 dst_ptr: xfs_btree_ptr_addr(cur, n: 1, block: new), src_ptr: &lptr, numptrs: 1);
3358 xfs_btree_copy_ptrs(cur,
3359 dst_ptr: xfs_btree_ptr_addr(cur, n: 2, block: new), src_ptr: &rptr, numptrs: 1);
3360 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3361
3362 /* Fix up the cursor. */
3363 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3364 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3365 cur->bc_nlevels++;
3366 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3367 *stat = 1;
3368 return 0;
3369error0:
3370 return error;
3371out0:
3372 *stat = 0;
3373 return 0;
3374}
3375
3376STATIC int
3377xfs_btree_make_block_unfull(
3378 struct xfs_btree_cur *cur, /* btree cursor */
3379 int level, /* btree level */
3380 int numrecs,/* # of recs in block */
3381 int *oindex,/* old tree index */
3382 int *index, /* new tree index */
3383 union xfs_btree_ptr *nptr, /* new btree ptr */
3384 struct xfs_btree_cur **ncur, /* new btree cursor */
3385 union xfs_btree_key *key, /* key of new block */
3386 int *stat)
3387{
3388 int error = 0;
3389
3390 if (xfs_btree_at_iroot(cur, level)) {
3391 struct xfs_inode *ip = cur->bc_ino.ip;
3392
3393 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3394 /* A root block that can be made bigger. */
3395 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3396 *stat = 1;
3397 } else {
3398 /* A root block that needs replacing */
3399 int logflags = 0;
3400
3401 error = xfs_btree_new_iroot(cur, logflags: &logflags, stat);
3402 if (error || *stat == 0)
3403 return error;
3404
3405 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3406 }
3407
3408 return 0;
3409 }
3410
3411 /* First, try shifting an entry to the right neighbor. */
3412 error = xfs_btree_rshift(cur, level, stat);
3413 if (error || *stat)
3414 return error;
3415
3416 /* Next, try shifting an entry to the left neighbor. */
3417 error = xfs_btree_lshift(cur, level, stat);
3418 if (error)
3419 return error;
3420
3421 if (*stat) {
3422 *oindex = *index = cur->bc_levels[level].ptr;
3423 return 0;
3424 }
3425
3426 /*
3427 * Next, try splitting the current block in half.
3428 *
3429 * If this works we have to re-set our variables because we
3430 * could be in a different block now.
3431 */
3432 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3433 if (error || *stat == 0)
3434 return error;
3435
3436
3437 *index = cur->bc_levels[level].ptr;
3438 return 0;
3439}
3440
3441/*
3442 * Insert one record/level. Return information to the caller
3443 * allowing the next level up to proceed if necessary.
3444 */
3445STATIC int
3446xfs_btree_insrec(
3447 struct xfs_btree_cur *cur, /* btree cursor */
3448 int level, /* level to insert record at */
3449 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3450 union xfs_btree_rec *rec, /* record to insert */
3451 union xfs_btree_key *key, /* i/o: block key for ptrp */
3452 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3453 int *stat) /* success/failure */
3454{
3455 struct xfs_btree_block *block; /* btree block */
3456 struct xfs_buf *bp; /* buffer for block */
3457 union xfs_btree_ptr nptr; /* new block ptr */
3458 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3459 union xfs_btree_key nkey; /* new block key */
3460 union xfs_btree_key *lkey;
3461 int optr; /* old key/record index */
3462 int ptr; /* key/record index */
3463 int numrecs;/* number of records */
3464 int error; /* error return value */
3465 int i;
3466 xfs_daddr_t old_bn;
3467
3468 ncur = NULL;
3469 lkey = &nkey;
3470
3471 /*
3472 * If we have an external root pointer, and we've made it to the
3473 * root level, allocate a new root block and we're done.
3474 */
3475 if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3476 level >= cur->bc_nlevels) {
3477 error = xfs_btree_new_root(cur, stat);
3478 xfs_btree_set_ptr_null(cur, ptr: ptrp);
3479
3480 return error;
3481 }
3482
3483 /* If we're off the left edge, return failure. */
3484 ptr = cur->bc_levels[level].ptr;
3485 if (ptr == 0) {
3486 *stat = 0;
3487 return 0;
3488 }
3489
3490 optr = ptr;
3491
3492 XFS_BTREE_STATS_INC(cur, insrec);
3493
3494 /* Get pointers to the btree buffer and block. */
3495 block = xfs_btree_get_block(cur, level, bpp: &bp);
3496 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3497 numrecs = xfs_btree_get_numrecs(block);
3498
3499#ifdef DEBUG
3500 error = xfs_btree_check_block(cur, block, level, bp);
3501 if (error)
3502 goto error0;
3503
3504 /* Check that the new entry is being inserted in the right place. */
3505 if (ptr <= numrecs) {
3506 if (level == 0) {
3507 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3508 xfs_btree_rec_addr(cur, ptr, block)));
3509 } else {
3510 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3511 xfs_btree_key_addr(cur, ptr, block)));
3512 }
3513 }
3514#endif
3515
3516 /*
3517 * If the block is full, we can't insert the new entry until we
3518 * make the block un-full.
3519 */
3520 xfs_btree_set_ptr_null(cur, ptr: &nptr);
3521 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3522 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3523 &optr, &ptr, &nptr, &ncur, lkey, stat);
3524 if (error || *stat == 0)
3525 goto error0;
3526 }
3527
3528 /*
3529 * The current block may have changed if the block was
3530 * previously full and we have just made space in it.
3531 */
3532 block = xfs_btree_get_block(cur, level, bpp: &bp);
3533 numrecs = xfs_btree_get_numrecs(block);
3534
3535#ifdef DEBUG
3536 error = xfs_btree_check_block(cur, block, level, bp);
3537 if (error)
3538 goto error0;
3539#endif
3540
3541 /*
3542 * At this point we know there's room for our new entry in the block
3543 * we're pointing at.
3544 */
3545 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3546
3547 if (level > 0) {
3548 /* It's a nonleaf. make a hole in the keys and ptrs */
3549 union xfs_btree_key *kp;
3550 union xfs_btree_ptr *pp;
3551
3552 kp = xfs_btree_key_addr(cur, n: ptr, block);
3553 pp = xfs_btree_ptr_addr(cur, n: ptr, block);
3554
3555 for (i = numrecs - ptr; i >= 0; i--) {
3556 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3557 if (error)
3558 goto error0;
3559 }
3560
3561 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3562 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3563
3564 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3565 if (error)
3566 goto error0;
3567
3568 /* Now put the new data in, bump numrecs and log it. */
3569 xfs_btree_copy_keys(cur, dst_key: kp, src_key: key, numkeys: 1);
3570 xfs_btree_copy_ptrs(cur, dst_ptr: pp, src_ptr: ptrp, numptrs: 1);
3571 numrecs++;
3572 xfs_btree_set_numrecs(block, numrecs);
3573 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3574 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3575#ifdef DEBUG
3576 if (ptr < numrecs) {
3577 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3578 xfs_btree_key_addr(cur, ptr + 1, block)));
3579 }
3580#endif
3581 } else {
3582 /* It's a leaf. make a hole in the records */
3583 union xfs_btree_rec *rp;
3584
3585 rp = xfs_btree_rec_addr(cur, n: ptr, block);
3586
3587 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3588
3589 /* Now put the new data in, bump numrecs and log it. */
3590 xfs_btree_copy_recs(cur, rp, rec, 1);
3591 xfs_btree_set_numrecs(block, ++numrecs);
3592 xfs_btree_log_recs(cur, bp, first: ptr, last: numrecs);
3593#ifdef DEBUG
3594 if (ptr < numrecs) {
3595 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3596 xfs_btree_rec_addr(cur, ptr + 1, block)));
3597 }
3598#endif
3599 }
3600
3601 /* Log the new number of records in the btree header. */
3602 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3603
3604 /*
3605 * If we just inserted into a new tree block, we have to
3606 * recalculate nkey here because nkey is out of date.
3607 *
3608 * Otherwise we're just updating an existing block (having shoved
3609 * some records into the new tree block), so use the regular key
3610 * update mechanism.
3611 */
3612 if (bp && xfs_buf_daddr(bp) != old_bn) {
3613 xfs_btree_get_keys(cur, block, key: lkey);
3614 } else if (xfs_btree_needs_key_update(cur, optr)) {
3615 error = xfs_btree_update_keys(cur, level);
3616 if (error)
3617 goto error0;
3618 }
3619
3620 /*
3621 * If we are tracking the last record in the tree and
3622 * we are at the far right edge of the tree, update it.
3623 */
3624 if (xfs_btree_is_lastrec(cur, block, level)) {
3625 cur->bc_ops->update_lastrec(cur, block, rec,
3626 ptr, LASTREC_INSREC);
3627 }
3628
3629 /*
3630 * Return the new block number, if any.
3631 * If there is one, give back a record value and a cursor too.
3632 */
3633 *ptrp = nptr;
3634 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3635 xfs_btree_copy_keys(cur, dst_key: key, src_key: lkey, numkeys: 1);
3636 *curp = ncur;
3637 }
3638
3639 *stat = 1;
3640 return 0;
3641
3642error0:
3643 if (ncur)
3644 xfs_btree_del_cursor(cur: ncur, error);
3645 return error;
3646}
3647
3648/*
3649 * Insert the record at the point referenced by cur.
3650 *
3651 * A multi-level split of the tree on insert will invalidate the original
3652 * cursor. All callers of this function should assume that the cursor is
3653 * no longer valid and revalidate it.
3654 */
3655int
3656xfs_btree_insert(
3657 struct xfs_btree_cur *cur,
3658 int *stat)
3659{
3660 int error; /* error return value */
3661 int i; /* result value, 0 for failure */
3662 int level; /* current level number in btree */
3663 union xfs_btree_ptr nptr; /* new block number (split result) */
3664 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3665 struct xfs_btree_cur *pcur; /* previous level's cursor */
3666 union xfs_btree_key bkey; /* key of block to insert */
3667 union xfs_btree_key *key;
3668 union xfs_btree_rec rec; /* record to insert */
3669
3670 level = 0;
3671 ncur = NULL;
3672 pcur = cur;
3673 key = &bkey;
3674
3675 xfs_btree_set_ptr_null(cur, ptr: &nptr);
3676
3677 /* Make a key out of the record data to be inserted, and save it. */
3678 cur->bc_ops->init_rec_from_cur(cur, &rec);
3679 cur->bc_ops->init_key_from_rec(key, &rec);
3680
3681 /*
3682 * Loop going up the tree, starting at the leaf level.
3683 * Stop when we don't get a split block, that must mean that
3684 * the insert is finished with this level.
3685 */
3686 do {
3687 /*
3688 * Insert nrec/nptr into this level of the tree.
3689 * Note if we fail, nptr will be null.
3690 */
3691 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3692 &ncur, &i);
3693 if (error) {
3694 if (pcur != cur)
3695 xfs_btree_del_cursor(cur: pcur, XFS_BTREE_ERROR);
3696 goto error0;
3697 }
3698
3699 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3700 xfs_btree_mark_sick(cur);
3701 error = -EFSCORRUPTED;
3702 goto error0;
3703 }
3704 level++;
3705
3706 /*
3707 * See if the cursor we just used is trash.
3708 * Can't trash the caller's cursor, but otherwise we should
3709 * if ncur is a new cursor or we're about to be done.
3710 */
3711 if (pcur != cur &&
3712 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3713 /* Save the state from the cursor before we trash it */
3714 if (cur->bc_ops->update_cursor &&
3715 !(cur->bc_flags & XFS_BTREE_STAGING))
3716 cur->bc_ops->update_cursor(pcur, cur);
3717 cur->bc_nlevels = pcur->bc_nlevels;
3718 xfs_btree_del_cursor(cur: pcur, XFS_BTREE_NOERROR);
3719 }
3720 /* If we got a new cursor, switch to it. */
3721 if (ncur) {
3722 pcur = ncur;
3723 ncur = NULL;
3724 }
3725 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3726
3727 *stat = i;
3728 return 0;
3729error0:
3730 return error;
3731}
3732
3733/*
3734 * Try to merge a non-leaf block back into the inode root.
3735 *
3736 * Note: the killroot names comes from the fact that we're effectively
3737 * killing the old root block. But because we can't just delete the
3738 * inode we have to copy the single block it was pointing to into the
3739 * inode.
3740 */
3741STATIC int
3742xfs_btree_kill_iroot(
3743 struct xfs_btree_cur *cur)
3744{
3745 int whichfork = cur->bc_ino.whichfork;
3746 struct xfs_inode *ip = cur->bc_ino.ip;
3747 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
3748 struct xfs_btree_block *block;
3749 struct xfs_btree_block *cblock;
3750 union xfs_btree_key *kp;
3751 union xfs_btree_key *ckp;
3752 union xfs_btree_ptr *pp;
3753 union xfs_btree_ptr *cpp;
3754 struct xfs_buf *cbp;
3755 int level;
3756 int index;
3757 int numrecs;
3758 int error;
3759#ifdef DEBUG
3760 union xfs_btree_ptr ptr;
3761#endif
3762 int i;
3763
3764 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3765 ASSERT(cur->bc_nlevels > 1);
3766
3767 /*
3768 * Don't deal with the root block needs to be a leaf case.
3769 * We're just going to turn the thing back into extents anyway.
3770 */
3771 level = cur->bc_nlevels - 1;
3772 if (level == 1)
3773 goto out0;
3774
3775 /*
3776 * Give up if the root has multiple children.
3777 */
3778 block = xfs_btree_get_iroot(cur);
3779 if (xfs_btree_get_numrecs(block) != 1)
3780 goto out0;
3781
3782 cblock = xfs_btree_get_block(cur, level: level - 1, bpp: &cbp);
3783 numrecs = xfs_btree_get_numrecs(block: cblock);
3784
3785 /*
3786 * Only do this if the next level will fit.
3787 * Then the data must be copied up to the inode,
3788 * instead of freeing the root you free the next level.
3789 */
3790 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3791 goto out0;
3792
3793 XFS_BTREE_STATS_INC(cur, killroot);
3794
3795#ifdef DEBUG
3796 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3797 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3798 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3799 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3800#endif
3801
3802 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3803 if (index) {
3804 xfs_iroot_realloc(cur->bc_ino.ip, index,
3805 cur->bc_ino.whichfork);
3806 block = ifp->if_broot;
3807 }
3808
3809 be16_add_cpu(&block->bb_numrecs, index);
3810 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3811
3812 kp = xfs_btree_key_addr(cur, n: 1, block);
3813 ckp = xfs_btree_key_addr(cur, n: 1, block: cblock);
3814 xfs_btree_copy_keys(cur, dst_key: kp, src_key: ckp, numkeys: numrecs);
3815
3816 pp = xfs_btree_ptr_addr(cur, n: 1, block);
3817 cpp = xfs_btree_ptr_addr(cur, n: 1, block: cblock);
3818
3819 for (i = 0; i < numrecs; i++) {
3820 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3821 if (error)
3822 return error;
3823 }
3824
3825 xfs_btree_copy_ptrs(cur, dst_ptr: pp, src_ptr: cpp, numptrs: numrecs);
3826
3827 error = xfs_btree_free_block(cur, bp: cbp);
3828 if (error)
3829 return error;
3830
3831 cur->bc_levels[level - 1].bp = NULL;
3832 be16_add_cpu(&block->bb_level, -1);
3833 xfs_trans_log_inode(cur->bc_tp, ip,
3834 XFS_ILOG_CORE | xfs_ilog_fbroot(w: cur->bc_ino.whichfork));
3835 cur->bc_nlevels--;
3836out0:
3837 return 0;
3838}
3839
3840/*
3841 * Kill the current root node, and replace it with it's only child node.
3842 */
3843STATIC int
3844xfs_btree_kill_root(
3845 struct xfs_btree_cur *cur,
3846 struct xfs_buf *bp,
3847 int level,
3848 union xfs_btree_ptr *newroot)
3849{
3850 int error;
3851
3852 XFS_BTREE_STATS_INC(cur, killroot);
3853
3854 /*
3855 * Update the root pointer, decreasing the level by 1 and then
3856 * free the old root.
3857 */
3858 xfs_btree_set_root(cur, ptr: newroot, inc: -1);
3859
3860 error = xfs_btree_free_block(cur, bp);
3861 if (error)
3862 return error;
3863
3864 cur->bc_levels[level].bp = NULL;
3865 cur->bc_levels[level].ra = 0;
3866 cur->bc_nlevels--;
3867
3868 return 0;
3869}
3870
3871STATIC int
3872xfs_btree_dec_cursor(
3873 struct xfs_btree_cur *cur,
3874 int level,
3875 int *stat)
3876{
3877 int error;
3878 int i;
3879
3880 if (level > 0) {
3881 error = xfs_btree_decrement(cur, level, stat: &i);
3882 if (error)
3883 return error;
3884 }
3885
3886 *stat = 1;
3887 return 0;
3888}
3889
3890/*
3891 * Single level of the btree record deletion routine.
3892 * Delete record pointed to by cur/level.
3893 * Remove the record from its block then rebalance the tree.
3894 * Return 0 for error, 1 for done, 2 to go on to the next level.
3895 */
3896STATIC int /* error */
3897xfs_btree_delrec(
3898 struct xfs_btree_cur *cur, /* btree cursor */
3899 int level, /* level removing record from */
3900 int *stat) /* fail/done/go-on */
3901{
3902 struct xfs_btree_block *block; /* btree block */
3903 union xfs_btree_ptr cptr; /* current block ptr */
3904 struct xfs_buf *bp; /* buffer for block */
3905 int error; /* error return value */
3906 int i; /* loop counter */
3907 union xfs_btree_ptr lptr; /* left sibling block ptr */
3908 struct xfs_buf *lbp; /* left buffer pointer */
3909 struct xfs_btree_block *left; /* left btree block */
3910 int lrecs = 0; /* left record count */
3911 int ptr; /* key/record index */
3912 union xfs_btree_ptr rptr; /* right sibling block ptr */
3913 struct xfs_buf *rbp; /* right buffer pointer */
3914 struct xfs_btree_block *right; /* right btree block */
3915 struct xfs_btree_block *rrblock; /* right-right btree block */
3916 struct xfs_buf *rrbp; /* right-right buffer pointer */
3917 int rrecs = 0; /* right record count */
3918 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3919 int numrecs; /* temporary numrec count */
3920
3921 tcur = NULL;
3922
3923 /* Get the index of the entry being deleted, check for nothing there. */
3924 ptr = cur->bc_levels[level].ptr;
3925 if (ptr == 0) {
3926 *stat = 0;
3927 return 0;
3928 }
3929
3930 /* Get the buffer & block containing the record or key/ptr. */
3931 block = xfs_btree_get_block(cur, level, bpp: &bp);
3932 numrecs = xfs_btree_get_numrecs(block);
3933
3934#ifdef DEBUG
3935 error = xfs_btree_check_block(cur, block, level, bp);
3936 if (error)
3937 goto error0;
3938#endif
3939
3940 /* Fail if we're off the end of the block. */
3941 if (ptr > numrecs) {
3942 *stat = 0;
3943 return 0;
3944 }
3945
3946 XFS_BTREE_STATS_INC(cur, delrec);
3947 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3948
3949 /* Excise the entries being deleted. */
3950 if (level > 0) {
3951 /* It's a nonleaf. operate on keys and ptrs */
3952 union xfs_btree_key *lkp;
3953 union xfs_btree_ptr *lpp;
3954
3955 lkp = xfs_btree_key_addr(cur, n: ptr + 1, block);
3956 lpp = xfs_btree_ptr_addr(cur, n: ptr + 1, block);
3957
3958 for (i = 0; i < numrecs - ptr; i++) {
3959 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3960 if (error)
3961 goto error0;
3962 }
3963
3964 if (ptr < numrecs) {
3965 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3966 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3967 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3968 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3969 }
3970 } else {
3971 /* It's a leaf. operate on records */
3972 if (ptr < numrecs) {
3973 xfs_btree_shift_recs(cur,
3974 xfs_btree_rec_addr(cur, n: ptr + 1, block),
3975 -1, numrecs - ptr);
3976 xfs_btree_log_recs(cur, bp, first: ptr, last: numrecs - 1);
3977 }
3978 }
3979
3980 /*
3981 * Decrement and log the number of entries in the block.
3982 */
3983 xfs_btree_set_numrecs(block, --numrecs);
3984 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3985
3986 /*
3987 * If we are tracking the last record in the tree and
3988 * we are at the far right edge of the tree, update it.
3989 */
3990 if (xfs_btree_is_lastrec(cur, block, level)) {
3991 cur->bc_ops->update_lastrec(cur, block, NULL,
3992 ptr, LASTREC_DELREC);
3993 }
3994
3995 /*
3996 * We're at the root level. First, shrink the root block in-memory.
3997 * Try to get rid of the next level down. If we can't then there's
3998 * nothing left to do.
3999 */
4000 if (xfs_btree_at_iroot(cur, level)) {
4001 xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
4002
4003 error = xfs_btree_kill_iroot(cur);
4004 if (error)
4005 goto error0;
4006
4007 error = xfs_btree_dec_cursor(cur, level, stat);
4008 if (error)
4009 goto error0;
4010 *stat = 1;
4011 return 0;
4012 }
4013
4014 /*
4015 * If this is the root level, and there's only one entry left, and it's
4016 * NOT the leaf level, then we can get rid of this level.
4017 */
4018 if (level == cur->bc_nlevels - 1) {
4019 if (numrecs == 1 && level > 0) {
4020 union xfs_btree_ptr *pp;
4021 /*
4022 * pp is still set to the first pointer in the block.
4023 * Make it the new root of the btree.
4024 */
4025 pp = xfs_btree_ptr_addr(cur, n: 1, block);
4026 error = xfs_btree_kill_root(cur, bp, level, pp);
4027 if (error)
4028 goto error0;
4029 } else if (level > 0) {
4030 error = xfs_btree_dec_cursor(cur, level, stat);
4031 if (error)
4032 goto error0;
4033 }
4034 *stat = 1;
4035 return 0;
4036 }
4037
4038 /*
4039 * If we deleted the leftmost entry in the block, update the
4040 * key values above us in the tree.
4041 */
4042 if (xfs_btree_needs_key_update(cur, ptr)) {
4043 error = xfs_btree_update_keys(cur, level);
4044 if (error)
4045 goto error0;
4046 }
4047
4048 /*
4049 * If the number of records remaining in the block is at least
4050 * the minimum, we're done.
4051 */
4052 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4053 error = xfs_btree_dec_cursor(cur, level, stat);
4054 if (error)
4055 goto error0;
4056 return 0;
4057 }
4058
4059 /*
4060 * Otherwise, we have to move some records around to keep the
4061 * tree balanced. Look at the left and right sibling blocks to
4062 * see if we can re-balance by moving only one record.
4063 */
4064 xfs_btree_get_sibling(cur, block, ptr: &rptr, XFS_BB_RIGHTSIB);
4065 xfs_btree_get_sibling(cur, block, ptr: &lptr, XFS_BB_LEFTSIB);
4066
4067 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4068 /*
4069 * One child of root, need to get a chance to copy its contents
4070 * into the root and delete it. Can't go up to next level,
4071 * there's nothing to delete there.
4072 */
4073 if (xfs_btree_ptr_is_null(cur, &rptr) &&
4074 xfs_btree_ptr_is_null(cur, &lptr) &&
4075 level == cur->bc_nlevels - 2) {
4076 error = xfs_btree_kill_iroot(cur);
4077 if (!error)
4078 error = xfs_btree_dec_cursor(cur, level, stat);
4079 if (error)
4080 goto error0;
4081 return 0;
4082 }
4083 }
4084
4085 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4086 !xfs_btree_ptr_is_null(cur, &lptr));
4087
4088 /*
4089 * Duplicate the cursor so our btree manipulations here won't
4090 * disrupt the next level up.
4091 */
4092 error = xfs_btree_dup_cursor(cur, ncur: &tcur);
4093 if (error)
4094 goto error0;
4095
4096 /*
4097 * If there's a right sibling, see if it's ok to shift an entry
4098 * out of it.
4099 */
4100 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4101 /*
4102 * Move the temp cursor to the last entry in the next block.
4103 * Actually any entry but the first would suffice.
4104 */
4105 i = xfs_btree_lastrec(tcur, level);
4106 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4107 xfs_btree_mark_sick(cur);
4108 error = -EFSCORRUPTED;
4109 goto error0;
4110 }
4111
4112 error = xfs_btree_increment(cur: tcur, level, stat: &i);
4113 if (error)
4114 goto error0;
4115 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4116 xfs_btree_mark_sick(cur);
4117 error = -EFSCORRUPTED;
4118 goto error0;
4119 }
4120
4121 i = xfs_btree_lastrec(tcur, level);
4122 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4123 xfs_btree_mark_sick(cur);
4124 error = -EFSCORRUPTED;
4125 goto error0;
4126 }
4127
4128 /* Grab a pointer to the block. */
4129 right = xfs_btree_get_block(cur: tcur, level, bpp: &rbp);
4130#ifdef DEBUG
4131 error = xfs_btree_check_block(tcur, right, level, rbp);
4132 if (error)
4133 goto error0;
4134#endif
4135 /* Grab the current block number, for future use. */
4136 xfs_btree_get_sibling(cur: tcur, block: right, ptr: &cptr, XFS_BB_LEFTSIB);
4137
4138 /*
4139 * If right block is full enough so that removing one entry
4140 * won't make it too empty, and left-shifting an entry out
4141 * of right to us works, we're done.
4142 */
4143 if (xfs_btree_get_numrecs(block: right) - 1 >=
4144 cur->bc_ops->get_minrecs(tcur, level)) {
4145 error = xfs_btree_lshift(tcur, level, &i);
4146 if (error)
4147 goto error0;
4148 if (i) {
4149 ASSERT(xfs_btree_get_numrecs(block) >=
4150 cur->bc_ops->get_minrecs(tcur, level));
4151
4152 xfs_btree_del_cursor(cur: tcur, XFS_BTREE_NOERROR);
4153 tcur = NULL;
4154
4155 error = xfs_btree_dec_cursor(cur, level, stat);
4156 if (error)
4157 goto error0;
4158 return 0;
4159 }
4160 }
4161
4162 /*
4163 * Otherwise, grab the number of records in right for
4164 * future reference, and fix up the temp cursor to point
4165 * to our block again (last record).
4166 */
4167 rrecs = xfs_btree_get_numrecs(block: right);
4168 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4169 i = xfs_btree_firstrec(tcur, level);
4170 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4171 xfs_btree_mark_sick(cur);
4172 error = -EFSCORRUPTED;
4173 goto error0;
4174 }
4175
4176 error = xfs_btree_decrement(cur: tcur, level, stat: &i);
4177 if (error)
4178 goto error0;
4179 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4180 xfs_btree_mark_sick(cur);
4181 error = -EFSCORRUPTED;
4182 goto error0;
4183 }
4184 }
4185 }
4186
4187 /*
4188 * If there's a left sibling, see if it's ok to shift an entry
4189 * out of it.
4190 */
4191 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4192 /*
4193 * Move the temp cursor to the first entry in the
4194 * previous block.
4195 */
4196 i = xfs_btree_firstrec(tcur, level);
4197 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4198 xfs_btree_mark_sick(cur);
4199 error = -EFSCORRUPTED;
4200 goto error0;
4201 }
4202
4203 error = xfs_btree_decrement(cur: tcur, level, stat: &i);
4204 if (error)
4205 goto error0;
4206 i = xfs_btree_firstrec(tcur, level);
4207 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4208 xfs_btree_mark_sick(cur);
4209 error = -EFSCORRUPTED;
4210 goto error0;
4211 }
4212
4213 /* Grab a pointer to the block. */
4214 left = xfs_btree_get_block(cur: tcur, level, bpp: &lbp);
4215#ifdef DEBUG
4216 error = xfs_btree_check_block(cur, left, level, lbp);
4217 if (error)
4218 goto error0;
4219#endif
4220 /* Grab the current block number, for future use. */
4221 xfs_btree_get_sibling(cur: tcur, block: left, ptr: &cptr, XFS_BB_RIGHTSIB);
4222
4223 /*
4224 * If left block is full enough so that removing one entry
4225 * won't make it too empty, and right-shifting an entry out
4226 * of left to us works, we're done.
4227 */
4228 if (xfs_btree_get_numrecs(block: left) - 1 >=
4229 cur->bc_ops->get_minrecs(tcur, level)) {
4230 error = xfs_btree_rshift(tcur, level, &i);
4231 if (error)
4232 goto error0;
4233 if (i) {
4234 ASSERT(xfs_btree_get_numrecs(block) >=
4235 cur->bc_ops->get_minrecs(tcur, level));
4236 xfs_btree_del_cursor(cur: tcur, XFS_BTREE_NOERROR);
4237 tcur = NULL;
4238 if (level == 0)
4239 cur->bc_levels[0].ptr++;
4240
4241 *stat = 1;
4242 return 0;
4243 }
4244 }
4245
4246 /*
4247 * Otherwise, grab the number of records in right for
4248 * future reference.
4249 */
4250 lrecs = xfs_btree_get_numrecs(block: left);
4251 }
4252
4253 /* Delete the temp cursor, we're done with it. */
4254 xfs_btree_del_cursor(cur: tcur, XFS_BTREE_NOERROR);
4255 tcur = NULL;
4256
4257 /* If here, we need to do a join to keep the tree balanced. */
4258 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4259
4260 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4261 lrecs + xfs_btree_get_numrecs(block) <=
4262 cur->bc_ops->get_maxrecs(cur, level)) {
4263 /*
4264 * Set "right" to be the starting block,
4265 * "left" to be the left neighbor.
4266 */
4267 rptr = cptr;
4268 right = block;
4269 rbp = bp;
4270 error = xfs_btree_read_buf_block(cur, ptr: &lptr, flags: 0, block: &left, bpp: &lbp);
4271 if (error)
4272 goto error0;
4273
4274 /*
4275 * If that won't work, see if we can join with the right neighbor block.
4276 */
4277 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4278 rrecs + xfs_btree_get_numrecs(block) <=
4279 cur->bc_ops->get_maxrecs(cur, level)) {
4280 /*
4281 * Set "left" to be the starting block,
4282 * "right" to be the right neighbor.
4283 */
4284 lptr = cptr;
4285 left = block;
4286 lbp = bp;
4287 error = xfs_btree_read_buf_block(cur, ptr: &rptr, flags: 0, block: &right, bpp: &rbp);
4288 if (error)
4289 goto error0;
4290
4291 /*
4292 * Otherwise, we can't fix the imbalance.
4293 * Just return. This is probably a logic error, but it's not fatal.
4294 */
4295 } else {
4296 error = xfs_btree_dec_cursor(cur, level, stat);
4297 if (error)
4298 goto error0;
4299 return 0;
4300 }
4301
4302 rrecs = xfs_btree_get_numrecs(block: right);
4303 lrecs = xfs_btree_get_numrecs(block: left);
4304
4305 /*
4306 * We're now going to join "left" and "right" by moving all the stuff
4307 * in "right" to "left" and deleting "right".
4308 */
4309 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4310 if (level > 0) {
4311 /* It's a non-leaf. Move keys and pointers. */
4312 union xfs_btree_key *lkp; /* left btree key */
4313 union xfs_btree_ptr *lpp; /* left address pointer */
4314 union xfs_btree_key *rkp; /* right btree key */
4315 union xfs_btree_ptr *rpp; /* right address pointer */
4316
4317 lkp = xfs_btree_key_addr(cur, n: lrecs + 1, block: left);
4318 lpp = xfs_btree_ptr_addr(cur, n: lrecs + 1, block: left);
4319 rkp = xfs_btree_key_addr(cur, n: 1, block: right);
4320 rpp = xfs_btree_ptr_addr(cur, n: 1, block: right);
4321
4322 for (i = 1; i < rrecs; i++) {
4323 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4324 if (error)
4325 goto error0;
4326 }
4327
4328 xfs_btree_copy_keys(cur, dst_key: lkp, src_key: rkp, numkeys: rrecs);
4329 xfs_btree_copy_ptrs(cur, dst_ptr: lpp, src_ptr: rpp, numptrs: rrecs);
4330
4331 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4332 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4333 } else {
4334 /* It's a leaf. Move records. */
4335 union xfs_btree_rec *lrp; /* left record pointer */
4336 union xfs_btree_rec *rrp; /* right record pointer */
4337
4338 lrp = xfs_btree_rec_addr(cur, n: lrecs + 1, block: left);
4339 rrp = xfs_btree_rec_addr(cur, n: 1, block: right);
4340
4341 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4342 xfs_btree_log_recs(cur, bp: lbp, first: lrecs + 1, last: lrecs + rrecs);
4343 }
4344
4345 XFS_BTREE_STATS_INC(cur, join);
4346
4347 /*
4348 * Fix up the number of records and right block pointer in the
4349 * surviving block, and log it.
4350 */
4351 xfs_btree_set_numrecs(left, lrecs + rrecs);
4352 xfs_btree_get_sibling(cur, block: right, ptr: &cptr, XFS_BB_RIGHTSIB);
4353 xfs_btree_set_sibling(cur, block: left, ptr: &cptr, XFS_BB_RIGHTSIB);
4354 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4355
4356 /* If there is a right sibling, point it to the remaining block. */
4357 xfs_btree_get_sibling(cur, block: left, ptr: &cptr, XFS_BB_RIGHTSIB);
4358 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4359 error = xfs_btree_read_buf_block(cur, ptr: &cptr, flags: 0, block: &rrblock, bpp: &rrbp);
4360 if (error)
4361 goto error0;
4362 xfs_btree_set_sibling(cur, block: rrblock, ptr: &lptr, XFS_BB_LEFTSIB);
4363 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4364 }
4365
4366 /* Free the deleted block. */
4367 error = xfs_btree_free_block(cur, bp: rbp);
4368 if (error)
4369 goto error0;
4370
4371 /*
4372 * If we joined with the left neighbor, set the buffer in the
4373 * cursor to the left block, and fix up the index.
4374 */
4375 if (bp != lbp) {
4376 cur->bc_levels[level].bp = lbp;
4377 cur->bc_levels[level].ptr += lrecs;
4378 cur->bc_levels[level].ra = 0;
4379 }
4380 /*
4381 * If we joined with the right neighbor and there's a level above
4382 * us, increment the cursor at that level.
4383 */
4384 else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4385 level + 1 < cur->bc_nlevels) {
4386 error = xfs_btree_increment(cur, level: level + 1, stat: &i);
4387 if (error)
4388 goto error0;
4389 }
4390
4391 /*
4392 * Readjust the ptr at this level if it's not a leaf, since it's
4393 * still pointing at the deletion point, which makes the cursor
4394 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4395 * We can't use decrement because it would change the next level up.
4396 */
4397 if (level > 0)
4398 cur->bc_levels[level].ptr--;
4399
4400 /*
4401 * We combined blocks, so we have to update the parent keys if the
4402 * btree supports overlapped intervals. However,
4403 * bc_levels[level + 1].ptr points to the old block so that the caller
4404 * knows which record to delete. Therefore, the caller must be savvy
4405 * enough to call updkeys for us if we return stat == 2. The other
4406 * exit points from this function don't require deletions further up
4407 * the tree, so they can call updkeys directly.
4408 */
4409
4410 /* Return value means the next level up has something to do. */
4411 *stat = 2;
4412 return 0;
4413
4414error0:
4415 if (tcur)
4416 xfs_btree_del_cursor(cur: tcur, XFS_BTREE_ERROR);
4417 return error;
4418}
4419
4420/*
4421 * Delete the record pointed to by cur.
4422 * The cursor refers to the place where the record was (could be inserted)
4423 * when the operation returns.
4424 */
4425int /* error */
4426xfs_btree_delete(
4427 struct xfs_btree_cur *cur,
4428 int *stat) /* success/failure */
4429{
4430 int error; /* error return value */
4431 int level;
4432 int i;
4433 bool joined = false;
4434
4435 /*
4436 * Go up the tree, starting at leaf level.
4437 *
4438 * If 2 is returned then a join was done; go to the next level.
4439 * Otherwise we are done.
4440 */
4441 for (level = 0, i = 2; i == 2; level++) {
4442 error = xfs_btree_delrec(cur, level, &i);
4443 if (error)
4444 goto error0;
4445 if (i == 2)
4446 joined = true;
4447 }
4448
4449 /*
4450 * If we combined blocks as part of deleting the record, delrec won't
4451 * have updated the parent high keys so we have to do that here.
4452 */
4453 if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4454 error = xfs_btree_updkeys_force(cur, 0);
4455 if (error)
4456 goto error0;
4457 }
4458
4459 if (i == 0) {
4460 for (level = 1; level < cur->bc_nlevels; level++) {
4461 if (cur->bc_levels[level].ptr == 0) {
4462 error = xfs_btree_decrement(cur, level, stat: &i);
4463 if (error)
4464 goto error0;
4465 break;
4466 }
4467 }
4468 }
4469
4470 *stat = i;
4471 return 0;
4472error0:
4473 return error;
4474}
4475
4476/*
4477 * Get the data from the pointed-to record.
4478 */
4479int /* error */
4480xfs_btree_get_rec(
4481 struct xfs_btree_cur *cur, /* btree cursor */
4482 union xfs_btree_rec **recp, /* output: btree record */
4483 int *stat) /* output: success/failure */
4484{
4485 struct xfs_btree_block *block; /* btree block */
4486 struct xfs_buf *bp; /* buffer pointer */
4487 int ptr; /* record number */
4488#ifdef DEBUG
4489 int error; /* error return value */
4490#endif
4491
4492 ptr = cur->bc_levels[0].ptr;
4493 block = xfs_btree_get_block(cur, level: 0, bpp: &bp);
4494
4495#ifdef DEBUG
4496 error = xfs_btree_check_block(cur, block, 0, bp);
4497 if (error)
4498 return error;
4499#endif
4500
4501 /*
4502 * Off the right end or left end, return failure.
4503 */
4504 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4505 *stat = 0;
4506 return 0;
4507 }
4508
4509 /*
4510 * Point to the record and extract its data.
4511 */
4512 *recp = xfs_btree_rec_addr(cur, n: ptr, block);
4513 *stat = 1;
4514 return 0;
4515}
4516
4517/* Visit a block in a btree. */
4518STATIC int
4519xfs_btree_visit_block(
4520 struct xfs_btree_cur *cur,
4521 int level,
4522 xfs_btree_visit_blocks_fn fn,
4523 void *data)
4524{
4525 struct xfs_btree_block *block;
4526 struct xfs_buf *bp;
4527 union xfs_btree_ptr rptr, bufptr;
4528 int error;
4529
4530 /* do right sibling readahead */
4531 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4532 block = xfs_btree_get_block(cur, level, bpp: &bp);
4533
4534 /* process the block */
4535 error = fn(cur, level, data);
4536 if (error)
4537 return error;
4538
4539 /* now read rh sibling block for next iteration */
4540 xfs_btree_get_sibling(cur, block, ptr: &rptr, XFS_BB_RIGHTSIB);
4541 if (xfs_btree_ptr_is_null(cur, &rptr))
4542 return -ENOENT;
4543
4544 /*
4545 * We only visit blocks once in this walk, so we have to avoid the
4546 * internal xfs_btree_lookup_get_block() optimisation where it will
4547 * return the same block without checking if the right sibling points
4548 * back to us and creates a cyclic reference in the btree.
4549 */
4550 xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4551 if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4552 xfs_btree_mark_sick(cur);
4553 return -EFSCORRUPTED;
4554 }
4555
4556 return xfs_btree_lookup_get_block(cur, level, pp: &rptr, blkp: &block);
4557}
4558
4559
4560/* Visit every block in a btree. */
4561int
4562xfs_btree_visit_blocks(
4563 struct xfs_btree_cur *cur,
4564 xfs_btree_visit_blocks_fn fn,
4565 unsigned int flags,
4566 void *data)
4567{
4568 union xfs_btree_ptr lptr;
4569 int level;
4570 struct xfs_btree_block *block = NULL;
4571 int error = 0;
4572
4573 xfs_btree_init_ptr_from_cur(cur, ptr: &lptr);
4574
4575 /* for each level */
4576 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4577 /* grab the left hand block */
4578 error = xfs_btree_lookup_get_block(cur, level, pp: &lptr, blkp: &block);
4579 if (error)
4580 return error;
4581
4582 /* readahead the left most block for the next level down */
4583 if (level > 0) {
4584 union xfs_btree_ptr *ptr;
4585
4586 ptr = xfs_btree_ptr_addr(cur, n: 1, block);
4587 xfs_btree_readahead_ptr(cur, ptr, 1);
4588
4589 /* save for the next iteration of the loop */
4590 xfs_btree_copy_ptrs(cur, dst_ptr: &lptr, src_ptr: ptr, numptrs: 1);
4591
4592 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4593 continue;
4594 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4595 continue;
4596 }
4597
4598 /* for each buffer in the level */
4599 do {
4600 error = xfs_btree_visit_block(cur, level, fn, data);
4601 } while (!error);
4602
4603 if (error != -ENOENT)
4604 return error;
4605 }
4606
4607 return 0;
4608}
4609
4610/*
4611 * Change the owner of a btree.
4612 *
4613 * The mechanism we use here is ordered buffer logging. Because we don't know
4614 * how many buffers were are going to need to modify, we don't really want to
4615 * have to make transaction reservations for the worst case of every buffer in a
4616 * full size btree as that may be more space that we can fit in the log....
4617 *
4618 * We do the btree walk in the most optimal manner possible - we have sibling
4619 * pointers so we can just walk all the blocks on each level from left to right
4620 * in a single pass, and then move to the next level and do the same. We can
4621 * also do readahead on the sibling pointers to get IO moving more quickly,
4622 * though for slow disks this is unlikely to make much difference to performance
4623 * as the amount of CPU work we have to do before moving to the next block is
4624 * relatively small.
4625 *
4626 * For each btree block that we load, modify the owner appropriately, set the
4627 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4628 * we mark the region we change dirty so that if the buffer is relogged in
4629 * a subsequent transaction the changes we make here as an ordered buffer are
4630 * correctly relogged in that transaction. If we are in recovery context, then
4631 * just queue the modified buffer as delayed write buffer so the transaction
4632 * recovery completion writes the changes to disk.
4633 */
4634struct xfs_btree_block_change_owner_info {
4635 uint64_t new_owner;
4636 struct list_head *buffer_list;
4637};
4638
4639static int
4640xfs_btree_block_change_owner(
4641 struct xfs_btree_cur *cur,
4642 int level,
4643 void *data)
4644{
4645 struct xfs_btree_block_change_owner_info *bbcoi = data;
4646 struct xfs_btree_block *block;
4647 struct xfs_buf *bp;
4648
4649 /* modify the owner */
4650 block = xfs_btree_get_block(cur, level, bpp: &bp);
4651 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4652 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4653 return 0;
4654 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4655 } else {
4656 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4657 return 0;
4658 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4659 }
4660
4661 /*
4662 * If the block is a root block hosted in an inode, we might not have a
4663 * buffer pointer here and we shouldn't attempt to log the change as the
4664 * information is already held in the inode and discarded when the root
4665 * block is formatted into the on-disk inode fork. We still change it,
4666 * though, so everything is consistent in memory.
4667 */
4668 if (!bp) {
4669 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4670 ASSERT(level == cur->bc_nlevels - 1);
4671 return 0;
4672 }
4673
4674 if (cur->bc_tp) {
4675 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4676 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4677 return -EAGAIN;
4678 }
4679 } else {
4680 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4681 }
4682
4683 return 0;
4684}
4685
4686int
4687xfs_btree_change_owner(
4688 struct xfs_btree_cur *cur,
4689 uint64_t new_owner,
4690 struct list_head *buffer_list)
4691{
4692 struct xfs_btree_block_change_owner_info bbcoi;
4693
4694 bbcoi.new_owner = new_owner;
4695 bbcoi.buffer_list = buffer_list;
4696
4697 return xfs_btree_visit_blocks(cur, fn: xfs_btree_block_change_owner,
4698 XFS_BTREE_VISIT_ALL, data: &bbcoi);
4699}
4700
4701/* Verify the v5 fields of a long-format btree block. */
4702xfs_failaddr_t
4703xfs_btree_fsblock_v5hdr_verify(
4704 struct xfs_buf *bp,
4705 uint64_t owner)
4706{
4707 struct xfs_mount *mp = bp->b_mount;
4708 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4709
4710 if (!xfs_has_crc(mp))
4711 return __this_address;
4712 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4713 return __this_address;
4714 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4715 return __this_address;
4716 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4717 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4718 return __this_address;
4719 return NULL;
4720}
4721
4722/* Verify a long-format btree block. */
4723xfs_failaddr_t
4724xfs_btree_fsblock_verify(
4725 struct xfs_buf *bp,
4726 unsigned int max_recs)
4727{
4728 struct xfs_mount *mp = bp->b_mount;
4729 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4730 xfs_fsblock_t fsb;
4731 xfs_failaddr_t fa;
4732
4733 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4734
4735 /* numrecs verification */
4736 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4737 return __this_address;
4738
4739 /* sibling pointer verification */
4740 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4741 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4742 block->bb_u.l.bb_leftsib);
4743 if (!fa)
4744 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4745 block->bb_u.l.bb_rightsib);
4746 return fa;
4747}
4748
4749/* Verify an in-memory btree block. */
4750xfs_failaddr_t
4751xfs_btree_memblock_verify(
4752 struct xfs_buf *bp,
4753 unsigned int max_recs)
4754{
4755 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4756 struct xfs_buftarg *btp = bp->b_target;
4757 xfs_failaddr_t fa;
4758 xfbno_t bno;
4759
4760 ASSERT(xfs_buftarg_is_mem(bp->b_target));
4761
4762 /* numrecs verification */
4763 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4764 return __this_address;
4765
4766 /* sibling pointer verification */
4767 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4768 fa = xfs_btree_check_memblock_siblings(btp, bno,
4769 block->bb_u.l.bb_leftsib);
4770 if (fa)
4771 return fa;
4772 fa = xfs_btree_check_memblock_siblings(btp, bno,
4773 block->bb_u.l.bb_rightsib);
4774 if (fa)
4775 return fa;
4776
4777 return NULL;
4778}
4779/**
4780 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4781 * btree block
4782 *
4783 * @bp: buffer containing the btree block
4784 */
4785xfs_failaddr_t
4786xfs_btree_agblock_v5hdr_verify(
4787 struct xfs_buf *bp)
4788{
4789 struct xfs_mount *mp = bp->b_mount;
4790 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4791 struct xfs_perag *pag = bp->b_pag;
4792
4793 if (!xfs_has_crc(mp))
4794 return __this_address;
4795 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4796 return __this_address;
4797 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4798 return __this_address;
4799 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4800 return __this_address;
4801 return NULL;
4802}
4803
4804/**
4805 * xfs_btree_agblock_verify() -- verify a short-format btree block
4806 *
4807 * @bp: buffer containing the btree block
4808 * @max_recs: maximum records allowed in this btree node
4809 */
4810xfs_failaddr_t
4811xfs_btree_agblock_verify(
4812 struct xfs_buf *bp,
4813 unsigned int max_recs)
4814{
4815 struct xfs_mount *mp = bp->b_mount;
4816 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4817 xfs_agblock_t agbno;
4818 xfs_failaddr_t fa;
4819
4820 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4821
4822 /* numrecs verification */
4823 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4824 return __this_address;
4825
4826 /* sibling pointer verification */
4827 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4828 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4829 block->bb_u.s.bb_leftsib);
4830 if (!fa)
4831 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4832 block->bb_u.s.bb_rightsib);
4833 return fa;
4834}
4835
4836/*
4837 * For the given limits on leaf and keyptr records per block, calculate the
4838 * height of the tree needed to index the number of leaf records.
4839 */
4840unsigned int
4841xfs_btree_compute_maxlevels(
4842 const unsigned int *limits,
4843 unsigned long long records)
4844{
4845 unsigned long long level_blocks = howmany_64(records, limits[0]);
4846 unsigned int height = 1;
4847
4848 while (level_blocks > 1) {
4849 level_blocks = howmany_64(level_blocks, limits[1]);
4850 height++;
4851 }
4852
4853 return height;
4854}
4855
4856/*
4857 * For the given limits on leaf and keyptr records per block, calculate the
4858 * number of blocks needed to index the given number of leaf records.
4859 */
4860unsigned long long
4861xfs_btree_calc_size(
4862 const unsigned int *limits,
4863 unsigned long long records)
4864{
4865 unsigned long long level_blocks = howmany_64(records, limits[0]);
4866 unsigned long long blocks = level_blocks;
4867
4868 while (level_blocks > 1) {
4869 level_blocks = howmany_64(level_blocks, limits[1]);
4870 blocks += level_blocks;
4871 }
4872
4873 return blocks;
4874}
4875
4876/*
4877 * Given a number of available blocks for the btree to consume with records and
4878 * pointers, calculate the height of the tree needed to index all the records
4879 * that space can hold based on the number of pointers each interior node
4880 * holds.
4881 *
4882 * We start by assuming a single level tree consumes a single block, then track
4883 * the number of blocks each node level consumes until we no longer have space
4884 * to store the next node level. At this point, we are indexing all the leaf
4885 * blocks in the space, and there's no more free space to split the tree any
4886 * further. That's our maximum btree height.
4887 */
4888unsigned int
4889xfs_btree_space_to_height(
4890 const unsigned int *limits,
4891 unsigned long long leaf_blocks)
4892{
4893 /*
4894 * The root btree block can have fewer than minrecs pointers in it
4895 * because the tree might not be big enough to require that amount of
4896 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4897 */
4898 unsigned long long node_blocks = 2;
4899 unsigned long long blocks_left = leaf_blocks - 1;
4900 unsigned int height = 1;
4901
4902 if (leaf_blocks < 1)
4903 return 0;
4904
4905 while (node_blocks < blocks_left) {
4906 blocks_left -= node_blocks;
4907 node_blocks *= limits[1];
4908 height++;
4909 }
4910
4911 return height;
4912}
4913
4914/*
4915 * Query a regular btree for all records overlapping a given interval.
4916 * Start with a LE lookup of the key of low_rec and return all records
4917 * until we find a record with a key greater than the key of high_rec.
4918 */
4919STATIC int
4920xfs_btree_simple_query_range(
4921 struct xfs_btree_cur *cur,
4922 const union xfs_btree_key *low_key,
4923 const union xfs_btree_key *high_key,
4924 xfs_btree_query_range_fn fn,
4925 void *priv)
4926{
4927 union xfs_btree_rec *recp;
4928 union xfs_btree_key rec_key;
4929 int stat;
4930 bool firstrec = true;
4931 int error;
4932
4933 ASSERT(cur->bc_ops->init_high_key_from_rec);
4934 ASSERT(cur->bc_ops->diff_two_keys);
4935
4936 /*
4937 * Find the leftmost record. The btree cursor must be set
4938 * to the low record used to generate low_key.
4939 */
4940 stat = 0;
4941 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4942 if (error)
4943 goto out;
4944
4945 /* Nothing? See if there's anything to the right. */
4946 if (!stat) {
4947 error = xfs_btree_increment(cur, level: 0, stat: &stat);
4948 if (error)
4949 goto out;
4950 }
4951
4952 while (stat) {
4953 /* Find the record. */
4954 error = xfs_btree_get_rec(cur, recp: &recp, stat: &stat);
4955 if (error || !stat)
4956 break;
4957
4958 /* Skip if low_key > high_key(rec). */
4959 if (firstrec) {
4960 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4961 firstrec = false;
4962 if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4963 goto advloop;
4964 }
4965
4966 /* Stop if low_key(rec) > high_key. */
4967 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4968 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4969 break;
4970
4971 /* Callback */
4972 error = fn(cur, recp, priv);
4973 if (error)
4974 break;
4975
4976advloop:
4977 /* Move on to the next record. */
4978 error = xfs_btree_increment(cur, level: 0, stat: &stat);
4979 if (error)
4980 break;
4981 }
4982
4983out:
4984 return error;
4985}
4986
4987/*
4988 * Query an overlapped interval btree for all records overlapping a given
4989 * interval. This function roughly follows the algorithm given in
4990 * "Interval Trees" of _Introduction to Algorithms_, which is section
4991 * 14.3 in the 2nd and 3rd editions.
4992 *
4993 * First, generate keys for the low and high records passed in.
4994 *
4995 * For any leaf node, generate the high and low keys for the record.
4996 * If the record keys overlap with the query low/high keys, pass the
4997 * record to the function iterator.
4998 *
4999 * For any internal node, compare the low and high keys of each
5000 * pointer against the query low/high keys. If there's an overlap,
5001 * follow the pointer.
5002 *
5003 * As an optimization, we stop scanning a block when we find a low key
5004 * that is greater than the query's high key.
5005 */
5006STATIC int
5007xfs_btree_overlapped_query_range(
5008 struct xfs_btree_cur *cur,
5009 const union xfs_btree_key *low_key,
5010 const union xfs_btree_key *high_key,
5011 xfs_btree_query_range_fn fn,
5012 void *priv)
5013{
5014 union xfs_btree_ptr ptr;
5015 union xfs_btree_ptr *pp;
5016 union xfs_btree_key rec_key;
5017 union xfs_btree_key rec_hkey;
5018 union xfs_btree_key *lkp;
5019 union xfs_btree_key *hkp;
5020 union xfs_btree_rec *recp;
5021 struct xfs_btree_block *block;
5022 int level;
5023 struct xfs_buf *bp;
5024 int i;
5025 int error;
5026
5027 /* Load the root of the btree. */
5028 level = cur->bc_nlevels - 1;
5029 xfs_btree_init_ptr_from_cur(cur, ptr: &ptr);
5030 error = xfs_btree_lookup_get_block(cur, level, pp: &ptr, blkp: &block);
5031 if (error)
5032 return error;
5033 xfs_btree_get_block(cur, level, bpp: &bp);
5034 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5035#ifdef DEBUG
5036 error = xfs_btree_check_block(cur, block, level, bp);
5037 if (error)
5038 goto out;
5039#endif
5040 cur->bc_levels[level].ptr = 1;
5041
5042 while (level < cur->bc_nlevels) {
5043 block = xfs_btree_get_block(cur, level, bpp: &bp);
5044
5045 /* End of node, pop back towards the root. */
5046 if (cur->bc_levels[level].ptr >
5047 be16_to_cpu(block->bb_numrecs)) {
5048pop_up:
5049 if (level < cur->bc_nlevels - 1)
5050 cur->bc_levels[level + 1].ptr++;
5051 level++;
5052 continue;
5053 }
5054
5055 if (level == 0) {
5056 /* Handle a leaf node. */
5057 recp = xfs_btree_rec_addr(cur, n: cur->bc_levels[0].ptr,
5058 block);
5059
5060 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5061 cur->bc_ops->init_key_from_rec(&rec_key, recp);
5062
5063 /*
5064 * If (query's high key < record's low key), then there
5065 * are no more interesting records in this block. Pop
5066 * up to the leaf level to find more record blocks.
5067 *
5068 * If (record's high key >= query's low key) and
5069 * (query's high key >= record's low key), then
5070 * this record overlaps the query range; callback.
5071 */
5072 if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5073 goto pop_up;
5074 if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5075 error = fn(cur, recp, priv);
5076 if (error)
5077 break;
5078 }
5079 cur->bc_levels[level].ptr++;
5080 continue;
5081 }
5082
5083 /* Handle an internal node. */
5084 lkp = xfs_btree_key_addr(cur, n: cur->bc_levels[level].ptr, block);
5085 hkp = xfs_btree_high_key_addr(cur, n: cur->bc_levels[level].ptr,
5086 block);
5087 pp = xfs_btree_ptr_addr(cur, n: cur->bc_levels[level].ptr, block);
5088
5089 /*
5090 * If (query's high key < pointer's low key), then there are no
5091 * more interesting keys in this block. Pop up one leaf level
5092 * to continue looking for records.
5093 *
5094 * If (pointer's high key >= query's low key) and
5095 * (query's high key >= pointer's low key), then
5096 * this record overlaps the query range; follow pointer.
5097 */
5098 if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5099 goto pop_up;
5100 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5101 level--;
5102 error = xfs_btree_lookup_get_block(cur, level, pp,
5103 blkp: &block);
5104 if (error)
5105 goto out;
5106 xfs_btree_get_block(cur, level, bpp: &bp);
5107 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5108#ifdef DEBUG
5109 error = xfs_btree_check_block(cur, block, level, bp);
5110 if (error)
5111 goto out;
5112#endif
5113 cur->bc_levels[level].ptr = 1;
5114 continue;
5115 }
5116 cur->bc_levels[level].ptr++;
5117 }
5118
5119out:
5120 /*
5121 * If we don't end this function with the cursor pointing at a record
5122 * block, a subsequent non-error cursor deletion will not release
5123 * node-level buffers, causing a buffer leak. This is quite possible
5124 * with a zero-results range query, so release the buffers if we
5125 * failed to return any results.
5126 */
5127 if (cur->bc_levels[0].bp == NULL) {
5128 for (i = 0; i < cur->bc_nlevels; i++) {
5129 if (cur->bc_levels[i].bp) {
5130 xfs_trans_brelse(cur->bc_tp,
5131 cur->bc_levels[i].bp);
5132 cur->bc_levels[i].bp = NULL;
5133 cur->bc_levels[i].ptr = 0;
5134 cur->bc_levels[i].ra = 0;
5135 }
5136 }
5137 }
5138
5139 return error;
5140}
5141
5142static inline void
5143xfs_btree_key_from_irec(
5144 struct xfs_btree_cur *cur,
5145 union xfs_btree_key *key,
5146 const union xfs_btree_irec *irec)
5147{
5148 union xfs_btree_rec rec;
5149
5150 cur->bc_rec = *irec;
5151 cur->bc_ops->init_rec_from_cur(cur, &rec);
5152 cur->bc_ops->init_key_from_rec(key, &rec);
5153}
5154
5155/*
5156 * Query a btree for all records overlapping a given interval of keys. The
5157 * supplied function will be called with each record found; return one of the
5158 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5159 * code. This function returns -ECANCELED, zero, or a negative error code.
5160 */
5161int
5162xfs_btree_query_range(
5163 struct xfs_btree_cur *cur,
5164 const union xfs_btree_irec *low_rec,
5165 const union xfs_btree_irec *high_rec,
5166 xfs_btree_query_range_fn fn,
5167 void *priv)
5168{
5169 union xfs_btree_key low_key;
5170 union xfs_btree_key high_key;
5171
5172 /* Find the keys of both ends of the interval. */
5173 xfs_btree_key_from_irec(cur, key: &high_key, irec: high_rec);
5174 xfs_btree_key_from_irec(cur, key: &low_key, irec: low_rec);
5175
5176 /* Enforce low key <= high key. */
5177 if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5178 return -EINVAL;
5179
5180 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5181 return xfs_btree_simple_query_range(cur, &low_key,
5182 &high_key, fn, priv);
5183 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5184 fn, priv);
5185}
5186
5187/* Query a btree for all records. */
5188int
5189xfs_btree_query_all(
5190 struct xfs_btree_cur *cur,
5191 xfs_btree_query_range_fn fn,
5192 void *priv)
5193{
5194 union xfs_btree_key low_key;
5195 union xfs_btree_key high_key;
5196
5197 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5198 memset(&low_key, 0, sizeof(low_key));
5199 memset(&high_key, 0xFF, sizeof(high_key));
5200
5201 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5202}
5203
5204static int
5205xfs_btree_count_blocks_helper(
5206 struct xfs_btree_cur *cur,
5207 int level,
5208 void *data)
5209{
5210 xfs_extlen_t *blocks = data;
5211 (*blocks)++;
5212
5213 return 0;
5214}
5215
5216/* Count the blocks in a btree and return the result in *blocks. */
5217int
5218xfs_btree_count_blocks(
5219 struct xfs_btree_cur *cur,
5220 xfs_extlen_t *blocks)
5221{
5222 *blocks = 0;
5223 return xfs_btree_visit_blocks(cur, fn: xfs_btree_count_blocks_helper,
5224 XFS_BTREE_VISIT_ALL, data: blocks);
5225}
5226
5227/* Compare two btree pointers. */
5228int64_t
5229xfs_btree_diff_two_ptrs(
5230 struct xfs_btree_cur *cur,
5231 const union xfs_btree_ptr *a,
5232 const union xfs_btree_ptr *b)
5233{
5234 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5235 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5236 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5237}
5238
5239struct xfs_btree_has_records {
5240 /* Keys for the start and end of the range we want to know about. */
5241 union xfs_btree_key start_key;
5242 union xfs_btree_key end_key;
5243
5244 /* Mask for key comparisons, if desired. */
5245 const union xfs_btree_key *key_mask;
5246
5247 /* Highest record key we've seen so far. */
5248 union xfs_btree_key high_key;
5249
5250 enum xbtree_recpacking outcome;
5251};
5252
5253STATIC int
5254xfs_btree_has_records_helper(
5255 struct xfs_btree_cur *cur,
5256 const union xfs_btree_rec *rec,
5257 void *priv)
5258{
5259 union xfs_btree_key rec_key;
5260 union xfs_btree_key rec_high_key;
5261 struct xfs_btree_has_records *info = priv;
5262 enum xbtree_key_contig key_contig;
5263
5264 cur->bc_ops->init_key_from_rec(&rec_key, rec);
5265
5266 if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5267 info->outcome = XBTREE_RECPACKING_SPARSE;
5268
5269 /*
5270 * If the first record we find does not overlap the start key,
5271 * then there is a hole at the start of the search range.
5272 * Classify this as sparse and stop immediately.
5273 */
5274 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5275 info->key_mask))
5276 return -ECANCELED;
5277 } else {
5278 /*
5279 * If a subsequent record does not overlap with the any record
5280 * we've seen so far, there is a hole in the middle of the
5281 * search range. Classify this as sparse and stop.
5282 * If the keys overlap and this btree does not allow overlap,
5283 * signal corruption.
5284 */
5285 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5286 &rec_key, info->key_mask);
5287 if (key_contig == XBTREE_KEY_OVERLAP &&
5288 !(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5289 return -EFSCORRUPTED;
5290 if (key_contig == XBTREE_KEY_GAP)
5291 return -ECANCELED;
5292 }
5293
5294 /*
5295 * If high_key(rec) is larger than any other high key we've seen,
5296 * remember it for later.
5297 */
5298 cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5299 if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5300 info->key_mask))
5301 info->high_key = rec_high_key; /* struct copy */
5302
5303 return 0;
5304}
5305
5306/*
5307 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5308 * map to any records; is fully mapped to records; or is partially mapped to
5309 * records. This is the btree record equivalent to determining if a file is
5310 * sparse.
5311 *
5312 * For most btree types, the record scan should use all available btree key
5313 * fields to compare the keys encountered. These callers should pass NULL for
5314 * @mask. However, some callers (e.g. scanning physical space in the rmapbt)
5315 * want to ignore some part of the btree record keyspace when performing the
5316 * comparison. These callers should pass in a union xfs_btree_key object with
5317 * the fields that *should* be a part of the comparison set to any nonzero
5318 * value, and the rest zeroed.
5319 */
5320int
5321xfs_btree_has_records(
5322 struct xfs_btree_cur *cur,
5323 const union xfs_btree_irec *low,
5324 const union xfs_btree_irec *high,
5325 const union xfs_btree_key *mask,
5326 enum xbtree_recpacking *outcome)
5327{
5328 struct xfs_btree_has_records info = {
5329 .outcome = XBTREE_RECPACKING_EMPTY,
5330 .key_mask = mask,
5331 };
5332 int error;
5333
5334 /* Not all btrees support this operation. */
5335 if (!cur->bc_ops->keys_contiguous) {
5336 ASSERT(0);
5337 return -EOPNOTSUPP;
5338 }
5339
5340 xfs_btree_key_from_irec(cur, key: &info.start_key, irec: low);
5341 xfs_btree_key_from_irec(cur, key: &info.end_key, irec: high);
5342
5343 error = xfs_btree_query_range(cur, low_rec: low, high_rec: high,
5344 fn: xfs_btree_has_records_helper, priv: &info);
5345 if (error == -ECANCELED)
5346 goto out;
5347 if (error)
5348 return error;
5349
5350 if (info.outcome == XBTREE_RECPACKING_EMPTY)
5351 goto out;
5352
5353 /*
5354 * If the largest high_key(rec) we saw during the walk is greater than
5355 * the end of the search range, classify this as full. Otherwise,
5356 * there is a hole at the end of the search range.
5357 */
5358 if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5359 mask))
5360 info.outcome = XBTREE_RECPACKING_FULL;
5361
5362out:
5363 *outcome = info.outcome;
5364 return 0;
5365}
5366
5367/* Are there more records in this btree? */
5368bool
5369xfs_btree_has_more_records(
5370 struct xfs_btree_cur *cur)
5371{
5372 struct xfs_btree_block *block;
5373 struct xfs_buf *bp;
5374
5375 block = xfs_btree_get_block(cur, level: 0, bpp: &bp);
5376
5377 /* There are still records in this block. */
5378 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5379 return true;
5380
5381 /* There are more record blocks. */
5382 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5383 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5384 else
5385 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5386}
5387
5388/* Set up all the btree cursor caches. */
5389int __init
5390xfs_btree_init_cur_caches(void)
5391{
5392 int error;
5393
5394 error = xfs_allocbt_init_cur_cache();
5395 if (error)
5396 return error;
5397 error = xfs_inobt_init_cur_cache();
5398 if (error)
5399 goto err;
5400 error = xfs_bmbt_init_cur_cache();
5401 if (error)
5402 goto err;
5403 error = xfs_rmapbt_init_cur_cache();
5404 if (error)
5405 goto err;
5406 error = xfs_refcountbt_init_cur_cache();
5407 if (error)
5408 goto err;
5409
5410 return 0;
5411err:
5412 xfs_btree_destroy_cur_caches();
5413 return error;
5414}
5415
5416/* Destroy all the btree cursor caches, if they've been allocated. */
5417void
5418xfs_btree_destroy_cur_caches(void)
5419{
5420 xfs_allocbt_destroy_cur_cache();
5421 xfs_inobt_destroy_cur_cache();
5422 xfs_bmbt_destroy_cur_cache();
5423 xfs_rmapbt_destroy_cur_cache();
5424 xfs_refcountbt_destroy_cur_cache();
5425}
5426
5427/* Move the btree cursor before the first record. */
5428int
5429xfs_btree_goto_left_edge(
5430 struct xfs_btree_cur *cur)
5431{
5432 int stat = 0;
5433 int error;
5434
5435 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5436 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5437 if (error)
5438 return error;
5439 if (!stat)
5440 return 0;
5441
5442 error = xfs_btree_decrement(cur, level: 0, stat: &stat);
5443 if (error)
5444 return error;
5445 if (stat != 0) {
5446 ASSERT(0);
5447 xfs_btree_mark_sick(cur);
5448 return -EFSCORRUPTED;
5449 }
5450
5451 return 0;
5452}
5453

source code of linux/fs/xfs/libxfs/xfs_btree.c