1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_da_format.h"
15#include "xfs_da_btree.h"
16#include "xfs_inode.h"
17#include "xfs_bmap_btree.h"
18#include "xfs_quota.h"
19#include "xfs_trans.h"
20#include "xfs_qm.h"
21#include "xfs_trans_space.h"
22#include "xfs_rtbitmap.h"
23
24#define _ALLOC true
25#define _FREE false
26
27/*
28 * A buffer has a format structure overhead in the log in addition
29 * to the data, so we need to take this into account when reserving
30 * space in a transaction for a buffer. Round the space required up
31 * to a multiple of 128 bytes so that we don't change the historical
32 * reservation that has been used for this overhead.
33 */
34STATIC uint
35xfs_buf_log_overhead(void)
36{
37 return round_up(sizeof(struct xlog_op_header) +
38 sizeof(struct xfs_buf_log_format), 128);
39}
40
41/*
42 * Calculate out transaction log reservation per item in bytes.
43 *
44 * The nbufs argument is used to indicate the number of items that
45 * will be changed in a transaction. size is used to tell how many
46 * bytes should be reserved per item.
47 */
48STATIC uint
49xfs_calc_buf_res(
50 uint nbufs,
51 uint size)
52{
53 return nbufs * (size + xfs_buf_log_overhead());
54}
55
56/*
57 * Per-extent log reservation for the btree changes involved in freeing or
58 * allocating an extent. In classic XFS there were two trees that will be
59 * modified (bnobt + cntbt). With rmap enabled, there are three trees
60 * (rmapbt). The number of blocks reserved is based on the formula:
61 *
62 * num trees * ((2 blocks/level * max depth) - 1)
63 *
64 * Keep in mind that max depth is calculated separately for each type of tree.
65 */
66uint
67xfs_allocfree_block_count(
68 struct xfs_mount *mp,
69 uint num_ops)
70{
71 uint blocks;
72
73 blocks = num_ops * 2 * (2 * mp->m_alloc_maxlevels - 1);
74 if (xfs_has_rmapbt(mp))
75 blocks += num_ops * (2 * mp->m_rmap_maxlevels - 1);
76
77 return blocks;
78}
79
80/*
81 * Per-extent log reservation for refcount btree changes. These are never done
82 * in the same transaction as an allocation or a free, so we compute them
83 * separately.
84 */
85static unsigned int
86xfs_refcountbt_block_count(
87 struct xfs_mount *mp,
88 unsigned int num_ops)
89{
90 return num_ops * (2 * mp->m_refc_maxlevels - 1);
91}
92
93/*
94 * Logging inodes is really tricksy. They are logged in memory format,
95 * which means that what we write into the log doesn't directly translate into
96 * the amount of space they use on disk.
97 *
98 * Case in point - btree format forks in memory format use more space than the
99 * on-disk format. In memory, the buffer contains a normal btree block header so
100 * the btree code can treat it as though it is just another generic buffer.
101 * However, when we write it to the inode fork, we don't write all of this
102 * header as it isn't needed. e.g. the root is only ever in the inode, so
103 * there's no need for sibling pointers which would waste 16 bytes of space.
104 *
105 * Hence when we have an inode with a maximally sized btree format fork, then
106 * amount of information we actually log is greater than the size of the inode
107 * on disk. Hence we need an inode reservation function that calculates all this
108 * correctly. So, we log:
109 *
110 * - 4 log op headers for object
111 * - for the ilf, the inode core and 2 forks
112 * - inode log format object
113 * - the inode core
114 * - two inode forks containing bmap btree root blocks.
115 * - the btree data contained by both forks will fit into the inode size,
116 * hence when combined with the inode core above, we have a total of the
117 * actual inode size.
118 * - the BMBT headers need to be accounted separately, as they are
119 * additional to the records and pointers that fit inside the inode
120 * forks.
121 */
122STATIC uint
123xfs_calc_inode_res(
124 struct xfs_mount *mp,
125 uint ninodes)
126{
127 return ninodes *
128 (4 * sizeof(struct xlog_op_header) +
129 sizeof(struct xfs_inode_log_format) +
130 mp->m_sb.sb_inodesize +
131 2 * XFS_BMBT_BLOCK_LEN(mp));
132}
133
134/*
135 * Inode btree record insertion/removal modifies the inode btree and free space
136 * btrees (since the inobt does not use the agfl). This requires the following
137 * reservation:
138 *
139 * the inode btree: max depth * blocksize
140 * the allocation btrees: 2 trees * (max depth - 1) * block size
141 *
142 * The caller must account for SB and AG header modifications, etc.
143 */
144STATIC uint
145xfs_calc_inobt_res(
146 struct xfs_mount *mp)
147{
148 return xfs_calc_buf_res(M_IGEO(mp)->inobt_maxlevels,
149 XFS_FSB_TO_B(mp, 1)) +
150 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
151 XFS_FSB_TO_B(mp, 1));
152}
153
154/*
155 * The free inode btree is a conditional feature. The behavior differs slightly
156 * from that of the traditional inode btree in that the finobt tracks records
157 * for inode chunks with at least one free inode. A record can be removed from
158 * the tree during individual inode allocation. Therefore the finobt
159 * reservation is unconditional for both the inode chunk allocation and
160 * individual inode allocation (modify) cases.
161 *
162 * Behavior aside, the reservation for finobt modification is equivalent to the
163 * traditional inobt: cover a full finobt shape change plus block allocation.
164 */
165STATIC uint
166xfs_calc_finobt_res(
167 struct xfs_mount *mp)
168{
169 if (!xfs_has_finobt(mp))
170 return 0;
171
172 return xfs_calc_inobt_res(mp);
173}
174
175/*
176 * Calculate the reservation required to allocate or free an inode chunk. This
177 * includes:
178 *
179 * the allocation btrees: 2 trees * (max depth - 1) * block size
180 * the inode chunk: m_ino_geo.ialloc_blks * N
181 *
182 * The size N of the inode chunk reservation depends on whether it is for
183 * allocation or free and which type of create transaction is in use. An inode
184 * chunk free always invalidates the buffers and only requires reservation for
185 * headers (N == 0). An inode chunk allocation requires a chunk sized
186 * reservation on v4 and older superblocks to initialize the chunk. No chunk
187 * reservation is required for allocation on v5 supers, which use ordered
188 * buffers to initialize.
189 */
190STATIC uint
191xfs_calc_inode_chunk_res(
192 struct xfs_mount *mp,
193 bool alloc)
194{
195 uint res, size = 0;
196
197 res = xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
198 XFS_FSB_TO_B(mp, 1));
199 if (alloc) {
200 /* icreate tx uses ordered buffers */
201 if (xfs_has_v3inodes(mp))
202 return res;
203 size = XFS_FSB_TO_B(mp, 1);
204 }
205
206 res += xfs_calc_buf_res(M_IGEO(mp)->ialloc_blks, size);
207 return res;
208}
209
210/*
211 * Per-extent log reservation for the btree changes involved in freeing or
212 * allocating a realtime extent. We have to be able to log as many rtbitmap
213 * blocks as needed to mark inuse XFS_BMBT_MAX_EXTLEN blocks' worth of realtime
214 * extents, as well as the realtime summary block.
215 */
216static unsigned int
217xfs_rtalloc_block_count(
218 struct xfs_mount *mp,
219 unsigned int num_ops)
220{
221 unsigned int rtbmp_blocks;
222 xfs_rtxlen_t rtxlen;
223
224 rtxlen = xfs_extlen_to_rtxlen(mp, XFS_MAX_BMBT_EXTLEN);
225 rtbmp_blocks = xfs_rtbitmap_blockcount(mp, rtxlen);
226 return (rtbmp_blocks + 1) * num_ops;
227}
228
229/*
230 * Various log reservation values.
231 *
232 * These are based on the size of the file system block because that is what
233 * most transactions manipulate. Each adds in an additional 128 bytes per
234 * item logged to try to account for the overhead of the transaction mechanism.
235 *
236 * Note: Most of the reservations underestimate the number of allocation
237 * groups into which they could free extents in the xfs_defer_finish() call.
238 * This is because the number in the worst case is quite high and quite
239 * unusual. In order to fix this we need to change xfs_defer_finish() to free
240 * extents in only a single AG at a time. This will require changes to the
241 * EFI code as well, however, so that the EFI for the extents not freed is
242 * logged again in each transaction. See SGI PV #261917.
243 *
244 * Reservation functions here avoid a huge stack in xfs_trans_init due to
245 * register overflow from temporaries in the calculations.
246 */
247
248/*
249 * Compute the log reservation required to handle the refcount update
250 * transaction. Refcount updates are always done via deferred log items.
251 *
252 * This is calculated as:
253 * Data device refcount updates (t1):
254 * the agfs of the ags containing the blocks: nr_ops * sector size
255 * the refcount btrees: nr_ops * 1 trees * (2 * max depth - 1) * block size
256 */
257static unsigned int
258xfs_calc_refcountbt_reservation(
259 struct xfs_mount *mp,
260 unsigned int nr_ops)
261{
262 unsigned int blksz = XFS_FSB_TO_B(mp, 1);
263
264 if (!xfs_has_reflink(mp))
265 return 0;
266
267 return xfs_calc_buf_res(nr_ops, mp->m_sb.sb_sectsize) +
268 xfs_calc_buf_res(xfs_refcountbt_block_count(mp, num_ops: nr_ops), blksz);
269}
270
271/*
272 * In a write transaction we can allocate a maximum of 2
273 * extents. This gives (t1):
274 * the inode getting the new extents: inode size
275 * the inode's bmap btree: max depth * block size
276 * the agfs of the ags from which the extents are allocated: 2 * sector
277 * the superblock free block counter: sector size
278 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
279 * Or, if we're writing to a realtime file (t2):
280 * the inode getting the new extents: inode size
281 * the inode's bmap btree: max depth * block size
282 * the agfs of the ags from which the extents are allocated: 2 * sector
283 * the superblock free block counter: sector size
284 * the realtime bitmap: ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
285 * the realtime summary: 1 block
286 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
287 * And the bmap_finish transaction can free bmap blocks in a join (t3):
288 * the agfs of the ags containing the blocks: 2 * sector size
289 * the agfls of the ags containing the blocks: 2 * sector size
290 * the super block free block counter: sector size
291 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
292 * And any refcount updates that happen in a separate transaction (t4).
293 */
294STATIC uint
295xfs_calc_write_reservation(
296 struct xfs_mount *mp,
297 bool for_minlogsize)
298{
299 unsigned int t1, t2, t3, t4;
300 unsigned int blksz = XFS_FSB_TO_B(mp, 1);
301
302 t1 = xfs_calc_inode_res(mp, 1) +
303 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), blksz) +
304 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
305 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
306
307 if (xfs_has_realtime(mp)) {
308 t2 = xfs_calc_inode_res(mp, 1) +
309 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
310 blksz) +
311 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
312 xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 1), blksz) +
313 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1), blksz);
314 } else {
315 t2 = 0;
316 }
317
318 t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
319 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
320
321 /*
322 * In the early days of reflink, we included enough reservation to log
323 * two refcountbt splits for each transaction. The codebase runs
324 * refcountbt updates in separate transactions now, so to compute the
325 * minimum log size, add the refcountbtree splits back to t1 and t3 and
326 * do not account them separately as t4. Reflink did not support
327 * realtime when the reservations were established, so no adjustment to
328 * t2 is needed.
329 */
330 if (for_minlogsize) {
331 unsigned int adj = 0;
332
333 if (xfs_has_reflink(mp))
334 adj = xfs_calc_buf_res(
335 xfs_refcountbt_block_count(mp, 2),
336 blksz);
337 t1 += adj;
338 t3 += adj;
339 return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
340 }
341
342 t4 = xfs_calc_refcountbt_reservation(mp, 1);
343 return XFS_DQUOT_LOGRES(mp) + max(t4, max3(t1, t2, t3));
344}
345
346unsigned int
347xfs_calc_write_reservation_minlogsize(
348 struct xfs_mount *mp)
349{
350 return xfs_calc_write_reservation(mp, true);
351}
352
353/*
354 * In truncating a file we free up to two extents at once. We can modify (t1):
355 * the inode being truncated: inode size
356 * the inode's bmap btree: (max depth + 1) * block size
357 * And the bmap_finish transaction can free the blocks and bmap blocks (t2):
358 * the agf for each of the ags: 4 * sector size
359 * the agfl for each of the ags: 4 * sector size
360 * the super block to reflect the freed blocks: sector size
361 * worst case split in allocation btrees per extent assuming 4 extents:
362 * 4 exts * 2 trees * (2 * max depth - 1) * block size
363 * Or, if it's a realtime file (t3):
364 * the agf for each of the ags: 2 * sector size
365 * the agfl for each of the ags: 2 * sector size
366 * the super block to reflect the freed blocks: sector size
367 * the realtime bitmap:
368 * 2 exts * ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
369 * the realtime summary: 2 exts * 1 block
370 * worst case split in allocation btrees per extent assuming 2 extents:
371 * 2 exts * 2 trees * (2 * max depth - 1) * block size
372 * And any refcount updates that happen in a separate transaction (t4).
373 */
374STATIC uint
375xfs_calc_itruncate_reservation(
376 struct xfs_mount *mp,
377 bool for_minlogsize)
378{
379 unsigned int t1, t2, t3, t4;
380 unsigned int blksz = XFS_FSB_TO_B(mp, 1);
381
382 t1 = xfs_calc_inode_res(mp, 1) +
383 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, blksz);
384
385 t2 = xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
386 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4), blksz);
387
388 if (xfs_has_realtime(mp)) {
389 t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
390 xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 2), blksz) +
391 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
392 } else {
393 t3 = 0;
394 }
395
396 /*
397 * In the early days of reflink, we included enough reservation to log
398 * four refcountbt splits in the same transaction as bnobt/cntbt
399 * updates. The codebase runs refcountbt updates in separate
400 * transactions now, so to compute the minimum log size, add the
401 * refcount btree splits back here and do not compute them separately
402 * as t4. Reflink did not support realtime when the reservations were
403 * established, so do not adjust t3.
404 */
405 if (for_minlogsize) {
406 if (xfs_has_reflink(mp))
407 t2 += xfs_calc_buf_res(
408 xfs_refcountbt_block_count(mp, 4),
409 blksz);
410
411 return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
412 }
413
414 t4 = xfs_calc_refcountbt_reservation(mp, 2);
415 return XFS_DQUOT_LOGRES(mp) + max(t4, max3(t1, t2, t3));
416}
417
418unsigned int
419xfs_calc_itruncate_reservation_minlogsize(
420 struct xfs_mount *mp)
421{
422 return xfs_calc_itruncate_reservation(mp, true);
423}
424
425/*
426 * In renaming a files we can modify:
427 * the five inodes involved: 5 * inode size
428 * the two directory btrees: 2 * (max depth + v2) * dir block size
429 * the two directory bmap btrees: 2 * max depth * block size
430 * And the bmap_finish transaction can free dir and bmap blocks (two sets
431 * of bmap blocks) giving:
432 * the agf for the ags in which the blocks live: 3 * sector size
433 * the agfl for the ags in which the blocks live: 3 * sector size
434 * the superblock for the free block count: sector size
435 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
436 */
437STATIC uint
438xfs_calc_rename_reservation(
439 struct xfs_mount *mp)
440{
441 return XFS_DQUOT_LOGRES(mp) +
442 max((xfs_calc_inode_res(mp, 5) +
443 xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
444 XFS_FSB_TO_B(mp, 1))),
445 (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
446 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 3),
447 XFS_FSB_TO_B(mp, 1))));
448}
449
450/*
451 * For removing an inode from unlinked list at first, we can modify:
452 * the agi hash list and counters: sector size
453 * the on disk inode before ours in the agi hash list: inode cluster size
454 * the on disk inode in the agi hash list: inode cluster size
455 */
456STATIC uint
457xfs_calc_iunlink_remove_reservation(
458 struct xfs_mount *mp)
459{
460 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
461 2 * M_IGEO(mp)->inode_cluster_size;
462}
463
464/*
465 * For creating a link to an inode:
466 * the parent directory inode: inode size
467 * the linked inode: inode size
468 * the directory btree could split: (max depth + v2) * dir block size
469 * the directory bmap btree could join or split: (max depth + v2) * blocksize
470 * And the bmap_finish transaction can free some bmap blocks giving:
471 * the agf for the ag in which the blocks live: sector size
472 * the agfl for the ag in which the blocks live: sector size
473 * the superblock for the free block count: sector size
474 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
475 */
476STATIC uint
477xfs_calc_link_reservation(
478 struct xfs_mount *mp)
479{
480 return XFS_DQUOT_LOGRES(mp) +
481 xfs_calc_iunlink_remove_reservation(mp) +
482 max((xfs_calc_inode_res(mp, 2) +
483 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
484 XFS_FSB_TO_B(mp, 1))),
485 (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
486 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
487 XFS_FSB_TO_B(mp, 1))));
488}
489
490/*
491 * For adding an inode to unlinked list we can modify:
492 * the agi hash list: sector size
493 * the on disk inode: inode cluster size
494 */
495STATIC uint
496xfs_calc_iunlink_add_reservation(xfs_mount_t *mp)
497{
498 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
499 M_IGEO(mp)->inode_cluster_size;
500}
501
502/*
503 * For removing a directory entry we can modify:
504 * the parent directory inode: inode size
505 * the removed inode: inode size
506 * the directory btree could join: (max depth + v2) * dir block size
507 * the directory bmap btree could join or split: (max depth + v2) * blocksize
508 * And the bmap_finish transaction can free the dir and bmap blocks giving:
509 * the agf for the ag in which the blocks live: 2 * sector size
510 * the agfl for the ag in which the blocks live: 2 * sector size
511 * the superblock for the free block count: sector size
512 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
513 */
514STATIC uint
515xfs_calc_remove_reservation(
516 struct xfs_mount *mp)
517{
518 return XFS_DQUOT_LOGRES(mp) +
519 xfs_calc_iunlink_add_reservation(mp) +
520 max((xfs_calc_inode_res(mp, 2) +
521 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
522 XFS_FSB_TO_B(mp, 1))),
523 (xfs_calc_buf_res(4, mp->m_sb.sb_sectsize) +
524 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
525 XFS_FSB_TO_B(mp, 1))));
526}
527
528/*
529 * For create, break it in to the two cases that the transaction
530 * covers. We start with the modify case - allocation done by modification
531 * of the state of existing inodes - and the allocation case.
532 */
533
534/*
535 * For create we can modify:
536 * the parent directory inode: inode size
537 * the new inode: inode size
538 * the inode btree entry: block size
539 * the superblock for the nlink flag: sector size
540 * the directory btree: (max depth + v2) * dir block size
541 * the directory inode's bmap btree: (max depth + v2) * block size
542 * the finobt (record modification and allocation btrees)
543 */
544STATIC uint
545xfs_calc_create_resv_modify(
546 struct xfs_mount *mp)
547{
548 return xfs_calc_inode_res(mp, 2) +
549 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
550 (uint)XFS_FSB_TO_B(mp, 1) +
551 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1)) +
552 xfs_calc_finobt_res(mp);
553}
554
555/*
556 * For icreate we can allocate some inodes giving:
557 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
558 * the superblock for the nlink flag: sector size
559 * the inode chunk (allocation, optional init)
560 * the inobt (record insertion)
561 * the finobt (optional, record insertion)
562 */
563STATIC uint
564xfs_calc_icreate_resv_alloc(
565 struct xfs_mount *mp)
566{
567 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
568 mp->m_sb.sb_sectsize +
569 xfs_calc_inode_chunk_res(mp, _ALLOC) +
570 xfs_calc_inobt_res(mp) +
571 xfs_calc_finobt_res(mp);
572}
573
574STATIC uint
575xfs_calc_icreate_reservation(xfs_mount_t *mp)
576{
577 return XFS_DQUOT_LOGRES(mp) +
578 max(xfs_calc_icreate_resv_alloc(mp),
579 xfs_calc_create_resv_modify(mp));
580}
581
582STATIC uint
583xfs_calc_create_tmpfile_reservation(
584 struct xfs_mount *mp)
585{
586 uint res = XFS_DQUOT_LOGRES(mp);
587
588 res += xfs_calc_icreate_resv_alloc(mp);
589 return res + xfs_calc_iunlink_add_reservation(mp);
590}
591
592/*
593 * Making a new directory is the same as creating a new file.
594 */
595STATIC uint
596xfs_calc_mkdir_reservation(
597 struct xfs_mount *mp)
598{
599 return xfs_calc_icreate_reservation(mp);
600}
601
602
603/*
604 * Making a new symplink is the same as creating a new file, but
605 * with the added blocks for remote symlink data which can be up to 1kB in
606 * length (XFS_SYMLINK_MAXLEN).
607 */
608STATIC uint
609xfs_calc_symlink_reservation(
610 struct xfs_mount *mp)
611{
612 return xfs_calc_icreate_reservation(mp) +
613 xfs_calc_buf_res(1, XFS_SYMLINK_MAXLEN);
614}
615
616/*
617 * In freeing an inode we can modify:
618 * the inode being freed: inode size
619 * the super block free inode counter, AGF and AGFL: sector size
620 * the on disk inode (agi unlinked list removal)
621 * the inode chunk (invalidated, headers only)
622 * the inode btree
623 * the finobt (record insertion, removal or modification)
624 *
625 * Note that the inode chunk res. includes an allocfree res. for freeing of the
626 * inode chunk. This is technically extraneous because the inode chunk free is
627 * deferred (it occurs after a transaction roll). Include the extra reservation
628 * anyways since we've had reports of ifree transaction overruns due to too many
629 * agfl fixups during inode chunk frees.
630 */
631STATIC uint
632xfs_calc_ifree_reservation(
633 struct xfs_mount *mp)
634{
635 return XFS_DQUOT_LOGRES(mp) +
636 xfs_calc_inode_res(mp, 1) +
637 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
638 xfs_calc_iunlink_remove_reservation(mp) +
639 xfs_calc_inode_chunk_res(mp, _FREE) +
640 xfs_calc_inobt_res(mp) +
641 xfs_calc_finobt_res(mp);
642}
643
644/*
645 * When only changing the inode we log the inode and possibly the superblock
646 * We also add a bit of slop for the transaction stuff.
647 */
648STATIC uint
649xfs_calc_ichange_reservation(
650 struct xfs_mount *mp)
651{
652 return XFS_DQUOT_LOGRES(mp) +
653 xfs_calc_inode_res(mp, 1) +
654 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
655
656}
657
658/*
659 * Growing the data section of the filesystem.
660 * superblock
661 * agi and agf
662 * allocation btrees
663 */
664STATIC uint
665xfs_calc_growdata_reservation(
666 struct xfs_mount *mp)
667{
668 return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
669 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
670 XFS_FSB_TO_B(mp, 1));
671}
672
673/*
674 * Growing the rt section of the filesystem.
675 * In the first set of transactions (ALLOC) we allocate space to the
676 * bitmap or summary files.
677 * superblock: sector size
678 * agf of the ag from which the extent is allocated: sector size
679 * bmap btree for bitmap/summary inode: max depth * blocksize
680 * bitmap/summary inode: inode size
681 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
682 */
683STATIC uint
684xfs_calc_growrtalloc_reservation(
685 struct xfs_mount *mp)
686{
687 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
688 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
689 XFS_FSB_TO_B(mp, 1)) +
690 xfs_calc_inode_res(mp, 1) +
691 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
692 XFS_FSB_TO_B(mp, 1));
693}
694
695/*
696 * Growing the rt section of the filesystem.
697 * In the second set of transactions (ZERO) we zero the new metadata blocks.
698 * one bitmap/summary block: blocksize
699 */
700STATIC uint
701xfs_calc_growrtzero_reservation(
702 struct xfs_mount *mp)
703{
704 return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
705}
706
707/*
708 * Growing the rt section of the filesystem.
709 * In the third set of transactions (FREE) we update metadata without
710 * allocating any new blocks.
711 * superblock: sector size
712 * bitmap inode: inode size
713 * summary inode: inode size
714 * one bitmap block: blocksize
715 * summary blocks: new summary size
716 */
717STATIC uint
718xfs_calc_growrtfree_reservation(
719 struct xfs_mount *mp)
720{
721 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
722 xfs_calc_inode_res(mp, 2) +
723 xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
724 xfs_calc_buf_res(1, mp->m_rsumsize);
725}
726
727/*
728 * Logging the inode modification timestamp on a synchronous write.
729 * inode
730 */
731STATIC uint
732xfs_calc_swrite_reservation(
733 struct xfs_mount *mp)
734{
735 return xfs_calc_inode_res(mp, 1);
736}
737
738/*
739 * Logging the inode mode bits when writing a setuid/setgid file
740 * inode
741 */
742STATIC uint
743xfs_calc_writeid_reservation(
744 struct xfs_mount *mp)
745{
746 return xfs_calc_inode_res(mp, 1);
747}
748
749/*
750 * Converting the inode from non-attributed to attributed.
751 * the inode being converted: inode size
752 * agf block and superblock (for block allocation)
753 * the new block (directory sized)
754 * bmap blocks for the new directory block
755 * allocation btrees
756 */
757STATIC uint
758xfs_calc_addafork_reservation(
759 struct xfs_mount *mp)
760{
761 return XFS_DQUOT_LOGRES(mp) +
762 xfs_calc_inode_res(mp, 1) +
763 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
764 xfs_calc_buf_res(1, mp->m_dir_geo->blksize) +
765 xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
766 XFS_FSB_TO_B(mp, 1)) +
767 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
768 XFS_FSB_TO_B(mp, 1));
769}
770
771/*
772 * Removing the attribute fork of a file
773 * the inode being truncated: inode size
774 * the inode's bmap btree: max depth * block size
775 * And the bmap_finish transaction can free the blocks and bmap blocks:
776 * the agf for each of the ags: 4 * sector size
777 * the agfl for each of the ags: 4 * sector size
778 * the super block to reflect the freed blocks: sector size
779 * worst case split in allocation btrees per extent assuming 4 extents:
780 * 4 exts * 2 trees * (2 * max depth - 1) * block size
781 */
782STATIC uint
783xfs_calc_attrinval_reservation(
784 struct xfs_mount *mp)
785{
786 return max((xfs_calc_inode_res(mp, 1) +
787 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
788 XFS_FSB_TO_B(mp, 1))),
789 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
790 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4),
791 XFS_FSB_TO_B(mp, 1))));
792}
793
794/*
795 * Setting an attribute at mount time.
796 * the inode getting the attribute
797 * the superblock for allocations
798 * the agfs extents are allocated from
799 * the attribute btree * max depth
800 * the inode allocation btree
801 * Since attribute transaction space is dependent on the size of the attribute,
802 * the calculation is done partially at mount time and partially at runtime(see
803 * below).
804 */
805STATIC uint
806xfs_calc_attrsetm_reservation(
807 struct xfs_mount *mp)
808{
809 return XFS_DQUOT_LOGRES(mp) +
810 xfs_calc_inode_res(mp, 1) +
811 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
812 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
813}
814
815/*
816 * Setting an attribute at runtime, transaction space unit per block.
817 * the superblock for allocations: sector size
818 * the inode bmap btree could join or split: max depth * block size
819 * Since the runtime attribute transaction space is dependent on the total
820 * blocks needed for the 1st bmap, here we calculate out the space unit for
821 * one block so that the caller could figure out the total space according
822 * to the attibute extent length in blocks by:
823 * ext * M_RES(mp)->tr_attrsetrt.tr_logres
824 */
825STATIC uint
826xfs_calc_attrsetrt_reservation(
827 struct xfs_mount *mp)
828{
829 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
830 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
831 XFS_FSB_TO_B(mp, 1));
832}
833
834/*
835 * Removing an attribute.
836 * the inode: inode size
837 * the attribute btree could join: max depth * block size
838 * the inode bmap btree could join or split: max depth * block size
839 * And the bmap_finish transaction can free the attr blocks freed giving:
840 * the agf for the ag in which the blocks live: 2 * sector size
841 * the agfl for the ag in which the blocks live: 2 * sector size
842 * the superblock for the free block count: sector size
843 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
844 */
845STATIC uint
846xfs_calc_attrrm_reservation(
847 struct xfs_mount *mp)
848{
849 return XFS_DQUOT_LOGRES(mp) +
850 max((xfs_calc_inode_res(mp, 1) +
851 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
852 XFS_FSB_TO_B(mp, 1)) +
853 (uint)XFS_FSB_TO_B(mp,
854 XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
855 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
856 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
857 xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
858 XFS_FSB_TO_B(mp, 1))));
859}
860
861/*
862 * Clearing a bad agino number in an agi hash bucket.
863 */
864STATIC uint
865xfs_calc_clear_agi_bucket_reservation(
866 struct xfs_mount *mp)
867{
868 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
869}
870
871/*
872 * Adjusting quota limits.
873 * the disk quota buffer: sizeof(struct xfs_disk_dquot)
874 */
875STATIC uint
876xfs_calc_qm_setqlim_reservation(void)
877{
878 return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
879}
880
881/*
882 * Allocating quota on disk if needed.
883 * the write transaction log space for quota file extent allocation
884 * the unit of quota allocation: one system block size
885 */
886STATIC uint
887xfs_calc_qm_dqalloc_reservation(
888 struct xfs_mount *mp,
889 bool for_minlogsize)
890{
891 return xfs_calc_write_reservation(mp, for_minlogsize) +
892 xfs_calc_buf_res(1,
893 XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
894}
895
896unsigned int
897xfs_calc_qm_dqalloc_reservation_minlogsize(
898 struct xfs_mount *mp)
899{
900 return xfs_calc_qm_dqalloc_reservation(mp, true);
901}
902
903/*
904 * Syncing the incore super block changes to disk.
905 * the super block to reflect the changes: sector size
906 */
907STATIC uint
908xfs_calc_sb_reservation(
909 struct xfs_mount *mp)
910{
911 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
912}
913
914void
915xfs_trans_resv_calc(
916 struct xfs_mount *mp,
917 struct xfs_trans_resv *resp)
918{
919 int logcount_adj = 0;
920
921 /*
922 * The following transactions are logged in physical format and
923 * require a permanent reservation on space.
924 */
925 resp->tr_write.tr_logres = xfs_calc_write_reservation(mp, false);
926 resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT;
927 resp->tr_write.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
928
929 resp->tr_itruncate.tr_logres = xfs_calc_itruncate_reservation(mp, false);
930 resp->tr_itruncate.tr_logcount = XFS_ITRUNCATE_LOG_COUNT;
931 resp->tr_itruncate.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
932
933 resp->tr_rename.tr_logres = xfs_calc_rename_reservation(mp);
934 resp->tr_rename.tr_logcount = XFS_RENAME_LOG_COUNT;
935 resp->tr_rename.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
936
937 resp->tr_link.tr_logres = xfs_calc_link_reservation(mp);
938 resp->tr_link.tr_logcount = XFS_LINK_LOG_COUNT;
939 resp->tr_link.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
940
941 resp->tr_remove.tr_logres = xfs_calc_remove_reservation(mp);
942 resp->tr_remove.tr_logcount = XFS_REMOVE_LOG_COUNT;
943 resp->tr_remove.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
944
945 resp->tr_symlink.tr_logres = xfs_calc_symlink_reservation(mp);
946 resp->tr_symlink.tr_logcount = XFS_SYMLINK_LOG_COUNT;
947 resp->tr_symlink.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
948
949 resp->tr_create.tr_logres = xfs_calc_icreate_reservation(mp);
950 resp->tr_create.tr_logcount = XFS_CREATE_LOG_COUNT;
951 resp->tr_create.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
952
953 resp->tr_create_tmpfile.tr_logres =
954 xfs_calc_create_tmpfile_reservation(mp);
955 resp->tr_create_tmpfile.tr_logcount = XFS_CREATE_TMPFILE_LOG_COUNT;
956 resp->tr_create_tmpfile.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
957
958 resp->tr_mkdir.tr_logres = xfs_calc_mkdir_reservation(mp);
959 resp->tr_mkdir.tr_logcount = XFS_MKDIR_LOG_COUNT;
960 resp->tr_mkdir.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
961
962 resp->tr_ifree.tr_logres = xfs_calc_ifree_reservation(mp);
963 resp->tr_ifree.tr_logcount = XFS_INACTIVE_LOG_COUNT;
964 resp->tr_ifree.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
965
966 resp->tr_addafork.tr_logres = xfs_calc_addafork_reservation(mp);
967 resp->tr_addafork.tr_logcount = XFS_ADDAFORK_LOG_COUNT;
968 resp->tr_addafork.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
969
970 resp->tr_attrinval.tr_logres = xfs_calc_attrinval_reservation(mp);
971 resp->tr_attrinval.tr_logcount = XFS_ATTRINVAL_LOG_COUNT;
972 resp->tr_attrinval.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
973
974 resp->tr_attrsetm.tr_logres = xfs_calc_attrsetm_reservation(mp);
975 resp->tr_attrsetm.tr_logcount = XFS_ATTRSET_LOG_COUNT;
976 resp->tr_attrsetm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
977
978 resp->tr_attrrm.tr_logres = xfs_calc_attrrm_reservation(mp);
979 resp->tr_attrrm.tr_logcount = XFS_ATTRRM_LOG_COUNT;
980 resp->tr_attrrm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
981
982 resp->tr_growrtalloc.tr_logres = xfs_calc_growrtalloc_reservation(mp);
983 resp->tr_growrtalloc.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
984 resp->tr_growrtalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
985
986 resp->tr_qm_dqalloc.tr_logres = xfs_calc_qm_dqalloc_reservation(mp,
987 false);
988 resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT;
989 resp->tr_qm_dqalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
990
991 /*
992 * The following transactions are logged in logical format with
993 * a default log count.
994 */
995 resp->tr_qm_setqlim.tr_logres = xfs_calc_qm_setqlim_reservation();
996 resp->tr_qm_setqlim.tr_logcount = XFS_DEFAULT_LOG_COUNT;
997
998 resp->tr_sb.tr_logres = xfs_calc_sb_reservation(mp);
999 resp->tr_sb.tr_logcount = XFS_DEFAULT_LOG_COUNT;
1000
1001 /* growdata requires permanent res; it can free space to the last AG */
1002 resp->tr_growdata.tr_logres = xfs_calc_growdata_reservation(mp);
1003 resp->tr_growdata.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
1004 resp->tr_growdata.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
1005
1006 /* The following transaction are logged in logical format */
1007 resp->tr_ichange.tr_logres = xfs_calc_ichange_reservation(mp);
1008 resp->tr_fsyncts.tr_logres = xfs_calc_swrite_reservation(mp);
1009 resp->tr_writeid.tr_logres = xfs_calc_writeid_reservation(mp);
1010 resp->tr_attrsetrt.tr_logres = xfs_calc_attrsetrt_reservation(mp);
1011 resp->tr_clearagi.tr_logres = xfs_calc_clear_agi_bucket_reservation(mp);
1012 resp->tr_growrtzero.tr_logres = xfs_calc_growrtzero_reservation(mp);
1013 resp->tr_growrtfree.tr_logres = xfs_calc_growrtfree_reservation(mp);
1014
1015 /*
1016 * Add one logcount for BUI items that appear with rmap or reflink,
1017 * one logcount for refcount intent items, and one logcount for rmap
1018 * intent items.
1019 */
1020 if (xfs_has_reflink(mp) || xfs_has_rmapbt(mp))
1021 logcount_adj++;
1022 if (xfs_has_reflink(mp))
1023 logcount_adj++;
1024 if (xfs_has_rmapbt(mp))
1025 logcount_adj++;
1026
1027 resp->tr_itruncate.tr_logcount += logcount_adj;
1028 resp->tr_write.tr_logcount += logcount_adj;
1029 resp->tr_qm_dqalloc.tr_logcount += logcount_adj;
1030}
1031

source code of linux/fs/xfs/libxfs/xfs_trans_resv.c