1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
---|---|
2 | /* |
3 | * Cryptographic API for algorithms (i.e., low-level API). |
4 | * |
5 | * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> |
6 | */ |
7 | #ifndef _CRYPTO_ALGAPI_H |
8 | #define _CRYPTO_ALGAPI_H |
9 | |
10 | #include <crypto/utils.h> |
11 | #include <linux/align.h> |
12 | #include <linux/cache.h> |
13 | #include <linux/crypto.h> |
14 | #include <linux/list.h> |
15 | #include <linux/types.h> |
16 | #include <linux/workqueue.h> |
17 | |
18 | /* |
19 | * Maximum values for blocksize and alignmask, used to allocate |
20 | * static buffers that are big enough for any combination of |
21 | * algs and architectures. Ciphers have a lower maximum size. |
22 | */ |
23 | #define MAX_ALGAPI_BLOCKSIZE 160 |
24 | #define MAX_ALGAPI_ALIGNMASK 127 |
25 | #define MAX_CIPHER_BLOCKSIZE 16 |
26 | #define MAX_CIPHER_ALIGNMASK 15 |
27 | |
28 | #ifdef ARCH_DMA_MINALIGN |
29 | #define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN |
30 | #else |
31 | #define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN |
32 | #endif |
33 | |
34 | #define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1)) |
35 | |
36 | /* |
37 | * Autoloaded crypto modules should only use a prefixed name to avoid allowing |
38 | * arbitrary modules to be loaded. Loading from userspace may still need the |
39 | * unprefixed names, so retains those aliases as well. |
40 | * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 |
41 | * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro |
42 | * expands twice on the same line. Instead, use a separate base name for the |
43 | * alias. |
44 | */ |
45 | #define MODULE_ALIAS_CRYPTO(name) \ |
46 | __MODULE_INFO(alias, alias_userspace, name); \ |
47 | __MODULE_INFO(alias, alias_crypto, "crypto-" name) |
48 | |
49 | struct crypto_aead; |
50 | struct crypto_instance; |
51 | struct module; |
52 | struct notifier_block; |
53 | struct rtattr; |
54 | struct scatterlist; |
55 | struct seq_file; |
56 | struct sk_buff; |
57 | union crypto_no_such_thing; |
58 | |
59 | struct crypto_instance { |
60 | struct crypto_alg alg; |
61 | |
62 | struct crypto_template *tmpl; |
63 | |
64 | union { |
65 | /* Node in list of instances after registration. */ |
66 | struct hlist_node list; |
67 | /* List of attached spawns before registration. */ |
68 | struct crypto_spawn *spawns; |
69 | }; |
70 | |
71 | void *__ctx[] CRYPTO_MINALIGN_ATTR; |
72 | }; |
73 | |
74 | struct crypto_template { |
75 | struct list_head list; |
76 | struct hlist_head instances; |
77 | struct hlist_head dead; |
78 | struct module *module; |
79 | |
80 | struct work_struct free_work; |
81 | |
82 | int (*create)(struct crypto_template *tmpl, struct rtattr **tb); |
83 | |
84 | char name[CRYPTO_MAX_ALG_NAME]; |
85 | }; |
86 | |
87 | struct crypto_spawn { |
88 | struct list_head list; |
89 | struct crypto_alg *alg; |
90 | union { |
91 | /* Back pointer to instance after registration.*/ |
92 | struct crypto_instance *inst; |
93 | /* Spawn list pointer prior to registration. */ |
94 | struct crypto_spawn *next; |
95 | }; |
96 | const struct crypto_type *frontend; |
97 | u32 mask; |
98 | bool dead; |
99 | bool registered; |
100 | }; |
101 | |
102 | struct crypto_queue { |
103 | struct list_head list; |
104 | struct list_head *backlog; |
105 | |
106 | unsigned int qlen; |
107 | unsigned int max_qlen; |
108 | }; |
109 | |
110 | struct crypto_attr_alg { |
111 | char name[CRYPTO_MAX_ALG_NAME]; |
112 | }; |
113 | |
114 | struct crypto_attr_type { |
115 | u32 type; |
116 | u32 mask; |
117 | }; |
118 | |
119 | /* |
120 | * Algorithm registration interface. |
121 | */ |
122 | int crypto_register_alg(struct crypto_alg *alg); |
123 | void crypto_unregister_alg(struct crypto_alg *alg); |
124 | int crypto_register_algs(struct crypto_alg *algs, int count); |
125 | void crypto_unregister_algs(struct crypto_alg *algs, int count); |
126 | |
127 | void crypto_mod_put(struct crypto_alg *alg); |
128 | |
129 | int crypto_register_template(struct crypto_template *tmpl); |
130 | int crypto_register_templates(struct crypto_template *tmpls, int count); |
131 | void crypto_unregister_template(struct crypto_template *tmpl); |
132 | void crypto_unregister_templates(struct crypto_template *tmpls, int count); |
133 | struct crypto_template *crypto_lookup_template(const char *name); |
134 | |
135 | int crypto_register_instance(struct crypto_template *tmpl, |
136 | struct crypto_instance *inst); |
137 | void crypto_unregister_instance(struct crypto_instance *inst); |
138 | |
139 | int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst, |
140 | const char *name, u32 type, u32 mask); |
141 | void crypto_drop_spawn(struct crypto_spawn *spawn); |
142 | struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, |
143 | u32 mask); |
144 | void *crypto_spawn_tfm2(struct crypto_spawn *spawn); |
145 | |
146 | struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); |
147 | int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret); |
148 | const char *crypto_attr_alg_name(struct rtattr *rta); |
149 | int __crypto_inst_setname(struct crypto_instance *inst, const char *name, |
150 | const char *driver, struct crypto_alg *alg); |
151 | |
152 | #define crypto_inst_setname(inst, name, ...) \ |
153 | CONCATENATE(crypto_inst_setname_, COUNT_ARGS(__VA_ARGS__))( \ |
154 | inst, name, ##__VA_ARGS__) |
155 | #define crypto_inst_setname_1(inst, name, alg) \ |
156 | __crypto_inst_setname(inst, name, name, alg) |
157 | #define crypto_inst_setname_2(inst, name, driver, alg) \ |
158 | __crypto_inst_setname(inst, name, driver, alg) |
159 | |
160 | void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); |
161 | int crypto_enqueue_request(struct crypto_queue *queue, |
162 | struct crypto_async_request *request); |
163 | void crypto_enqueue_request_head(struct crypto_queue *queue, |
164 | struct crypto_async_request *request); |
165 | struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); |
166 | static inline unsigned int crypto_queue_len(struct crypto_queue *queue) |
167 | { |
168 | return queue->qlen; |
169 | } |
170 | |
171 | void crypto_inc(u8 *a, unsigned int size); |
172 | |
173 | static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) |
174 | { |
175 | return tfm->__crt_ctx; |
176 | } |
177 | |
178 | static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm, |
179 | unsigned int align) |
180 | { |
181 | if (align <= crypto_tfm_ctx_alignment()) |
182 | align = 1; |
183 | |
184 | return PTR_ALIGN(crypto_tfm_ctx(tfm), align); |
185 | } |
186 | |
187 | static inline unsigned int crypto_dma_align(void) |
188 | { |
189 | return CRYPTO_DMA_ALIGN; |
190 | } |
191 | |
192 | static inline unsigned int crypto_dma_padding(void) |
193 | { |
194 | return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1); |
195 | } |
196 | |
197 | static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm) |
198 | { |
199 | return crypto_tfm_ctx_align(tfm, align: crypto_dma_align()); |
200 | } |
201 | |
202 | static inline struct crypto_instance *crypto_tfm_alg_instance( |
203 | struct crypto_tfm *tfm) |
204 | { |
205 | return container_of(tfm->__crt_alg, struct crypto_instance, alg); |
206 | } |
207 | |
208 | static inline void *crypto_instance_ctx(struct crypto_instance *inst) |
209 | { |
210 | return inst->__ctx; |
211 | } |
212 | |
213 | static inline struct crypto_async_request *crypto_get_backlog( |
214 | struct crypto_queue *queue) |
215 | { |
216 | return queue->backlog == &queue->list ? NULL : |
217 | container_of(queue->backlog, struct crypto_async_request, list); |
218 | } |
219 | |
220 | static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off) |
221 | { |
222 | return (algt->type ^ off) & algt->mask & off; |
223 | } |
224 | |
225 | /* |
226 | * When an algorithm uses another algorithm (e.g., if it's an instance of a |
227 | * template), these are the flags that should always be set on the "outer" |
228 | * algorithm if any "inner" algorithm has them set. |
229 | */ |
230 | #define CRYPTO_ALG_INHERITED_FLAGS \ |
231 | (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \ |
232 | CRYPTO_ALG_ALLOCATES_MEMORY) |
233 | |
234 | /* |
235 | * Given the type and mask that specify the flags restrictions on a template |
236 | * instance being created, return the mask that should be passed to |
237 | * crypto_grab_*() (along with type=0) to honor any request the user made to |
238 | * have any of the CRYPTO_ALG_INHERITED_FLAGS clear. |
239 | */ |
240 | static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt) |
241 | { |
242 | return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS); |
243 | } |
244 | |
245 | int crypto_register_notifier(struct notifier_block *nb); |
246 | int crypto_unregister_notifier(struct notifier_block *nb); |
247 | |
248 | /* Crypto notification events. */ |
249 | enum { |
250 | CRYPTO_MSG_ALG_REQUEST, |
251 | CRYPTO_MSG_ALG_REGISTER, |
252 | CRYPTO_MSG_ALG_LOADED, |
253 | }; |
254 | |
255 | static inline void crypto_request_complete(struct crypto_async_request *req, |
256 | int err) |
257 | { |
258 | req->complete(req->data, err); |
259 | } |
260 | |
261 | static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) |
262 | { |
263 | return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; |
264 | } |
265 | |
266 | static inline bool crypto_tfm_req_virt(struct crypto_tfm *tfm) |
267 | { |
268 | return tfm->__crt_alg->cra_flags & CRYPTO_ALG_REQ_VIRT; |
269 | } |
270 | |
271 | static inline u32 crypto_request_flags(struct crypto_async_request *req) |
272 | { |
273 | return req->flags & ~CRYPTO_TFM_REQ_ON_STACK; |
274 | } |
275 | |
276 | #endif /* _CRYPTO_ALGAPI_H */ |
277 |
Definitions
- crypto_instance
- crypto_template
- crypto_spawn
- crypto_queue
- crypto_attr_alg
- crypto_attr_type
- crypto_queue_len
- crypto_tfm_ctx
- crypto_tfm_ctx_align
- crypto_dma_align
- crypto_dma_padding
- crypto_tfm_ctx_dma
- crypto_tfm_alg_instance
- crypto_instance_ctx
- crypto_get_backlog
- crypto_requires_off
- crypto_algt_inherited_mask
- crypto_request_complete
- crypto_tfm_alg_type
- crypto_tfm_req_virt
Improve your Profiling and Debugging skills
Find out more