1 | /* |
2 | * Copyright (c) 2013, Kenneth MacKay |
3 | * All rights reserved. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions are |
7 | * met: |
8 | * * Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * * Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * |
14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | */ |
26 | #ifndef _CRYPTO_ECC_H |
27 | #define _CRYPTO_ECC_H |
28 | |
29 | #include <crypto/ecc_curve.h> |
30 | #include <linux/unaligned.h> |
31 | |
32 | /* One digit is u64 qword. */ |
33 | #define ECC_CURVE_NIST_P192_DIGITS 3 |
34 | #define ECC_CURVE_NIST_P256_DIGITS 4 |
35 | #define ECC_CURVE_NIST_P384_DIGITS 6 |
36 | #define ECC_CURVE_NIST_P521_DIGITS 9 |
37 | #define ECC_MAX_DIGITS DIV_ROUND_UP(521, 64) /* NIST P521 */ |
38 | |
39 | #define ECC_DIGITS_TO_BYTES_SHIFT 3 |
40 | |
41 | #define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT) |
42 | |
43 | #define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits } |
44 | |
45 | /* |
46 | * The integers r and s making up the signature are expected to be |
47 | * formatted as two consecutive u64 arrays of size ECC_MAX_BYTES. |
48 | * The bytes within each u64 digit are in native endianness, |
49 | * but the order of the u64 digits themselves is little endian. |
50 | * This format allows direct use by internal vli_*() functions. |
51 | */ |
52 | struct ecdsa_raw_sig { |
53 | u64 r[ECC_MAX_DIGITS]; |
54 | u64 s[ECC_MAX_DIGITS]; |
55 | }; |
56 | |
57 | /** |
58 | * ecc_swap_digits() - Copy ndigits from big endian array to native array |
59 | * @in: Input array |
60 | * @out: Output array |
61 | * @ndigits: Number of digits to copy |
62 | */ |
63 | static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits) |
64 | { |
65 | const __be64 *src = (__force __be64 *)in; |
66 | int i; |
67 | |
68 | for (i = 0; i < ndigits; i++) |
69 | out[i] = get_unaligned_be64(p: &src[ndigits - 1 - i]); |
70 | } |
71 | |
72 | /** |
73 | * ecc_digits_from_bytes() - Create ndigits-sized digits array from byte array |
74 | * @in: Input byte array |
75 | * @nbytes Size of input byte array |
76 | * @out Output digits array |
77 | * @ndigits: Number of digits to create from byte array |
78 | * |
79 | * The first byte in the input byte array is expected to hold the most |
80 | * significant bits of the large integer. |
81 | */ |
82 | void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes, |
83 | u64 *out, unsigned int ndigits); |
84 | |
85 | /** |
86 | * ecc_is_key_valid() - Validate a given ECDH private key |
87 | * |
88 | * @curve_id: id representing the curve to use |
89 | * @ndigits: curve's number of digits |
90 | * @private_key: private key to be used for the given curve |
91 | * @private_key_len: private key length |
92 | * |
93 | * Returns 0 if the key is acceptable, a negative value otherwise |
94 | */ |
95 | int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, |
96 | const u64 *private_key, unsigned int private_key_len); |
97 | |
98 | /** |
99 | * ecc_gen_privkey() - Generates an ECC private key. |
100 | * The private key is a random integer in the range 0 < random < n, where n is a |
101 | * prime that is the order of the cyclic subgroup generated by the distinguished |
102 | * point G. |
103 | * @curve_id: id representing the curve to use |
104 | * @ndigits: curve number of digits |
105 | * @private_key: buffer for storing the generated private key |
106 | * |
107 | * Returns 0 if the private key was generated successfully, a negative value |
108 | * if an error occurred. |
109 | */ |
110 | int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, |
111 | u64 *private_key); |
112 | |
113 | /** |
114 | * ecc_make_pub_key() - Compute an ECC public key |
115 | * |
116 | * @curve_id: id representing the curve to use |
117 | * @ndigits: curve's number of digits |
118 | * @private_key: pregenerated private key for the given curve |
119 | * @public_key: buffer for storing the generated public key |
120 | * |
121 | * Returns 0 if the public key was generated successfully, a negative value |
122 | * if an error occurred. |
123 | */ |
124 | int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits, |
125 | const u64 *private_key, u64 *public_key); |
126 | |
127 | /** |
128 | * crypto_ecdh_shared_secret() - Compute a shared secret |
129 | * |
130 | * @curve_id: id representing the curve to use |
131 | * @ndigits: curve's number of digits |
132 | * @private_key: private key of part A |
133 | * @public_key: public key of counterpart B |
134 | * @secret: buffer for storing the calculated shared secret |
135 | * |
136 | * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret |
137 | * before using it for symmetric encryption or HMAC. |
138 | * |
139 | * Returns 0 if the shared secret was generated successfully, a negative value |
140 | * if an error occurred. |
141 | */ |
142 | int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, |
143 | const u64 *private_key, const u64 *public_key, |
144 | u64 *secret); |
145 | |
146 | /** |
147 | * ecc_is_pubkey_valid_partial() - Partial public key validation |
148 | * |
149 | * @curve: elliptic curve domain parameters |
150 | * @pk: public key as a point |
151 | * |
152 | * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial |
153 | * Public-Key Validation Routine. |
154 | * |
155 | * Note: There is no check that the public key is in the correct elliptic curve |
156 | * subgroup. |
157 | * |
158 | * Return: 0 if validation is successful, -EINVAL if validation is failed. |
159 | */ |
160 | int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, |
161 | struct ecc_point *pk); |
162 | |
163 | /** |
164 | * ecc_is_pubkey_valid_full() - Full public key validation |
165 | * |
166 | * @curve: elliptic curve domain parameters |
167 | * @pk: public key as a point |
168 | * |
169 | * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full |
170 | * Public-Key Validation Routine. |
171 | * |
172 | * Return: 0 if validation is successful, -EINVAL if validation is failed. |
173 | */ |
174 | int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, |
175 | struct ecc_point *pk); |
176 | |
177 | /** |
178 | * vli_is_zero() - Determine is vli is zero |
179 | * |
180 | * @vli: vli to check. |
181 | * @ndigits: length of the @vli |
182 | */ |
183 | bool vli_is_zero(const u64 *vli, unsigned int ndigits); |
184 | |
185 | /** |
186 | * vli_cmp() - compare left and right vlis |
187 | * |
188 | * @left: vli |
189 | * @right: vli |
190 | * @ndigits: length of both vlis |
191 | * |
192 | * Returns sign of @left - @right, i.e. -1 if @left < @right, |
193 | * 0 if @left == @right, 1 if @left > @right. |
194 | */ |
195 | int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits); |
196 | |
197 | /** |
198 | * vli_sub() - Subtracts right from left |
199 | * |
200 | * @result: where to write result |
201 | * @left: vli |
202 | * @right vli |
203 | * @ndigits: length of all vlis |
204 | * |
205 | * Note: can modify in-place. |
206 | * |
207 | * Return: carry bit. |
208 | */ |
209 | u64 vli_sub(u64 *result, const u64 *left, const u64 *right, |
210 | unsigned int ndigits); |
211 | |
212 | /** |
213 | * vli_from_be64() - Load vli from big-endian u64 array |
214 | * |
215 | * @dest: destination vli |
216 | * @src: source array of u64 BE values |
217 | * @ndigits: length of both vli and array |
218 | */ |
219 | void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits); |
220 | |
221 | /** |
222 | * vli_from_le64() - Load vli from little-endian u64 array |
223 | * |
224 | * @dest: destination vli |
225 | * @src: source array of u64 LE values |
226 | * @ndigits: length of both vli and array |
227 | */ |
228 | void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits); |
229 | |
230 | /** |
231 | * vli_mod_inv() - Modular inversion |
232 | * |
233 | * @result: where to write vli number |
234 | * @input: vli value to operate on |
235 | * @mod: modulus |
236 | * @ndigits: length of all vlis |
237 | */ |
238 | void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, |
239 | unsigned int ndigits); |
240 | |
241 | /** |
242 | * vli_mod_mult_slow() - Modular multiplication |
243 | * |
244 | * @result: where to write result value |
245 | * @left: vli number to multiply with @right |
246 | * @right: vli number to multiply with @left |
247 | * @mod: modulus |
248 | * @ndigits: length of all vlis |
249 | * |
250 | * Note: Assumes that mod is big enough curve order. |
251 | */ |
252 | void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, |
253 | const u64 *mod, unsigned int ndigits); |
254 | |
255 | /** |
256 | * vli_num_bits() - Counts the number of bits required for vli. |
257 | * |
258 | * @vli: vli to check. |
259 | * @ndigits: Length of the @vli |
260 | * |
261 | * Return: The number of bits required to represent @vli. |
262 | */ |
263 | unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits); |
264 | |
265 | /** |
266 | * ecc_aloc_point() - Allocate ECC point. |
267 | * |
268 | * @ndigits: Length of vlis in u64 qwords. |
269 | * |
270 | * Return: Pointer to the allocated point or NULL if allocation failed. |
271 | */ |
272 | struct ecc_point *ecc_alloc_point(unsigned int ndigits); |
273 | |
274 | /** |
275 | * ecc_free_point() - Free ECC point. |
276 | * |
277 | * @p: The point to free. |
278 | */ |
279 | void ecc_free_point(struct ecc_point *p); |
280 | |
281 | /** |
282 | * ecc_point_is_zero() - Check if point is zero. |
283 | * |
284 | * @p: Point to check for zero. |
285 | * |
286 | * Return: true if point is the point at infinity, false otherwise. |
287 | */ |
288 | bool ecc_point_is_zero(const struct ecc_point *point); |
289 | |
290 | /** |
291 | * ecc_point_mult_shamir() - Add two points multiplied by scalars |
292 | * |
293 | * @result: resulting point |
294 | * @x: scalar to multiply with @p |
295 | * @p: point to multiply with @x |
296 | * @y: scalar to multiply with @q |
297 | * @q: point to multiply with @y |
298 | * @curve: curve |
299 | * |
300 | * Returns result = x * p + x * q over the curve. |
301 | * This works faster than two multiplications and addition. |
302 | */ |
303 | void ecc_point_mult_shamir(const struct ecc_point *result, |
304 | const u64 *x, const struct ecc_point *p, |
305 | const u64 *y, const struct ecc_point *q, |
306 | const struct ecc_curve *curve); |
307 | |
308 | extern struct crypto_template ecdsa_x962_tmpl; |
309 | extern struct crypto_template ecdsa_p1363_tmpl; |
310 | #endif |
311 | |