1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | /* |
3 | * This is <linux/capability.h> |
4 | * |
5 | * Andrew G. Morgan <morgan@kernel.org> |
6 | * Alexander Kjeldaas <astor@guardian.no> |
7 | * with help from Aleph1, Roland Buresund and Andrew Main. |
8 | * |
9 | * See here for the libcap library ("POSIX draft" compliance): |
10 | * |
11 | * ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/ |
12 | */ |
13 | #ifndef _LINUX_CAPABILITY_H |
14 | #define _LINUX_CAPABILITY_H |
15 | |
16 | #include <uapi/linux/capability.h> |
17 | #include <linux/uidgid.h> |
18 | #include <linux/bits.h> |
19 | |
20 | #define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3 |
21 | |
22 | extern int file_caps_enabled; |
23 | |
24 | typedef struct { u64 val; } kernel_cap_t; |
25 | |
26 | /* same as vfs_ns_cap_data but in cpu endian and always filled completely */ |
27 | struct cpu_vfs_cap_data { |
28 | __u32 magic_etc; |
29 | kuid_t rootid; |
30 | kernel_cap_t permitted; |
31 | kernel_cap_t inheritable; |
32 | }; |
33 | |
34 | #define (sizeof(struct __user_cap_header_struct)) |
35 | #define _KERNEL_CAP_T_SIZE (sizeof(kernel_cap_t)) |
36 | |
37 | struct file; |
38 | struct inode; |
39 | struct dentry; |
40 | struct task_struct; |
41 | struct user_namespace; |
42 | struct mnt_idmap; |
43 | |
44 | /* |
45 | * CAP_FS_MASK and CAP_NFSD_MASKS: |
46 | * |
47 | * The fs mask is all the privileges that fsuid==0 historically meant. |
48 | * At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE. |
49 | * |
50 | * It has never meant setting security.* and trusted.* xattrs. |
51 | * |
52 | * We could also define fsmask as follows: |
53 | * 1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions |
54 | * 2. The security.* and trusted.* xattrs are fs-related MAC permissions |
55 | */ |
56 | |
57 | # define CAP_FS_MASK (BIT_ULL(CAP_CHOWN) \ |
58 | | BIT_ULL(CAP_MKNOD) \ |
59 | | BIT_ULL(CAP_DAC_OVERRIDE) \ |
60 | | BIT_ULL(CAP_DAC_READ_SEARCH) \ |
61 | | BIT_ULL(CAP_FOWNER) \ |
62 | | BIT_ULL(CAP_FSETID) \ |
63 | | BIT_ULL(CAP_MAC_OVERRIDE)) |
64 | #define CAP_VALID_MASK (BIT_ULL(CAP_LAST_CAP+1)-1) |
65 | |
66 | # define CAP_EMPTY_SET ((kernel_cap_t) { 0 }) |
67 | # define CAP_FULL_SET ((kernel_cap_t) { CAP_VALID_MASK }) |
68 | # define CAP_FS_SET ((kernel_cap_t) { CAP_FS_MASK | BIT_ULL(CAP_LINUX_IMMUTABLE) }) |
69 | # define CAP_NFSD_SET ((kernel_cap_t) { CAP_FS_MASK | BIT_ULL(CAP_SYS_RESOURCE) }) |
70 | |
71 | # define cap_clear(c) do { (c).val = 0; } while (0) |
72 | |
73 | #define cap_raise(c, flag) ((c).val |= BIT_ULL(flag)) |
74 | #define cap_lower(c, flag) ((c).val &= ~BIT_ULL(flag)) |
75 | #define cap_raised(c, flag) (((c).val & BIT_ULL(flag)) != 0) |
76 | |
77 | static inline kernel_cap_t cap_combine(const kernel_cap_t a, |
78 | const kernel_cap_t b) |
79 | { |
80 | return (kernel_cap_t) { a.val | b.val }; |
81 | } |
82 | |
83 | static inline kernel_cap_t cap_intersect(const kernel_cap_t a, |
84 | const kernel_cap_t b) |
85 | { |
86 | return (kernel_cap_t) { a.val & b.val }; |
87 | } |
88 | |
89 | static inline kernel_cap_t cap_drop(const kernel_cap_t a, |
90 | const kernel_cap_t drop) |
91 | { |
92 | return (kernel_cap_t) { a.val &~ drop.val }; |
93 | } |
94 | |
95 | static inline bool cap_isclear(const kernel_cap_t a) |
96 | { |
97 | return !a.val; |
98 | } |
99 | |
100 | static inline bool cap_isidentical(const kernel_cap_t a, const kernel_cap_t b) |
101 | { |
102 | return a.val == b.val; |
103 | } |
104 | |
105 | /* |
106 | * Check if "a" is a subset of "set". |
107 | * return true if ALL of the capabilities in "a" are also in "set" |
108 | * cap_issubset(0101, 1111) will return true |
109 | * return false if ANY of the capabilities in "a" are not in "set" |
110 | * cap_issubset(1111, 0101) will return false |
111 | */ |
112 | static inline bool cap_issubset(const kernel_cap_t a, const kernel_cap_t set) |
113 | { |
114 | return !(a.val & ~set.val); |
115 | } |
116 | |
117 | /* Used to decide between falling back on the old suser() or fsuser(). */ |
118 | |
119 | static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a) |
120 | { |
121 | return cap_drop(a, CAP_FS_SET); |
122 | } |
123 | |
124 | static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a, |
125 | const kernel_cap_t permitted) |
126 | { |
127 | return cap_combine(a, b: cap_intersect(a: permitted, CAP_FS_SET)); |
128 | } |
129 | |
130 | static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a) |
131 | { |
132 | return cap_drop(a, CAP_NFSD_SET); |
133 | } |
134 | |
135 | static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a, |
136 | const kernel_cap_t permitted) |
137 | { |
138 | return cap_combine(a, b: cap_intersect(a: permitted, CAP_NFSD_SET)); |
139 | } |
140 | |
141 | #ifdef CONFIG_MULTIUSER |
142 | extern bool has_capability(struct task_struct *t, int cap); |
143 | extern bool has_ns_capability(struct task_struct *t, |
144 | struct user_namespace *ns, int cap); |
145 | extern bool has_capability_noaudit(struct task_struct *t, int cap); |
146 | extern bool has_ns_capability_noaudit(struct task_struct *t, |
147 | struct user_namespace *ns, int cap); |
148 | extern bool capable(int cap); |
149 | extern bool ns_capable(struct user_namespace *ns, int cap); |
150 | extern bool ns_capable_noaudit(struct user_namespace *ns, int cap); |
151 | extern bool ns_capable_setid(struct user_namespace *ns, int cap); |
152 | #else |
153 | static inline bool has_capability(struct task_struct *t, int cap) |
154 | { |
155 | return true; |
156 | } |
157 | static inline bool has_ns_capability(struct task_struct *t, |
158 | struct user_namespace *ns, int cap) |
159 | { |
160 | return true; |
161 | } |
162 | static inline bool has_capability_noaudit(struct task_struct *t, int cap) |
163 | { |
164 | return true; |
165 | } |
166 | static inline bool has_ns_capability_noaudit(struct task_struct *t, |
167 | struct user_namespace *ns, int cap) |
168 | { |
169 | return true; |
170 | } |
171 | static inline bool capable(int cap) |
172 | { |
173 | return true; |
174 | } |
175 | static inline bool ns_capable(struct user_namespace *ns, int cap) |
176 | { |
177 | return true; |
178 | } |
179 | static inline bool ns_capable_noaudit(struct user_namespace *ns, int cap) |
180 | { |
181 | return true; |
182 | } |
183 | static inline bool ns_capable_setid(struct user_namespace *ns, int cap) |
184 | { |
185 | return true; |
186 | } |
187 | #endif /* CONFIG_MULTIUSER */ |
188 | bool privileged_wrt_inode_uidgid(struct user_namespace *ns, |
189 | struct mnt_idmap *idmap, |
190 | const struct inode *inode); |
191 | bool capable_wrt_inode_uidgid(struct mnt_idmap *idmap, |
192 | const struct inode *inode, int cap); |
193 | extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap); |
194 | extern bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns); |
195 | static inline bool perfmon_capable(void) |
196 | { |
197 | return capable(CAP_PERFMON) || capable(CAP_SYS_ADMIN); |
198 | } |
199 | |
200 | static inline bool bpf_capable(void) |
201 | { |
202 | return capable(CAP_BPF) || capable(CAP_SYS_ADMIN); |
203 | } |
204 | |
205 | static inline bool checkpoint_restore_ns_capable(struct user_namespace *ns) |
206 | { |
207 | return ns_capable(ns, CAP_CHECKPOINT_RESTORE) || |
208 | ns_capable(ns, CAP_SYS_ADMIN); |
209 | } |
210 | |
211 | /* audit system wants to get cap info from files as well */ |
212 | int get_vfs_caps_from_disk(struct mnt_idmap *idmap, |
213 | const struct dentry *dentry, |
214 | struct cpu_vfs_cap_data *cpu_caps); |
215 | |
216 | int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry, |
217 | const void **ivalue, size_t size); |
218 | |
219 | #endif /* !_LINUX_CAPABILITY_H */ |
220 | |