1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
8 * Copyright (C) 2016 T-Platforms. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
22 * Copyright (C) 2016 T-Platforms. All Rights Reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 *
28 * * Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * * Redistributions in binary form must reproduce the above copy
31 * notice, this list of conditions and the following disclaimer in
32 * the documentation and/or other materials provided with the
33 * distribution.
34 * * Neither the name of Intel Corporation nor the names of its
35 * contributors may be used to endorse or promote products derived
36 * from this software without specific prior written permission.
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
39 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
40 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
41 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
42 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
44 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
45 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
46 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
47 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
48 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
49 *
50 * PCIe NTB Linux driver
51 *
52 * Contact Information:
53 * Allen Hubbe <Allen.Hubbe@emc.com>
54 */
55
56#ifndef _NTB_H_
57#define _NTB_H_
58
59#include <linux/completion.h>
60#include <linux/device.h>
61#include <linux/interrupt.h>
62
63struct ntb_client;
64struct ntb_dev;
65struct ntb_msi;
66struct pci_dev;
67
68/**
69 * enum ntb_topo - NTB connection topology
70 * @NTB_TOPO_NONE: Topology is unknown or invalid.
71 * @NTB_TOPO_PRI: On primary side of local ntb.
72 * @NTB_TOPO_SEC: On secondary side of remote ntb.
73 * @NTB_TOPO_B2B_USD: On primary side of local ntb upstream of remote ntb.
74 * @NTB_TOPO_B2B_DSD: On primary side of local ntb downstream of remote ntb.
75 * @NTB_TOPO_SWITCH: Connected via a switch which supports ntb.
76 * @NTB_TOPO_CROSSLINK: Connected via two symmetric switchecs
77 */
78enum ntb_topo {
79 NTB_TOPO_NONE = -1,
80 NTB_TOPO_PRI,
81 NTB_TOPO_SEC,
82 NTB_TOPO_B2B_USD,
83 NTB_TOPO_B2B_DSD,
84 NTB_TOPO_SWITCH,
85 NTB_TOPO_CROSSLINK,
86};
87
88static inline int ntb_topo_is_b2b(enum ntb_topo topo)
89{
90 switch ((int)topo) {
91 case NTB_TOPO_B2B_USD:
92 case NTB_TOPO_B2B_DSD:
93 return 1;
94 }
95 return 0;
96}
97
98static inline char *ntb_topo_string(enum ntb_topo topo)
99{
100 switch (topo) {
101 case NTB_TOPO_NONE: return "NTB_TOPO_NONE";
102 case NTB_TOPO_PRI: return "NTB_TOPO_PRI";
103 case NTB_TOPO_SEC: return "NTB_TOPO_SEC";
104 case NTB_TOPO_B2B_USD: return "NTB_TOPO_B2B_USD";
105 case NTB_TOPO_B2B_DSD: return "NTB_TOPO_B2B_DSD";
106 case NTB_TOPO_SWITCH: return "NTB_TOPO_SWITCH";
107 case NTB_TOPO_CROSSLINK: return "NTB_TOPO_CROSSLINK";
108 }
109 return "NTB_TOPO_INVALID";
110}
111
112/**
113 * enum ntb_speed - NTB link training speed
114 * @NTB_SPEED_AUTO: Request the max supported speed.
115 * @NTB_SPEED_NONE: Link is not trained to any speed.
116 * @NTB_SPEED_GEN1: Link is trained to gen1 speed.
117 * @NTB_SPEED_GEN2: Link is trained to gen2 speed.
118 * @NTB_SPEED_GEN3: Link is trained to gen3 speed.
119 * @NTB_SPEED_GEN4: Link is trained to gen4 speed.
120 */
121enum ntb_speed {
122 NTB_SPEED_AUTO = -1,
123 NTB_SPEED_NONE = 0,
124 NTB_SPEED_GEN1 = 1,
125 NTB_SPEED_GEN2 = 2,
126 NTB_SPEED_GEN3 = 3,
127 NTB_SPEED_GEN4 = 4
128};
129
130/**
131 * enum ntb_width - NTB link training width
132 * @NTB_WIDTH_AUTO: Request the max supported width.
133 * @NTB_WIDTH_NONE: Link is not trained to any width.
134 * @NTB_WIDTH_1: Link is trained to 1 lane width.
135 * @NTB_WIDTH_2: Link is trained to 2 lane width.
136 * @NTB_WIDTH_4: Link is trained to 4 lane width.
137 * @NTB_WIDTH_8: Link is trained to 8 lane width.
138 * @NTB_WIDTH_12: Link is trained to 12 lane width.
139 * @NTB_WIDTH_16: Link is trained to 16 lane width.
140 * @NTB_WIDTH_32: Link is trained to 32 lane width.
141 */
142enum ntb_width {
143 NTB_WIDTH_AUTO = -1,
144 NTB_WIDTH_NONE = 0,
145 NTB_WIDTH_1 = 1,
146 NTB_WIDTH_2 = 2,
147 NTB_WIDTH_4 = 4,
148 NTB_WIDTH_8 = 8,
149 NTB_WIDTH_12 = 12,
150 NTB_WIDTH_16 = 16,
151 NTB_WIDTH_32 = 32,
152};
153
154/**
155 * enum ntb_default_port - NTB default port number
156 * @NTB_PORT_PRI_USD: Default port of the NTB_TOPO_PRI/NTB_TOPO_B2B_USD
157 * topologies
158 * @NTB_PORT_SEC_DSD: Default port of the NTB_TOPO_SEC/NTB_TOPO_B2B_DSD
159 * topologies
160 */
161enum ntb_default_port {
162 NTB_PORT_PRI_USD,
163 NTB_PORT_SEC_DSD
164};
165#define NTB_DEF_PEER_CNT (1)
166#define NTB_DEF_PEER_IDX (0)
167
168/**
169 * struct ntb_client_ops - ntb client operations
170 * @probe: Notify client of a new device.
171 * @remove: Notify client to remove a device.
172 */
173struct ntb_client_ops {
174 int (*probe)(struct ntb_client *client, struct ntb_dev *ntb);
175 void (*remove)(struct ntb_client *client, struct ntb_dev *ntb);
176};
177
178static inline int ntb_client_ops_is_valid(const struct ntb_client_ops *ops)
179{
180 /* commented callbacks are not required: */
181 return
182 ops->probe &&
183 ops->remove &&
184 1;
185}
186
187/**
188 * struct ntb_ctx_ops - ntb driver context operations
189 * @link_event: See ntb_link_event().
190 * @db_event: See ntb_db_event().
191 * @msg_event: See ntb_msg_event().
192 */
193struct ntb_ctx_ops {
194 void (*link_event)(void *ctx);
195 void (*db_event)(void *ctx, int db_vector);
196 void (*msg_event)(void *ctx);
197};
198
199static inline int ntb_ctx_ops_is_valid(const struct ntb_ctx_ops *ops)
200{
201 /* commented callbacks are not required: */
202 return
203 /* ops->link_event && */
204 /* ops->db_event && */
205 /* ops->msg_event && */
206 1;
207}
208
209/**
210 * struct ntb_dev_ops - ntb device operations
211 * @port_number: See ntb_port_number().
212 * @peer_port_count: See ntb_peer_port_count().
213 * @peer_port_number: See ntb_peer_port_number().
214 * @peer_port_idx: See ntb_peer_port_idx().
215 * @link_is_up: See ntb_link_is_up().
216 * @link_enable: See ntb_link_enable().
217 * @link_disable: See ntb_link_disable().
218 * @mw_count: See ntb_mw_count().
219 * @mw_get_align: See ntb_mw_get_align().
220 * @mw_set_trans: See ntb_mw_set_trans().
221 * @mw_clear_trans: See ntb_mw_clear_trans().
222 * @peer_mw_count: See ntb_peer_mw_count().
223 * @peer_mw_get_addr: See ntb_peer_mw_get_addr().
224 * @peer_mw_set_trans: See ntb_peer_mw_set_trans().
225 * @peer_mw_clear_trans:See ntb_peer_mw_clear_trans().
226 * @db_is_unsafe: See ntb_db_is_unsafe().
227 * @db_valid_mask: See ntb_db_valid_mask().
228 * @db_vector_count: See ntb_db_vector_count().
229 * @db_vector_mask: See ntb_db_vector_mask().
230 * @db_read: See ntb_db_read().
231 * @db_set: See ntb_db_set().
232 * @db_clear: See ntb_db_clear().
233 * @db_read_mask: See ntb_db_read_mask().
234 * @db_set_mask: See ntb_db_set_mask().
235 * @db_clear_mask: See ntb_db_clear_mask().
236 * @peer_db_addr: See ntb_peer_db_addr().
237 * @peer_db_read: See ntb_peer_db_read().
238 * @peer_db_set: See ntb_peer_db_set().
239 * @peer_db_clear: See ntb_peer_db_clear().
240 * @peer_db_read_mask: See ntb_peer_db_read_mask().
241 * @peer_db_set_mask: See ntb_peer_db_set_mask().
242 * @peer_db_clear_mask: See ntb_peer_db_clear_mask().
243 * @spad_is_unsafe: See ntb_spad_is_unsafe().
244 * @spad_count: See ntb_spad_count().
245 * @spad_read: See ntb_spad_read().
246 * @spad_write: See ntb_spad_write().
247 * @peer_spad_addr: See ntb_peer_spad_addr().
248 * @peer_spad_read: See ntb_peer_spad_read().
249 * @peer_spad_write: See ntb_peer_spad_write().
250 * @msg_count: See ntb_msg_count().
251 * @msg_inbits: See ntb_msg_inbits().
252 * @msg_outbits: See ntb_msg_outbits().
253 * @msg_read_sts: See ntb_msg_read_sts().
254 * @msg_clear_sts: See ntb_msg_clear_sts().
255 * @msg_set_mask: See ntb_msg_set_mask().
256 * @msg_clear_mask: See ntb_msg_clear_mask().
257 * @msg_read: See ntb_msg_read().
258 * @peer_msg_write: See ntb_peer_msg_write().
259 */
260struct ntb_dev_ops {
261 int (*port_number)(struct ntb_dev *ntb);
262 int (*peer_port_count)(struct ntb_dev *ntb);
263 int (*peer_port_number)(struct ntb_dev *ntb, int pidx);
264 int (*peer_port_idx)(struct ntb_dev *ntb, int port);
265
266 u64 (*link_is_up)(struct ntb_dev *ntb,
267 enum ntb_speed *speed, enum ntb_width *width);
268 int (*link_enable)(struct ntb_dev *ntb,
269 enum ntb_speed max_speed, enum ntb_width max_width);
270 int (*link_disable)(struct ntb_dev *ntb);
271
272 int (*mw_count)(struct ntb_dev *ntb, int pidx);
273 int (*mw_get_align)(struct ntb_dev *ntb, int pidx, int widx,
274 resource_size_t *addr_align,
275 resource_size_t *size_align,
276 resource_size_t *size_max);
277 int (*mw_set_trans)(struct ntb_dev *ntb, int pidx, int widx,
278 dma_addr_t addr, resource_size_t size);
279 int (*mw_clear_trans)(struct ntb_dev *ntb, int pidx, int widx);
280 int (*peer_mw_count)(struct ntb_dev *ntb);
281 int (*peer_mw_get_addr)(struct ntb_dev *ntb, int widx,
282 phys_addr_t *base, resource_size_t *size);
283 int (*peer_mw_set_trans)(struct ntb_dev *ntb, int pidx, int widx,
284 u64 addr, resource_size_t size);
285 int (*peer_mw_clear_trans)(struct ntb_dev *ntb, int pidx, int widx);
286
287 int (*db_is_unsafe)(struct ntb_dev *ntb);
288 u64 (*db_valid_mask)(struct ntb_dev *ntb);
289 int (*db_vector_count)(struct ntb_dev *ntb);
290 u64 (*db_vector_mask)(struct ntb_dev *ntb, int db_vector);
291
292 u64 (*db_read)(struct ntb_dev *ntb);
293 int (*db_set)(struct ntb_dev *ntb, u64 db_bits);
294 int (*db_clear)(struct ntb_dev *ntb, u64 db_bits);
295
296 u64 (*db_read_mask)(struct ntb_dev *ntb);
297 int (*db_set_mask)(struct ntb_dev *ntb, u64 db_bits);
298 int (*db_clear_mask)(struct ntb_dev *ntb, u64 db_bits);
299
300 int (*peer_db_addr)(struct ntb_dev *ntb,
301 phys_addr_t *db_addr, resource_size_t *db_size,
302 u64 *db_data, int db_bit);
303 u64 (*peer_db_read)(struct ntb_dev *ntb);
304 int (*peer_db_set)(struct ntb_dev *ntb, u64 db_bits);
305 int (*peer_db_clear)(struct ntb_dev *ntb, u64 db_bits);
306
307 u64 (*peer_db_read_mask)(struct ntb_dev *ntb);
308 int (*peer_db_set_mask)(struct ntb_dev *ntb, u64 db_bits);
309 int (*peer_db_clear_mask)(struct ntb_dev *ntb, u64 db_bits);
310
311 int (*spad_is_unsafe)(struct ntb_dev *ntb);
312 int (*spad_count)(struct ntb_dev *ntb);
313
314 u32 (*spad_read)(struct ntb_dev *ntb, int sidx);
315 int (*spad_write)(struct ntb_dev *ntb, int sidx, u32 val);
316
317 int (*peer_spad_addr)(struct ntb_dev *ntb, int pidx, int sidx,
318 phys_addr_t *spad_addr);
319 u32 (*peer_spad_read)(struct ntb_dev *ntb, int pidx, int sidx);
320 int (*peer_spad_write)(struct ntb_dev *ntb, int pidx, int sidx,
321 u32 val);
322
323 int (*msg_count)(struct ntb_dev *ntb);
324 u64 (*msg_inbits)(struct ntb_dev *ntb);
325 u64 (*msg_outbits)(struct ntb_dev *ntb);
326 u64 (*msg_read_sts)(struct ntb_dev *ntb);
327 int (*msg_clear_sts)(struct ntb_dev *ntb, u64 sts_bits);
328 int (*msg_set_mask)(struct ntb_dev *ntb, u64 mask_bits);
329 int (*msg_clear_mask)(struct ntb_dev *ntb, u64 mask_bits);
330 u32 (*msg_read)(struct ntb_dev *ntb, int *pidx, int midx);
331 int (*peer_msg_write)(struct ntb_dev *ntb, int pidx, int midx, u32 msg);
332};
333
334static inline int ntb_dev_ops_is_valid(const struct ntb_dev_ops *ops)
335{
336 /* commented callbacks are not required: */
337 return
338 /* Port operations are required for multiport devices */
339 !ops->peer_port_count == !ops->port_number &&
340 !ops->peer_port_number == !ops->port_number &&
341 !ops->peer_port_idx == !ops->port_number &&
342
343 /* Link operations are required */
344 ops->link_is_up &&
345 ops->link_enable &&
346 ops->link_disable &&
347
348 /* One or both MW interfaces should be developed */
349 ops->mw_count &&
350 ops->mw_get_align &&
351 (ops->mw_set_trans ||
352 ops->peer_mw_set_trans) &&
353 /* ops->mw_clear_trans && */
354 ops->peer_mw_count &&
355 ops->peer_mw_get_addr &&
356 /* ops->peer_mw_clear_trans && */
357
358 /* Doorbell operations are mostly required */
359 /* ops->db_is_unsafe && */
360 ops->db_valid_mask &&
361 /* both set, or both unset */
362 (!ops->db_vector_count == !ops->db_vector_mask) &&
363 ops->db_read &&
364 /* ops->db_set && */
365 ops->db_clear &&
366 /* ops->db_read_mask && */
367 ops->db_set_mask &&
368 ops->db_clear_mask &&
369 /* ops->peer_db_addr && */
370 /* ops->peer_db_read && */
371 ops->peer_db_set &&
372 /* ops->peer_db_clear && */
373 /* ops->peer_db_read_mask && */
374 /* ops->peer_db_set_mask && */
375 /* ops->peer_db_clear_mask && */
376
377 /* Scrachpads interface is optional */
378 /* !ops->spad_is_unsafe == !ops->spad_count && */
379 !ops->spad_read == !ops->spad_count &&
380 !ops->spad_write == !ops->spad_count &&
381 /* !ops->peer_spad_addr == !ops->spad_count && */
382 /* !ops->peer_spad_read == !ops->spad_count && */
383 !ops->peer_spad_write == !ops->spad_count &&
384
385 /* Messaging interface is optional */
386 !ops->msg_inbits == !ops->msg_count &&
387 !ops->msg_outbits == !ops->msg_count &&
388 !ops->msg_read_sts == !ops->msg_count &&
389 !ops->msg_clear_sts == !ops->msg_count &&
390 /* !ops->msg_set_mask == !ops->msg_count && */
391 /* !ops->msg_clear_mask == !ops->msg_count && */
392 !ops->msg_read == !ops->msg_count &&
393 !ops->peer_msg_write == !ops->msg_count &&
394 1;
395}
396
397/**
398 * struct ntb_client - client interested in ntb devices
399 * @drv: Linux driver object.
400 * @ops: See &ntb_client_ops.
401 */
402struct ntb_client {
403 struct device_driver drv;
404 const struct ntb_client_ops ops;
405};
406#define drv_ntb_client(__drv) container_of((__drv), struct ntb_client, drv)
407
408/**
409 * struct ntb_dev - ntb device
410 * @dev: Linux device object.
411 * @pdev: PCI device entry of the ntb.
412 * @topo: Detected topology of the ntb.
413 * @ops: See &ntb_dev_ops.
414 * @ctx: See &ntb_ctx_ops.
415 * @ctx_ops: See &ntb_ctx_ops.
416 */
417struct ntb_dev {
418 struct device dev;
419 struct pci_dev *pdev;
420 enum ntb_topo topo;
421 const struct ntb_dev_ops *ops;
422 void *ctx;
423 const struct ntb_ctx_ops *ctx_ops;
424
425 /* private: */
426
427 /* synchronize setting, clearing, and calling ctx_ops */
428 spinlock_t ctx_lock;
429 /* block unregister until device is fully released */
430 struct completion released;
431
432#ifdef CONFIG_NTB_MSI
433 struct ntb_msi *msi;
434#endif
435};
436#define dev_ntb(__dev) container_of((__dev), struct ntb_dev, dev)
437
438/**
439 * ntb_register_client() - register a client for interest in ntb devices
440 * @client: Client context.
441 *
442 * The client will be added to the list of clients interested in ntb devices.
443 * The client will be notified of any ntb devices that are not already
444 * associated with a client, or if ntb devices are registered later.
445 *
446 * Return: Zero if the client is registered, otherwise an error number.
447 */
448#define ntb_register_client(client) \
449 __ntb_register_client((client), THIS_MODULE, KBUILD_MODNAME)
450
451int __ntb_register_client(struct ntb_client *client, struct module *mod,
452 const char *mod_name);
453
454/**
455 * ntb_unregister_client() - unregister a client for interest in ntb devices
456 * @client: Client context.
457 *
458 * The client will be removed from the list of clients interested in ntb
459 * devices. If any ntb devices are associated with the client, the client will
460 * be notified to remove those devices.
461 */
462void ntb_unregister_client(struct ntb_client *client);
463
464#define module_ntb_client(__ntb_client) \
465 module_driver(__ntb_client, ntb_register_client, \
466 ntb_unregister_client)
467
468/**
469 * ntb_register_device() - register a ntb device
470 * @ntb: NTB device context.
471 *
472 * The device will be added to the list of ntb devices. If any clients are
473 * interested in ntb devices, each client will be notified of the ntb device,
474 * until at most one client accepts the device.
475 *
476 * Return: Zero if the device is registered, otherwise an error number.
477 */
478int ntb_register_device(struct ntb_dev *ntb);
479
480/**
481 * ntb_unregister_device() - unregister a ntb device
482 * @ntb: NTB device context.
483 *
484 * The device will be removed from the list of ntb devices. If the ntb device
485 * is associated with a client, the client will be notified to remove the
486 * device.
487 */
488void ntb_unregister_device(struct ntb_dev *ntb);
489
490/**
491 * ntb_set_ctx() - associate a driver context with an ntb device
492 * @ntb: NTB device context.
493 * @ctx: Driver context.
494 * @ctx_ops: Driver context operations.
495 *
496 * Associate a driver context and operations with a ntb device. The context is
497 * provided by the client driver, and the driver may associate a different
498 * context with each ntb device.
499 *
500 * Return: Zero if the context is associated, otherwise an error number.
501 */
502int ntb_set_ctx(struct ntb_dev *ntb, void *ctx,
503 const struct ntb_ctx_ops *ctx_ops);
504
505/**
506 * ntb_clear_ctx() - disassociate any driver context from an ntb device
507 * @ntb: NTB device context.
508 *
509 * Clear any association that may exist between a driver context and the ntb
510 * device.
511 */
512void ntb_clear_ctx(struct ntb_dev *ntb);
513
514/**
515 * ntb_link_event() - notify driver context of a change in link status
516 * @ntb: NTB device context.
517 *
518 * Notify the driver context that the link status may have changed. The driver
519 * should call ntb_link_is_up() to get the current status.
520 */
521void ntb_link_event(struct ntb_dev *ntb);
522
523/**
524 * ntb_db_event() - notify driver context of a doorbell event
525 * @ntb: NTB device context.
526 * @vector: Interrupt vector number.
527 *
528 * Notify the driver context of a doorbell event. If hardware supports
529 * multiple interrupt vectors for doorbells, the vector number indicates which
530 * vector received the interrupt. The vector number is relative to the first
531 * vector used for doorbells, starting at zero, and must be less than
532 * ntb_db_vector_count(). The driver may call ntb_db_read() to check which
533 * doorbell bits need service, and ntb_db_vector_mask() to determine which of
534 * those bits are associated with the vector number.
535 */
536void ntb_db_event(struct ntb_dev *ntb, int vector);
537
538/**
539 * ntb_msg_event() - notify driver context of a message event
540 * @ntb: NTB device context.
541 *
542 * Notify the driver context of a message event. If hardware supports
543 * message registers, this event indicates, that a new message arrived in
544 * some incoming message register or last sent message couldn't be delivered.
545 * The events can be masked/unmasked by the methods ntb_msg_set_mask() and
546 * ntb_msg_clear_mask().
547 */
548void ntb_msg_event(struct ntb_dev *ntb);
549
550/**
551 * ntb_default_port_number() - get the default local port number
552 * @ntb: NTB device context.
553 *
554 * If hardware driver doesn't specify port_number() callback method, the NTB
555 * is considered with just two ports. So this method returns default local
556 * port number in compliance with topology.
557 *
558 * NOTE Don't call this method directly. The ntb_port_number() function should
559 * be used instead.
560 *
561 * Return: the default local port number
562 */
563int ntb_default_port_number(struct ntb_dev *ntb);
564
565/**
566 * ntb_default_port_count() - get the default number of peer device ports
567 * @ntb: NTB device context.
568 *
569 * By default hardware driver supports just one peer device.
570 *
571 * NOTE Don't call this method directly. The ntb_peer_port_count() function
572 * should be used instead.
573 *
574 * Return: the default number of peer ports
575 */
576int ntb_default_peer_port_count(struct ntb_dev *ntb);
577
578/**
579 * ntb_default_peer_port_number() - get the default peer port by given index
580 * @ntb: NTB device context.
581 * @idx: Peer port index (should not differ from zero).
582 *
583 * By default hardware driver supports just one peer device, so this method
584 * shall return the corresponding value from enum ntb_default_port.
585 *
586 * NOTE Don't call this method directly. The ntb_peer_port_number() function
587 * should be used instead.
588 *
589 * Return: the peer device port or negative value indicating an error
590 */
591int ntb_default_peer_port_number(struct ntb_dev *ntb, int pidx);
592
593/**
594 * ntb_default_peer_port_idx() - get the default peer device port index by
595 * given port number
596 * @ntb: NTB device context.
597 * @port: Peer port number (should be one of enum ntb_default_port).
598 *
599 * By default hardware driver supports just one peer device, so while
600 * specified port-argument indicates peer port from enum ntb_default_port,
601 * the return value shall be zero.
602 *
603 * NOTE Don't call this method directly. The ntb_peer_port_idx() function
604 * should be used instead.
605 *
606 * Return: the peer port index or negative value indicating an error
607 */
608int ntb_default_peer_port_idx(struct ntb_dev *ntb, int port);
609
610/**
611 * ntb_port_number() - get the local port number
612 * @ntb: NTB device context.
613 *
614 * Hardware must support at least simple two-ports ntb connection
615 *
616 * Return: the local port number
617 */
618static inline int ntb_port_number(struct ntb_dev *ntb)
619{
620 if (!ntb->ops->port_number)
621 return ntb_default_port_number(ntb);
622
623 return ntb->ops->port_number(ntb);
624}
625/**
626 * ntb_peer_port_count() - get the number of peer device ports
627 * @ntb: NTB device context.
628 *
629 * Hardware may support an access to memory of several remote domains
630 * over multi-port NTB devices. This method returns the number of peers,
631 * local device can have shared memory with.
632 *
633 * Return: the number of peer ports
634 */
635static inline int ntb_peer_port_count(struct ntb_dev *ntb)
636{
637 if (!ntb->ops->peer_port_count)
638 return ntb_default_peer_port_count(ntb);
639
640 return ntb->ops->peer_port_count(ntb);
641}
642
643/**
644 * ntb_peer_port_number() - get the peer port by given index
645 * @ntb: NTB device context.
646 * @pidx: Peer port index.
647 *
648 * Peer ports are continuously enumerated by NTB API logic, so this method
649 * lets to retrieve port real number by its index.
650 *
651 * Return: the peer device port or negative value indicating an error
652 */
653static inline int ntb_peer_port_number(struct ntb_dev *ntb, int pidx)
654{
655 if (!ntb->ops->peer_port_number)
656 return ntb_default_peer_port_number(ntb, pidx);
657
658 return ntb->ops->peer_port_number(ntb, pidx);
659}
660
661/**
662 * ntb_logical_port_number() - get the logical port number of the local port
663 * @ntb: NTB device context.
664 *
665 * The Logical Port Number is defined to be a unique number for each
666 * port starting from zero through to the number of ports minus one.
667 * This is in contrast to the Port Number where each port can be assigned
668 * any unique physical number by the hardware.
669 *
670 * The logical port number is useful for calculating the resource indexes
671 * used by peers.
672 *
673 * Return: the logical port number or negative value indicating an error
674 */
675static inline int ntb_logical_port_number(struct ntb_dev *ntb)
676{
677 int lport = ntb_port_number(ntb);
678 int pidx;
679
680 if (lport < 0)
681 return lport;
682
683 for (pidx = 0; pidx < ntb_peer_port_count(ntb); pidx++)
684 if (lport <= ntb_peer_port_number(ntb, pidx))
685 return pidx;
686
687 return pidx;
688}
689
690/**
691 * ntb_peer_logical_port_number() - get the logical peer port by given index
692 * @ntb: NTB device context.
693 * @pidx: Peer port index.
694 *
695 * The Logical Port Number is defined to be a unique number for each
696 * port starting from zero through to the number of ports minus one.
697 * This is in contrast to the Port Number where each port can be assigned
698 * any unique physical number by the hardware.
699 *
700 * The logical port number is useful for calculating the resource indexes
701 * used by peers.
702 *
703 * Return: the peer's logical port number or negative value indicating an error
704 */
705static inline int ntb_peer_logical_port_number(struct ntb_dev *ntb, int pidx)
706{
707 if (ntb_peer_port_number(ntb, pidx) < ntb_port_number(ntb))
708 return pidx;
709 else
710 return pidx + 1;
711}
712
713/**
714 * ntb_peer_port_idx() - get the peer device port index by given port number
715 * @ntb: NTB device context.
716 * @port: Peer port number.
717 *
718 * Inverse operation of ntb_peer_port_number(), so one can get port index
719 * by specified port number.
720 *
721 * Return: the peer port index or negative value indicating an error
722 */
723static inline int ntb_peer_port_idx(struct ntb_dev *ntb, int port)
724{
725 if (!ntb->ops->peer_port_idx)
726 return ntb_default_peer_port_idx(ntb, port);
727
728 return ntb->ops->peer_port_idx(ntb, port);
729}
730
731/**
732 * ntb_link_is_up() - get the current ntb link state
733 * @ntb: NTB device context.
734 * @speed: OUT - The link speed expressed as PCIe generation number.
735 * @width: OUT - The link width expressed as the number of PCIe lanes.
736 *
737 * Get the current state of the ntb link. It is recommended to query the link
738 * state once after every link event. It is safe to query the link state in
739 * the context of the link event callback.
740 *
741 * Return: bitfield of indexed ports link state: bit is set/cleared if the
742 * link is up/down respectively.
743 */
744static inline u64 ntb_link_is_up(struct ntb_dev *ntb,
745 enum ntb_speed *speed, enum ntb_width *width)
746{
747 return ntb->ops->link_is_up(ntb, speed, width);
748}
749
750/**
751 * ntb_link_enable() - enable the local port ntb connection
752 * @ntb: NTB device context.
753 * @max_speed: The maximum link speed expressed as PCIe generation number.
754 * @max_width: The maximum link width expressed as the number of PCIe lanes.
755 *
756 * Enable the NTB/PCIe link on the local or remote (for bridge-to-bridge
757 * topology) side of the bridge. If it's supported the ntb device should train
758 * the link to its maximum speed and width, or the requested speed and width,
759 * whichever is smaller. Some hardware doesn't support PCIe link training, so
760 * the last two arguments will be ignored then.
761 *
762 * Return: Zero on success, otherwise an error number.
763 */
764static inline int ntb_link_enable(struct ntb_dev *ntb,
765 enum ntb_speed max_speed,
766 enum ntb_width max_width)
767{
768 return ntb->ops->link_enable(ntb, max_speed, max_width);
769}
770
771/**
772 * ntb_link_disable() - disable the local port ntb connection
773 * @ntb: NTB device context.
774 *
775 * Disable the link on the local or remote (for b2b topology) of the ntb.
776 * The ntb device should disable the link. Returning from this call must
777 * indicate that a barrier has passed, though with no more writes may pass in
778 * either direction across the link, except if this call returns an error
779 * number.
780 *
781 * Return: Zero on success, otherwise an error number.
782 */
783static inline int ntb_link_disable(struct ntb_dev *ntb)
784{
785 return ntb->ops->link_disable(ntb);
786}
787
788/**
789 * ntb_mw_count() - get the number of inbound memory windows, which could
790 * be created for a specified peer device
791 * @ntb: NTB device context.
792 * @pidx: Port index of peer device.
793 *
794 * Hardware and topology may support a different number of memory windows.
795 * Moreover different peer devices can support different number of memory
796 * windows. Simply speaking this method returns the number of possible inbound
797 * memory windows to share with specified peer device. Note: this may return
798 * zero if the link is not up yet.
799 *
800 * Return: the number of memory windows.
801 */
802static inline int ntb_mw_count(struct ntb_dev *ntb, int pidx)
803{
804 return ntb->ops->mw_count(ntb, pidx);
805}
806
807/**
808 * ntb_mw_get_align() - get the restriction parameters of inbound memory window
809 * @ntb: NTB device context.
810 * @pidx: Port index of peer device.
811 * @widx: Memory window index.
812 * @addr_align: OUT - the base alignment for translating the memory window
813 * @size_align: OUT - the size alignment for translating the memory window
814 * @size_max: OUT - the maximum size of the memory window
815 *
816 * Get the alignments of an inbound memory window with specified index.
817 * NULL may be given for any output parameter if the value is not needed.
818 * The alignment and size parameters may be used for allocation of proper
819 * shared memory. Note: this must only be called when the link is up.
820 *
821 * Return: Zero on success, otherwise a negative error number.
822 */
823static inline int ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int widx,
824 resource_size_t *addr_align,
825 resource_size_t *size_align,
826 resource_size_t *size_max)
827{
828 if (!(ntb_link_is_up(ntb, NULL, NULL) & BIT_ULL(pidx)))
829 return -ENOTCONN;
830
831 return ntb->ops->mw_get_align(ntb, pidx, widx, addr_align, size_align,
832 size_max);
833}
834
835/**
836 * ntb_mw_set_trans() - set the translation of an inbound memory window
837 * @ntb: NTB device context.
838 * @pidx: Port index of peer device.
839 * @widx: Memory window index.
840 * @addr: The dma address of local memory to expose to the peer.
841 * @size: The size of the local memory to expose to the peer.
842 *
843 * Set the translation of a memory window. The peer may access local memory
844 * through the window starting at the address, up to the size. The address
845 * and size must be aligned in compliance with restrictions of
846 * ntb_mw_get_align(). The region size should not exceed the size_max parameter
847 * of that method.
848 *
849 * This method may not be implemented due to the hardware specific memory
850 * windows interface.
851 *
852 * Return: Zero on success, otherwise an error number.
853 */
854static inline int ntb_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx,
855 dma_addr_t addr, resource_size_t size)
856{
857 if (!ntb->ops->mw_set_trans)
858 return 0;
859
860 return ntb->ops->mw_set_trans(ntb, pidx, widx, addr, size);
861}
862
863/**
864 * ntb_mw_clear_trans() - clear the translation address of an inbound memory
865 * window
866 * @ntb: NTB device context.
867 * @pidx: Port index of peer device.
868 * @widx: Memory window index.
869 *
870 * Clear the translation of an inbound memory window. The peer may no longer
871 * access local memory through the window.
872 *
873 * Return: Zero on success, otherwise an error number.
874 */
875static inline int ntb_mw_clear_trans(struct ntb_dev *ntb, int pidx, int widx)
876{
877 if (!ntb->ops->mw_clear_trans)
878 return ntb_mw_set_trans(ntb, pidx, widx, addr: 0, size: 0);
879
880 return ntb->ops->mw_clear_trans(ntb, pidx, widx);
881}
882
883/**
884 * ntb_peer_mw_count() - get the number of outbound memory windows, which could
885 * be mapped to access a shared memory
886 * @ntb: NTB device context.
887 *
888 * Hardware and topology may support a different number of memory windows.
889 * This method returns the number of outbound memory windows supported by
890 * local device.
891 *
892 * Return: the number of memory windows.
893 */
894static inline int ntb_peer_mw_count(struct ntb_dev *ntb)
895{
896 return ntb->ops->peer_mw_count(ntb);
897}
898
899/**
900 * ntb_peer_mw_get_addr() - get map address of an outbound memory window
901 * @ntb: NTB device context.
902 * @widx: Memory window index (within ntb_peer_mw_count() return value).
903 * @base: OUT - the base address of mapping region.
904 * @size: OUT - the size of mapping region.
905 *
906 * Get base and size of memory region to map. NULL may be given for any output
907 * parameter if the value is not needed. The base and size may be used for
908 * mapping the memory window, to access the peer memory.
909 *
910 * Return: Zero on success, otherwise a negative error number.
911 */
912static inline int ntb_peer_mw_get_addr(struct ntb_dev *ntb, int widx,
913 phys_addr_t *base, resource_size_t *size)
914{
915 return ntb->ops->peer_mw_get_addr(ntb, widx, base, size);
916}
917
918/**
919 * ntb_peer_mw_set_trans() - set a translation address of a memory window
920 * retrieved from a peer device
921 * @ntb: NTB device context.
922 * @pidx: Port index of peer device the translation address received from.
923 * @widx: Memory window index.
924 * @addr: The dma address of the shared memory to access.
925 * @size: The size of the shared memory to access.
926 *
927 * Set the translation of an outbound memory window. The local device may
928 * access shared memory allocated by a peer device sent the address.
929 *
930 * This method may not be implemented due to the hardware specific memory
931 * windows interface, so a translation address can be only set on the side,
932 * where shared memory (inbound memory windows) is allocated.
933 *
934 * Return: Zero on success, otherwise an error number.
935 */
936static inline int ntb_peer_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx,
937 u64 addr, resource_size_t size)
938{
939 if (!ntb->ops->peer_mw_set_trans)
940 return 0;
941
942 return ntb->ops->peer_mw_set_trans(ntb, pidx, widx, addr, size);
943}
944
945/**
946 * ntb_peer_mw_clear_trans() - clear the translation address of an outbound
947 * memory window
948 * @ntb: NTB device context.
949 * @pidx: Port index of peer device.
950 * @widx: Memory window index.
951 *
952 * Clear the translation of a outbound memory window. The local device may no
953 * longer access a shared memory through the window.
954 *
955 * This method may not be implemented due to the hardware specific memory
956 * windows interface.
957 *
958 * Return: Zero on success, otherwise an error number.
959 */
960static inline int ntb_peer_mw_clear_trans(struct ntb_dev *ntb, int pidx,
961 int widx)
962{
963 if (!ntb->ops->peer_mw_clear_trans)
964 return ntb_peer_mw_set_trans(ntb, pidx, widx, addr: 0, size: 0);
965
966 return ntb->ops->peer_mw_clear_trans(ntb, pidx, widx);
967}
968
969/**
970 * ntb_db_is_unsafe() - check if it is safe to use hardware doorbell
971 * @ntb: NTB device context.
972 *
973 * It is possible for some ntb hardware to be affected by errata. Hardware
974 * drivers can advise clients to avoid using doorbells. Clients may ignore
975 * this advice, though caution is recommended.
976 *
977 * Return: Zero if it is safe to use doorbells, or One if it is not safe.
978 */
979static inline int ntb_db_is_unsafe(struct ntb_dev *ntb)
980{
981 if (!ntb->ops->db_is_unsafe)
982 return 0;
983
984 return ntb->ops->db_is_unsafe(ntb);
985}
986
987/**
988 * ntb_db_valid_mask() - get a mask of doorbell bits supported by the ntb
989 * @ntb: NTB device context.
990 *
991 * Hardware may support different number or arrangement of doorbell bits.
992 *
993 * Return: A mask of doorbell bits supported by the ntb.
994 */
995static inline u64 ntb_db_valid_mask(struct ntb_dev *ntb)
996{
997 return ntb->ops->db_valid_mask(ntb);
998}
999
1000/**
1001 * ntb_db_vector_count() - get the number of doorbell interrupt vectors
1002 * @ntb: NTB device context.
1003 *
1004 * Hardware may support different number of interrupt vectors.
1005 *
1006 * Return: The number of doorbell interrupt vectors.
1007 */
1008static inline int ntb_db_vector_count(struct ntb_dev *ntb)
1009{
1010 if (!ntb->ops->db_vector_count)
1011 return 1;
1012
1013 return ntb->ops->db_vector_count(ntb);
1014}
1015
1016/**
1017 * ntb_db_vector_mask() - get a mask of doorbell bits serviced by a vector
1018 * @ntb: NTB device context.
1019 * @vector: Doorbell vector number.
1020 *
1021 * Each interrupt vector may have a different number or arrangement of bits.
1022 *
1023 * Return: A mask of doorbell bits serviced by a vector.
1024 */
1025static inline u64 ntb_db_vector_mask(struct ntb_dev *ntb, int vector)
1026{
1027 if (!ntb->ops->db_vector_mask)
1028 return ntb_db_valid_mask(ntb);
1029
1030 return ntb->ops->db_vector_mask(ntb, vector);
1031}
1032
1033/**
1034 * ntb_db_read() - read the local doorbell register
1035 * @ntb: NTB device context.
1036 *
1037 * Read the local doorbell register, and return the bits that are set.
1038 *
1039 * Return: The bits currently set in the local doorbell register.
1040 */
1041static inline u64 ntb_db_read(struct ntb_dev *ntb)
1042{
1043 return ntb->ops->db_read(ntb);
1044}
1045
1046/**
1047 * ntb_db_set() - set bits in the local doorbell register
1048 * @ntb: NTB device context.
1049 * @db_bits: Doorbell bits to set.
1050 *
1051 * Set bits in the local doorbell register, which may generate a local doorbell
1052 * interrupt. Bits that were already set must remain set.
1053 *
1054 * This is unusual, and hardware may not support it.
1055 *
1056 * Return: Zero on success, otherwise an error number.
1057 */
1058static inline int ntb_db_set(struct ntb_dev *ntb, u64 db_bits)
1059{
1060 if (!ntb->ops->db_set)
1061 return -EINVAL;
1062
1063 return ntb->ops->db_set(ntb, db_bits);
1064}
1065
1066/**
1067 * ntb_db_clear() - clear bits in the local doorbell register
1068 * @ntb: NTB device context.
1069 * @db_bits: Doorbell bits to clear.
1070 *
1071 * Clear bits in the local doorbell register, arming the bits for the next
1072 * doorbell.
1073 *
1074 * Return: Zero on success, otherwise an error number.
1075 */
1076static inline int ntb_db_clear(struct ntb_dev *ntb, u64 db_bits)
1077{
1078 return ntb->ops->db_clear(ntb, db_bits);
1079}
1080
1081/**
1082 * ntb_db_read_mask() - read the local doorbell mask
1083 * @ntb: NTB device context.
1084 *
1085 * Read the local doorbell mask register, and return the bits that are set.
1086 *
1087 * This is unusual, though hardware is likely to support it.
1088 *
1089 * Return: The bits currently set in the local doorbell mask register.
1090 */
1091static inline u64 ntb_db_read_mask(struct ntb_dev *ntb)
1092{
1093 if (!ntb->ops->db_read_mask)
1094 return 0;
1095
1096 return ntb->ops->db_read_mask(ntb);
1097}
1098
1099/**
1100 * ntb_db_set_mask() - set bits in the local doorbell mask
1101 * @ntb: NTB device context.
1102 * @db_bits: Doorbell mask bits to set.
1103 *
1104 * Set bits in the local doorbell mask register, preventing doorbell interrupts
1105 * from being generated for those doorbell bits. Bits that were already set
1106 * must remain set.
1107 *
1108 * Return: Zero on success, otherwise an error number.
1109 */
1110static inline int ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
1111{
1112 return ntb->ops->db_set_mask(ntb, db_bits);
1113}
1114
1115/**
1116 * ntb_db_clear_mask() - clear bits in the local doorbell mask
1117 * @ntb: NTB device context.
1118 * @db_bits: Doorbell bits to clear.
1119 *
1120 * Clear bits in the local doorbell mask register, allowing doorbell interrupts
1121 * from being generated for those doorbell bits. If a doorbell bit is already
1122 * set at the time the mask is cleared, and the corresponding mask bit is
1123 * changed from set to clear, then the ntb driver must ensure that
1124 * ntb_db_event() is called. If the hardware does not generate the interrupt
1125 * on clearing the mask bit, then the driver must call ntb_db_event() anyway.
1126 *
1127 * Return: Zero on success, otherwise an error number.
1128 */
1129static inline int ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
1130{
1131 return ntb->ops->db_clear_mask(ntb, db_bits);
1132}
1133
1134/**
1135 * ntb_peer_db_addr() - address and size of the peer doorbell register
1136 * @ntb: NTB device context.
1137 * @db_addr: OUT - The address of the peer doorbell register.
1138 * @db_size: OUT - The number of bytes to write the peer doorbell register.
1139 * @db_data: OUT - The data of peer doorbell register
1140 * @db_bit: door bell bit number
1141 *
1142 * Return the address of the peer doorbell register. This may be used, for
1143 * example, by drivers that offload memory copy operations to a dma engine.
1144 * The drivers may wish to ring the peer doorbell at the completion of memory
1145 * copy operations. For efficiency, and to simplify ordering of operations
1146 * between the dma memory copies and the ringing doorbell, the driver may
1147 * append one additional dma memory copy with the doorbell register as the
1148 * destination, after the memory copy operations.
1149 *
1150 * Return: Zero on success, otherwise an error number.
1151 */
1152static inline int ntb_peer_db_addr(struct ntb_dev *ntb,
1153 phys_addr_t *db_addr,
1154 resource_size_t *db_size,
1155 u64 *db_data, int db_bit)
1156{
1157 if (!ntb->ops->peer_db_addr)
1158 return -EINVAL;
1159
1160 return ntb->ops->peer_db_addr(ntb, db_addr, db_size, db_data, db_bit);
1161}
1162
1163/**
1164 * ntb_peer_db_read() - read the peer doorbell register
1165 * @ntb: NTB device context.
1166 *
1167 * Read the peer doorbell register, and return the bits that are set.
1168 *
1169 * This is unusual, and hardware may not support it.
1170 *
1171 * Return: The bits currently set in the peer doorbell register.
1172 */
1173static inline u64 ntb_peer_db_read(struct ntb_dev *ntb)
1174{
1175 if (!ntb->ops->peer_db_read)
1176 return 0;
1177
1178 return ntb->ops->peer_db_read(ntb);
1179}
1180
1181/**
1182 * ntb_peer_db_set() - set bits in the peer doorbell register
1183 * @ntb: NTB device context.
1184 * @db_bits: Doorbell bits to set.
1185 *
1186 * Set bits in the peer doorbell register, which may generate a peer doorbell
1187 * interrupt. Bits that were already set must remain set.
1188 *
1189 * Return: Zero on success, otherwise an error number.
1190 */
1191static inline int ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
1192{
1193 return ntb->ops->peer_db_set(ntb, db_bits);
1194}
1195
1196/**
1197 * ntb_peer_db_clear() - clear bits in the peer doorbell register
1198 * @ntb: NTB device context.
1199 * @db_bits: Doorbell bits to clear.
1200 *
1201 * Clear bits in the peer doorbell register, arming the bits for the next
1202 * doorbell.
1203 *
1204 * This is unusual, and hardware may not support it.
1205 *
1206 * Return: Zero on success, otherwise an error number.
1207 */
1208static inline int ntb_peer_db_clear(struct ntb_dev *ntb, u64 db_bits)
1209{
1210 if (!ntb->ops->db_clear)
1211 return -EINVAL;
1212
1213 return ntb->ops->peer_db_clear(ntb, db_bits);
1214}
1215
1216/**
1217 * ntb_peer_db_read_mask() - read the peer doorbell mask
1218 * @ntb: NTB device context.
1219 *
1220 * Read the peer doorbell mask register, and return the bits that are set.
1221 *
1222 * This is unusual, and hardware may not support it.
1223 *
1224 * Return: The bits currently set in the peer doorbell mask register.
1225 */
1226static inline u64 ntb_peer_db_read_mask(struct ntb_dev *ntb)
1227{
1228 if (!ntb->ops->db_read_mask)
1229 return 0;
1230
1231 return ntb->ops->peer_db_read_mask(ntb);
1232}
1233
1234/**
1235 * ntb_peer_db_set_mask() - set bits in the peer doorbell mask
1236 * @ntb: NTB device context.
1237 * @db_bits: Doorbell mask bits to set.
1238 *
1239 * Set bits in the peer doorbell mask register, preventing doorbell interrupts
1240 * from being generated for those doorbell bits. Bits that were already set
1241 * must remain set.
1242 *
1243 * This is unusual, and hardware may not support it.
1244 *
1245 * Return: Zero on success, otherwise an error number.
1246 */
1247static inline int ntb_peer_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
1248{
1249 if (!ntb->ops->db_set_mask)
1250 return -EINVAL;
1251
1252 return ntb->ops->peer_db_set_mask(ntb, db_bits);
1253}
1254
1255/**
1256 * ntb_peer_db_clear_mask() - clear bits in the peer doorbell mask
1257 * @ntb: NTB device context.
1258 * @db_bits: Doorbell bits to clear.
1259 *
1260 * Clear bits in the peer doorbell mask register, allowing doorbell interrupts
1261 * from being generated for those doorbell bits. If the hardware does not
1262 * generate the interrupt on clearing the mask bit, then the driver should not
1263 * implement this function!
1264 *
1265 * This is unusual, and hardware may not support it.
1266 *
1267 * Return: Zero on success, otherwise an error number.
1268 */
1269static inline int ntb_peer_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
1270{
1271 if (!ntb->ops->db_clear_mask)
1272 return -EINVAL;
1273
1274 return ntb->ops->peer_db_clear_mask(ntb, db_bits);
1275}
1276
1277/**
1278 * ntb_spad_is_unsafe() - check if it is safe to use the hardware scratchpads
1279 * @ntb: NTB device context.
1280 *
1281 * It is possible for some ntb hardware to be affected by errata. Hardware
1282 * drivers can advise clients to avoid using scratchpads. Clients may ignore
1283 * this advice, though caution is recommended.
1284 *
1285 * Return: Zero if it is safe to use scratchpads, or One if it is not safe.
1286 */
1287static inline int ntb_spad_is_unsafe(struct ntb_dev *ntb)
1288{
1289 if (!ntb->ops->spad_is_unsafe)
1290 return 0;
1291
1292 return ntb->ops->spad_is_unsafe(ntb);
1293}
1294
1295/**
1296 * ntb_spad_count() - get the number of scratchpads
1297 * @ntb: NTB device context.
1298 *
1299 * Hardware and topology may support a different number of scratchpads.
1300 * Although it must be the same for all ports per NTB device.
1301 *
1302 * Return: the number of scratchpads.
1303 */
1304static inline int ntb_spad_count(struct ntb_dev *ntb)
1305{
1306 if (!ntb->ops->spad_count)
1307 return 0;
1308
1309 return ntb->ops->spad_count(ntb);
1310}
1311
1312/**
1313 * ntb_spad_read() - read the local scratchpad register
1314 * @ntb: NTB device context.
1315 * @sidx: Scratchpad index.
1316 *
1317 * Read the local scratchpad register, and return the value.
1318 *
1319 * Return: The value of the local scratchpad register.
1320 */
1321static inline u32 ntb_spad_read(struct ntb_dev *ntb, int sidx)
1322{
1323 if (!ntb->ops->spad_read)
1324 return ~(u32)0;
1325
1326 return ntb->ops->spad_read(ntb, sidx);
1327}
1328
1329/**
1330 * ntb_spad_write() - write the local scratchpad register
1331 * @ntb: NTB device context.
1332 * @sidx: Scratchpad index.
1333 * @val: Scratchpad value.
1334 *
1335 * Write the value to the local scratchpad register.
1336 *
1337 * Return: Zero on success, otherwise an error number.
1338 */
1339static inline int ntb_spad_write(struct ntb_dev *ntb, int sidx, u32 val)
1340{
1341 if (!ntb->ops->spad_write)
1342 return -EINVAL;
1343
1344 return ntb->ops->spad_write(ntb, sidx, val);
1345}
1346
1347/**
1348 * ntb_peer_spad_addr() - address of the peer scratchpad register
1349 * @ntb: NTB device context.
1350 * @pidx: Port index of peer device.
1351 * @sidx: Scratchpad index.
1352 * @spad_addr: OUT - The address of the peer scratchpad register.
1353 *
1354 * Return the address of the peer scratchpad register. This may be used, for
1355 * example, by drivers that offload memory copy operations to a dma engine.
1356 *
1357 * Return: Zero on success, otherwise an error number.
1358 */
1359static inline int ntb_peer_spad_addr(struct ntb_dev *ntb, int pidx, int sidx,
1360 phys_addr_t *spad_addr)
1361{
1362 if (!ntb->ops->peer_spad_addr)
1363 return -EINVAL;
1364
1365 return ntb->ops->peer_spad_addr(ntb, pidx, sidx, spad_addr);
1366}
1367
1368/**
1369 * ntb_peer_spad_read() - read the peer scratchpad register
1370 * @ntb: NTB device context.
1371 * @pidx: Port index of peer device.
1372 * @sidx: Scratchpad index.
1373 *
1374 * Read the peer scratchpad register, and return the value.
1375 *
1376 * Return: The value of the peer scratchpad register.
1377 */
1378static inline u32 ntb_peer_spad_read(struct ntb_dev *ntb, int pidx, int sidx)
1379{
1380 if (!ntb->ops->peer_spad_read)
1381 return ~(u32)0;
1382
1383 return ntb->ops->peer_spad_read(ntb, pidx, sidx);
1384}
1385
1386/**
1387 * ntb_peer_spad_write() - write the peer scratchpad register
1388 * @ntb: NTB device context.
1389 * @pidx: Port index of peer device.
1390 * @sidx: Scratchpad index.
1391 * @val: Scratchpad value.
1392 *
1393 * Write the value to the peer scratchpad register.
1394 *
1395 * Return: Zero on success, otherwise an error number.
1396 */
1397static inline int ntb_peer_spad_write(struct ntb_dev *ntb, int pidx, int sidx,
1398 u32 val)
1399{
1400 if (!ntb->ops->peer_spad_write)
1401 return -EINVAL;
1402
1403 return ntb->ops->peer_spad_write(ntb, pidx, sidx, val);
1404}
1405
1406/**
1407 * ntb_msg_count() - get the number of message registers
1408 * @ntb: NTB device context.
1409 *
1410 * Hardware may support a different number of message registers.
1411 *
1412 * Return: the number of message registers.
1413 */
1414static inline int ntb_msg_count(struct ntb_dev *ntb)
1415{
1416 if (!ntb->ops->msg_count)
1417 return 0;
1418
1419 return ntb->ops->msg_count(ntb);
1420}
1421
1422/**
1423 * ntb_msg_inbits() - get a bitfield of inbound message registers status
1424 * @ntb: NTB device context.
1425 *
1426 * The method returns the bitfield of status and mask registers, which related
1427 * to inbound message registers.
1428 *
1429 * Return: bitfield of inbound message registers.
1430 */
1431static inline u64 ntb_msg_inbits(struct ntb_dev *ntb)
1432{
1433 if (!ntb->ops->msg_inbits)
1434 return 0;
1435
1436 return ntb->ops->msg_inbits(ntb);
1437}
1438
1439/**
1440 * ntb_msg_outbits() - get a bitfield of outbound message registers status
1441 * @ntb: NTB device context.
1442 *
1443 * The method returns the bitfield of status and mask registers, which related
1444 * to outbound message registers.
1445 *
1446 * Return: bitfield of outbound message registers.
1447 */
1448static inline u64 ntb_msg_outbits(struct ntb_dev *ntb)
1449{
1450 if (!ntb->ops->msg_outbits)
1451 return 0;
1452
1453 return ntb->ops->msg_outbits(ntb);
1454}
1455
1456/**
1457 * ntb_msg_read_sts() - read the message registers status
1458 * @ntb: NTB device context.
1459 *
1460 * Read the status of message register. Inbound and outbound message registers
1461 * related bits can be filtered by masks retrieved from ntb_msg_inbits() and
1462 * ntb_msg_outbits().
1463 *
1464 * Return: status bits of message registers
1465 */
1466static inline u64 ntb_msg_read_sts(struct ntb_dev *ntb)
1467{
1468 if (!ntb->ops->msg_read_sts)
1469 return 0;
1470
1471 return ntb->ops->msg_read_sts(ntb);
1472}
1473
1474/**
1475 * ntb_msg_clear_sts() - clear status bits of message registers
1476 * @ntb: NTB device context.
1477 * @sts_bits: Status bits to clear.
1478 *
1479 * Clear bits in the status register.
1480 *
1481 * Return: Zero on success, otherwise a negative error number.
1482 */
1483static inline int ntb_msg_clear_sts(struct ntb_dev *ntb, u64 sts_bits)
1484{
1485 if (!ntb->ops->msg_clear_sts)
1486 return -EINVAL;
1487
1488 return ntb->ops->msg_clear_sts(ntb, sts_bits);
1489}
1490
1491/**
1492 * ntb_msg_set_mask() - set mask of message register status bits
1493 * @ntb: NTB device context.
1494 * @mask_bits: Mask bits.
1495 *
1496 * Mask the message registers status bits from raising the message event.
1497 *
1498 * Return: Zero on success, otherwise a negative error number.
1499 */
1500static inline int ntb_msg_set_mask(struct ntb_dev *ntb, u64 mask_bits)
1501{
1502 if (!ntb->ops->msg_set_mask)
1503 return -EINVAL;
1504
1505 return ntb->ops->msg_set_mask(ntb, mask_bits);
1506}
1507
1508/**
1509 * ntb_msg_clear_mask() - clear message registers mask
1510 * @ntb: NTB device context.
1511 * @mask_bits: Mask bits to clear.
1512 *
1513 * Clear bits in the message events mask register.
1514 *
1515 * Return: Zero on success, otherwise a negative error number.
1516 */
1517static inline int ntb_msg_clear_mask(struct ntb_dev *ntb, u64 mask_bits)
1518{
1519 if (!ntb->ops->msg_clear_mask)
1520 return -EINVAL;
1521
1522 return ntb->ops->msg_clear_mask(ntb, mask_bits);
1523}
1524
1525/**
1526 * ntb_msg_read() - read inbound message register with specified index
1527 * @ntb: NTB device context.
1528 * @pidx: OUT - Port index of peer device a message retrieved from
1529 * @midx: Message register index
1530 *
1531 * Read data from the specified message register. Source port index of a
1532 * message is retrieved as well.
1533 *
1534 * Return: The value of the inbound message register.
1535 */
1536static inline u32 ntb_msg_read(struct ntb_dev *ntb, int *pidx, int midx)
1537{
1538 if (!ntb->ops->msg_read)
1539 return ~(u32)0;
1540
1541 return ntb->ops->msg_read(ntb, pidx, midx);
1542}
1543
1544/**
1545 * ntb_peer_msg_write() - write data to the specified peer message register
1546 * @ntb: NTB device context.
1547 * @pidx: Port index of peer device a message being sent to
1548 * @midx: Message register index
1549 * @msg: Data to send
1550 *
1551 * Send data to a specified peer device using the defined message register.
1552 * Message event can be raised if the midx registers isn't empty while
1553 * calling this method and the corresponding interrupt isn't masked.
1554 *
1555 * Return: Zero on success, otherwise a negative error number.
1556 */
1557static inline int ntb_peer_msg_write(struct ntb_dev *ntb, int pidx, int midx,
1558 u32 msg)
1559{
1560 if (!ntb->ops->peer_msg_write)
1561 return -EINVAL;
1562
1563 return ntb->ops->peer_msg_write(ntb, pidx, midx, msg);
1564}
1565
1566/**
1567 * ntb_peer_resource_idx() - get a resource index for a given peer idx
1568 * @ntb: NTB device context.
1569 * @pidx: Peer port index.
1570 *
1571 * When constructing a graph of peers, each remote peer must use a different
1572 * resource index (mw, doorbell, etc) to communicate with each other
1573 * peer.
1574 *
1575 * In a two peer system, this function should always return 0 such that
1576 * resource 0 points to the remote peer on both ports.
1577 *
1578 * In a 5 peer system, this function will return the following matrix
1579 *
1580 * pidx \ port 0 1 2 3 4
1581 * 0 0 0 1 2 3
1582 * 1 0 1 1 2 3
1583 * 2 0 1 2 2 3
1584 * 3 0 1 2 3 3
1585 *
1586 * For example, if this function is used to program peer's memory
1587 * windows, port 0 will program MW 0 on all it's peers to point to itself.
1588 * port 1 will program MW 0 in port 0 to point to itself and MW 1 on all
1589 * other ports. etc.
1590 *
1591 * For the legacy two host case, ntb_port_number() and ntb_peer_port_number()
1592 * both return zero and therefore this function will always return zero.
1593 * So MW 0 on each host would be programmed to point to the other host.
1594 *
1595 * Return: the resource index to use for that peer.
1596 */
1597static inline int ntb_peer_resource_idx(struct ntb_dev *ntb, int pidx)
1598{
1599 int local_port, peer_port;
1600
1601 if (pidx >= ntb_peer_port_count(ntb))
1602 return -EINVAL;
1603
1604 local_port = ntb_logical_port_number(ntb);
1605 peer_port = ntb_peer_logical_port_number(ntb, pidx);
1606
1607 if (peer_port < local_port)
1608 return local_port - 1;
1609 else
1610 return local_port;
1611}
1612
1613/**
1614 * ntb_peer_highest_mw_idx() - get a memory window index for a given peer idx
1615 * using the highest index memory windows first
1616 *
1617 * @ntb: NTB device context.
1618 * @pidx: Peer port index.
1619 *
1620 * Like ntb_peer_resource_idx(), except it returns indexes starting with
1621 * last memory window index.
1622 *
1623 * Return: the resource index to use for that peer.
1624 */
1625static inline int ntb_peer_highest_mw_idx(struct ntb_dev *ntb, int pidx)
1626{
1627 int ret;
1628
1629 ret = ntb_peer_resource_idx(ntb, pidx);
1630 if (ret < 0)
1631 return ret;
1632
1633 return ntb_mw_count(ntb, pidx) - ret - 1;
1634}
1635
1636struct ntb_msi_desc {
1637 u32 addr_offset;
1638 u32 data;
1639};
1640
1641#ifdef CONFIG_NTB_MSI
1642
1643int ntb_msi_init(struct ntb_dev *ntb, void (*desc_changed)(void *ctx));
1644int ntb_msi_setup_mws(struct ntb_dev *ntb);
1645void ntb_msi_clear_mws(struct ntb_dev *ntb);
1646int ntbm_msi_request_threaded_irq(struct ntb_dev *ntb, irq_handler_t handler,
1647 irq_handler_t thread_fn,
1648 const char *name, void *dev_id,
1649 struct ntb_msi_desc *msi_desc);
1650void ntbm_msi_free_irq(struct ntb_dev *ntb, unsigned int irq, void *dev_id);
1651int ntb_msi_peer_trigger(struct ntb_dev *ntb, int peer,
1652 struct ntb_msi_desc *desc);
1653int ntb_msi_peer_addr(struct ntb_dev *ntb, int peer,
1654 struct ntb_msi_desc *desc,
1655 phys_addr_t *msi_addr);
1656
1657#else /* not CONFIG_NTB_MSI */
1658
1659static inline int ntb_msi_init(struct ntb_dev *ntb,
1660 void (*desc_changed)(void *ctx))
1661{
1662 return -EOPNOTSUPP;
1663}
1664static inline int ntb_msi_setup_mws(struct ntb_dev *ntb)
1665{
1666 return -EOPNOTSUPP;
1667}
1668static inline void ntb_msi_clear_mws(struct ntb_dev *ntb) {}
1669static inline int ntbm_msi_request_threaded_irq(struct ntb_dev *ntb,
1670 irq_handler_t handler,
1671 irq_handler_t thread_fn,
1672 const char *name, void *dev_id,
1673 struct ntb_msi_desc *msi_desc)
1674{
1675 return -EOPNOTSUPP;
1676}
1677static inline void ntbm_msi_free_irq(struct ntb_dev *ntb, unsigned int irq,
1678 void *dev_id) {}
1679static inline int ntb_msi_peer_trigger(struct ntb_dev *ntb, int peer,
1680 struct ntb_msi_desc *desc)
1681{
1682 return -EOPNOTSUPP;
1683}
1684static inline int ntb_msi_peer_addr(struct ntb_dev *ntb, int peer,
1685 struct ntb_msi_desc *desc,
1686 phys_addr_t *msi_addr)
1687{
1688 return -EOPNOTSUPP;
1689
1690}
1691
1692#endif /* CONFIG_NTB_MSI */
1693
1694static inline int ntbm_msi_request_irq(struct ntb_dev *ntb,
1695 irq_handler_t handler,
1696 const char *name, void *dev_id,
1697 struct ntb_msi_desc *msi_desc)
1698{
1699 return ntbm_msi_request_threaded_irq(ntb, handler, NULL, name,
1700 dev_id, msi_desc);
1701}
1702
1703#endif
1704

source code of linux/include/linux/ntb.h