1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_PREEMPT_H
3#define __LINUX_PREEMPT_H
4
5/*
6 * include/linux/preempt.h - macros for accessing and manipulating
7 * preempt_count (used for kernel preemption, interrupt count, etc.)
8 */
9
10#include <linux/linkage.h>
11#include <linux/cleanup.h>
12#include <linux/list.h>
13
14/*
15 * We put the hardirq and softirq counter into the preemption
16 * counter. The bitmask has the following meaning:
17 *
18 * - bits 0-7 are the preemption count (max preemption depth: 256)
19 * - bits 8-15 are the softirq count (max # of softirqs: 256)
20 *
21 * The hardirq count could in theory be the same as the number of
22 * interrupts in the system, but we run all interrupt handlers with
23 * interrupts disabled, so we cannot have nesting interrupts. Though
24 * there are a few palaeontologic drivers which reenable interrupts in
25 * the handler, so we need more than one bit here.
26 *
27 * PREEMPT_MASK: 0x000000ff
28 * SOFTIRQ_MASK: 0x0000ff00
29 * HARDIRQ_MASK: 0x000f0000
30 * NMI_MASK: 0x00f00000
31 * PREEMPT_NEED_RESCHED: 0x80000000
32 */
33#define PREEMPT_BITS 8
34#define SOFTIRQ_BITS 8
35#define HARDIRQ_BITS 4
36#define NMI_BITS 4
37
38#define PREEMPT_SHIFT 0
39#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS)
40#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
41#define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS)
42
43#define __IRQ_MASK(x) ((1UL << (x))-1)
44
45#define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT)
46#define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT)
47#define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT)
48#define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT)
49
50#define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT)
51#define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT)
52#define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT)
53#define NMI_OFFSET (1UL << NMI_SHIFT)
54
55#define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET)
56
57#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
58
59/*
60 * Disable preemption until the scheduler is running -- use an unconditional
61 * value so that it also works on !PREEMPT_COUNT kernels.
62 *
63 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
64 */
65#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
66
67/*
68 * Initial preempt_count value; reflects the preempt_count schedule invariant
69 * which states that during context switches:
70 *
71 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
72 *
73 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
74 * Note: See finish_task_switch().
75 */
76#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
77
78/* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */
79#include <asm/preempt.h>
80
81/**
82 * interrupt_context_level - return interrupt context level
83 *
84 * Returns the current interrupt context level.
85 * 0 - normal context
86 * 1 - softirq context
87 * 2 - hardirq context
88 * 3 - NMI context
89 */
90static __always_inline unsigned char interrupt_context_level(void)
91{
92 unsigned long pc = preempt_count();
93 unsigned char level = 0;
94
95 level += !!(pc & (NMI_MASK));
96 level += !!(pc & (NMI_MASK | HARDIRQ_MASK));
97 level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET));
98
99 return level;
100}
101
102/*
103 * These macro definitions avoid redundant invocations of preempt_count()
104 * because such invocations would result in redundant loads given that
105 * preempt_count() is commonly implemented with READ_ONCE().
106 */
107
108#define nmi_count() (preempt_count() & NMI_MASK)
109#define hardirq_count() (preempt_count() & HARDIRQ_MASK)
110#ifdef CONFIG_PREEMPT_RT
111# define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK)
112# define irq_count() ((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | softirq_count())
113#else
114# define softirq_count() (preempt_count() & SOFTIRQ_MASK)
115# define irq_count() (preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_MASK))
116#endif
117
118/*
119 * Macros to retrieve the current execution context:
120 *
121 * in_nmi() - We're in NMI context
122 * in_hardirq() - We're in hard IRQ context
123 * in_serving_softirq() - We're in softirq context
124 * in_task() - We're in task context
125 */
126#define in_nmi() (nmi_count())
127#define in_hardirq() (hardirq_count())
128#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET)
129#ifdef CONFIG_PREEMPT_RT
130# define in_task() (!((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | in_serving_softirq()))
131#else
132# define in_task() (!(preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
133#endif
134
135/*
136 * The following macros are deprecated and should not be used in new code:
137 * in_irq() - Obsolete version of in_hardirq()
138 * in_softirq() - We have BH disabled, or are processing softirqs
139 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
140 */
141#define in_irq() (hardirq_count())
142#define in_softirq() (softirq_count())
143#define in_interrupt() (irq_count())
144
145/*
146 * The preempt_count offset after preempt_disable();
147 */
148#if defined(CONFIG_PREEMPT_COUNT)
149# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET
150#else
151# define PREEMPT_DISABLE_OFFSET 0
152#endif
153
154/*
155 * The preempt_count offset after spin_lock()
156 */
157#if !defined(CONFIG_PREEMPT_RT)
158#define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET
159#else
160/* Locks on RT do not disable preemption */
161#define PREEMPT_LOCK_OFFSET 0
162#endif
163
164/*
165 * The preempt_count offset needed for things like:
166 *
167 * spin_lock_bh()
168 *
169 * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and
170 * softirqs, such that unlock sequences of:
171 *
172 * spin_unlock();
173 * local_bh_enable();
174 *
175 * Work as expected.
176 */
177#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)
178
179/*
180 * Are we running in atomic context? WARNING: this macro cannot
181 * always detect atomic context; in particular, it cannot know about
182 * held spinlocks in non-preemptible kernels. Thus it should not be
183 * used in the general case to determine whether sleeping is possible.
184 * Do not use in_atomic() in driver code.
185 */
186#define in_atomic() (preempt_count() != 0)
187
188/*
189 * Check whether we were atomic before we did preempt_disable():
190 * (used by the scheduler)
191 */
192#define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET)
193
194#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
195extern void preempt_count_add(int val);
196extern void preempt_count_sub(int val);
197#define preempt_count_dec_and_test() \
198 ({ preempt_count_sub(1); should_resched(0); })
199#else
200#define preempt_count_add(val) __preempt_count_add(val)
201#define preempt_count_sub(val) __preempt_count_sub(val)
202#define preempt_count_dec_and_test() __preempt_count_dec_and_test()
203#endif
204
205#define __preempt_count_inc() __preempt_count_add(1)
206#define __preempt_count_dec() __preempt_count_sub(1)
207
208#define preempt_count_inc() preempt_count_add(1)
209#define preempt_count_dec() preempt_count_sub(1)
210
211#ifdef CONFIG_PREEMPT_COUNT
212
213#define preempt_disable() \
214do { \
215 preempt_count_inc(); \
216 barrier(); \
217} while (0)
218
219#define sched_preempt_enable_no_resched() \
220do { \
221 barrier(); \
222 preempt_count_dec(); \
223} while (0)
224
225#define preempt_enable_no_resched() sched_preempt_enable_no_resched()
226
227#define preemptible() (preempt_count() == 0 && !irqs_disabled())
228
229#ifdef CONFIG_PREEMPTION
230#define preempt_enable() \
231do { \
232 barrier(); \
233 if (unlikely(preempt_count_dec_and_test())) \
234 __preempt_schedule(); \
235} while (0)
236
237#define preempt_enable_notrace() \
238do { \
239 barrier(); \
240 if (unlikely(__preempt_count_dec_and_test())) \
241 __preempt_schedule_notrace(); \
242} while (0)
243
244#define preempt_check_resched() \
245do { \
246 if (should_resched(0)) \
247 __preempt_schedule(); \
248} while (0)
249
250#else /* !CONFIG_PREEMPTION */
251#define preempt_enable() \
252do { \
253 barrier(); \
254 preempt_count_dec(); \
255} while (0)
256
257#define preempt_enable_notrace() \
258do { \
259 barrier(); \
260 __preempt_count_dec(); \
261} while (0)
262
263#define preempt_check_resched() do { } while (0)
264#endif /* CONFIG_PREEMPTION */
265
266#define preempt_disable_notrace() \
267do { \
268 __preempt_count_inc(); \
269 barrier(); \
270} while (0)
271
272#define preempt_enable_no_resched_notrace() \
273do { \
274 barrier(); \
275 __preempt_count_dec(); \
276} while (0)
277
278#else /* !CONFIG_PREEMPT_COUNT */
279
280/*
281 * Even if we don't have any preemption, we need preempt disable/enable
282 * to be barriers, so that we don't have things like get_user/put_user
283 * that can cause faults and scheduling migrate into our preempt-protected
284 * region.
285 */
286#define preempt_disable() barrier()
287#define sched_preempt_enable_no_resched() barrier()
288#define preempt_enable_no_resched() barrier()
289#define preempt_enable() barrier()
290#define preempt_check_resched() do { } while (0)
291
292#define preempt_disable_notrace() barrier()
293#define preempt_enable_no_resched_notrace() barrier()
294#define preempt_enable_notrace() barrier()
295#define preemptible() 0
296
297#endif /* CONFIG_PREEMPT_COUNT */
298
299#ifdef MODULE
300/*
301 * Modules have no business playing preemption tricks.
302 */
303#undef sched_preempt_enable_no_resched
304#undef preempt_enable_no_resched
305#undef preempt_enable_no_resched_notrace
306#undef preempt_check_resched
307#endif
308
309#define preempt_set_need_resched() \
310do { \
311 set_preempt_need_resched(); \
312} while (0)
313#define preempt_fold_need_resched() \
314do { \
315 if (tif_need_resched()) \
316 set_preempt_need_resched(); \
317} while (0)
318
319#ifdef CONFIG_PREEMPT_NOTIFIERS
320
321struct preempt_notifier;
322
323/**
324 * preempt_ops - notifiers called when a task is preempted and rescheduled
325 * @sched_in: we're about to be rescheduled:
326 * notifier: struct preempt_notifier for the task being scheduled
327 * cpu: cpu we're scheduled on
328 * @sched_out: we've just been preempted
329 * notifier: struct preempt_notifier for the task being preempted
330 * next: the task that's kicking us out
331 *
332 * Please note that sched_in and out are called under different
333 * contexts. sched_out is called with rq lock held and irq disabled
334 * while sched_in is called without rq lock and irq enabled. This
335 * difference is intentional and depended upon by its users.
336 */
337struct preempt_ops {
338 void (*sched_in)(struct preempt_notifier *notifier, int cpu);
339 void (*sched_out)(struct preempt_notifier *notifier,
340 struct task_struct *next);
341};
342
343/**
344 * preempt_notifier - key for installing preemption notifiers
345 * @link: internal use
346 * @ops: defines the notifier functions to be called
347 *
348 * Usually used in conjunction with container_of().
349 */
350struct preempt_notifier {
351 struct hlist_node link;
352 struct preempt_ops *ops;
353};
354
355void preempt_notifier_inc(void);
356void preempt_notifier_dec(void);
357void preempt_notifier_register(struct preempt_notifier *notifier);
358void preempt_notifier_unregister(struct preempt_notifier *notifier);
359
360static inline void preempt_notifier_init(struct preempt_notifier *notifier,
361 struct preempt_ops *ops)
362{
363 INIT_HLIST_NODE(h: &notifier->link);
364 notifier->ops = ops;
365}
366
367#endif
368
369#ifdef CONFIG_SMP
370
371/*
372 * Migrate-Disable and why it is undesired.
373 *
374 * When a preempted task becomes elegible to run under the ideal model (IOW it
375 * becomes one of the M highest priority tasks), it might still have to wait
376 * for the preemptee's migrate_disable() section to complete. Thereby suffering
377 * a reduction in bandwidth in the exact duration of the migrate_disable()
378 * section.
379 *
380 * Per this argument, the change from preempt_disable() to migrate_disable()
381 * gets us:
382 *
383 * - a higher priority tasks gains reduced wake-up latency; with preempt_disable()
384 * it would have had to wait for the lower priority task.
385 *
386 * - a lower priority tasks; which under preempt_disable() could've instantly
387 * migrated away when another CPU becomes available, is now constrained
388 * by the ability to push the higher priority task away, which might itself be
389 * in a migrate_disable() section, reducing it's available bandwidth.
390 *
391 * IOW it trades latency / moves the interference term, but it stays in the
392 * system, and as long as it remains unbounded, the system is not fully
393 * deterministic.
394 *
395 *
396 * The reason we have it anyway.
397 *
398 * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a
399 * number of primitives into becoming preemptible, they would also allow
400 * migration. This turns out to break a bunch of per-cpu usage. To this end,
401 * all these primitives employ migirate_disable() to restore this implicit
402 * assumption.
403 *
404 * This is a 'temporary' work-around at best. The correct solution is getting
405 * rid of the above assumptions and reworking the code to employ explicit
406 * per-cpu locking or short preempt-disable regions.
407 *
408 * The end goal must be to get rid of migrate_disable(), alternatively we need
409 * a schedulability theory that does not depend on abritrary migration.
410 *
411 *
412 * Notes on the implementation.
413 *
414 * The implementation is particularly tricky since existing code patterns
415 * dictate neither migrate_disable() nor migrate_enable() is allowed to block.
416 * This means that it cannot use cpus_read_lock() to serialize against hotplug,
417 * nor can it easily migrate itself into a pending affinity mask change on
418 * migrate_enable().
419 *
420 *
421 * Note: even non-work-conserving schedulers like semi-partitioned depends on
422 * migration, so migrate_disable() is not only a problem for
423 * work-conserving schedulers.
424 *
425 */
426extern void migrate_disable(void);
427extern void migrate_enable(void);
428
429#else
430
431static inline void migrate_disable(void) { }
432static inline void migrate_enable(void) { }
433
434#endif /* CONFIG_SMP */
435
436/**
437 * preempt_disable_nested - Disable preemption inside a normally preempt disabled section
438 *
439 * Use for code which requires preemption protection inside a critical
440 * section which has preemption disabled implicitly on non-PREEMPT_RT
441 * enabled kernels, by e.g.:
442 * - holding a spinlock/rwlock
443 * - soft interrupt context
444 * - regular interrupt handlers
445 *
446 * On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft
447 * interrupt context and regular interrupt handlers are preemptible and
448 * only prevent migration. preempt_disable_nested() ensures that preemption
449 * is disabled for cases which require CPU local serialization even on
450 * PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP.
451 *
452 * The use cases are code sequences which are not serialized by a
453 * particular lock instance, e.g.:
454 * - seqcount write side critical sections where the seqcount is not
455 * associated to a particular lock and therefore the automatic
456 * protection mechanism does not work. This prevents a live lock
457 * against a preempting high priority reader.
458 * - RMW per CPU variable updates like vmstat.
459 */
460/* Macro to avoid header recursion hell vs. lockdep */
461#define preempt_disable_nested() \
462do { \
463 if (IS_ENABLED(CONFIG_PREEMPT_RT)) \
464 preempt_disable(); \
465 else \
466 lockdep_assert_preemption_disabled(); \
467} while (0)
468
469/**
470 * preempt_enable_nested - Undo the effect of preempt_disable_nested()
471 */
472static __always_inline void preempt_enable_nested(void)
473{
474 if (IS_ENABLED(CONFIG_PREEMPT_RT))
475 preempt_enable();
476}
477
478DEFINE_LOCK_GUARD_0(preempt, preempt_disable(), preempt_enable())
479DEFINE_LOCK_GUARD_0(preempt_notrace, preempt_disable_notrace(), preempt_enable_notrace())
480DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable())
481
482#endif /* __LINUX_PREEMPT_H */
483

source code of linux/include/linux/preempt.h