1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef __LINUX_PREEMPT_H |
3 | #define __LINUX_PREEMPT_H |
4 | |
5 | /* |
6 | * include/linux/preempt.h - macros for accessing and manipulating |
7 | * preempt_count (used for kernel preemption, interrupt count, etc.) |
8 | */ |
9 | |
10 | #include <linux/linkage.h> |
11 | #include <linux/list.h> |
12 | |
13 | /* |
14 | * We put the hardirq and softirq counter into the preemption |
15 | * counter. The bitmask has the following meaning: |
16 | * |
17 | * - bits 0-7 are the preemption count (max preemption depth: 256) |
18 | * - bits 8-15 are the softirq count (max # of softirqs: 256) |
19 | * |
20 | * The hardirq count could in theory be the same as the number of |
21 | * interrupts in the system, but we run all interrupt handlers with |
22 | * interrupts disabled, so we cannot have nesting interrupts. Though |
23 | * there are a few palaeontologic drivers which reenable interrupts in |
24 | * the handler, so we need more than one bit here. |
25 | * |
26 | * PREEMPT_MASK: 0x000000ff |
27 | * SOFTIRQ_MASK: 0x0000ff00 |
28 | * HARDIRQ_MASK: 0x000f0000 |
29 | * NMI_MASK: 0x00f00000 |
30 | * PREEMPT_NEED_RESCHED: 0x80000000 |
31 | */ |
32 | #define PREEMPT_BITS 8 |
33 | #define SOFTIRQ_BITS 8 |
34 | #define HARDIRQ_BITS 4 |
35 | #define NMI_BITS 4 |
36 | |
37 | #define PREEMPT_SHIFT 0 |
38 | #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) |
39 | #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) |
40 | #define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) |
41 | |
42 | #define __IRQ_MASK(x) ((1UL << (x))-1) |
43 | |
44 | #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) |
45 | #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) |
46 | #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) |
47 | #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) |
48 | |
49 | #define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) |
50 | #define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) |
51 | #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) |
52 | #define NMI_OFFSET (1UL << NMI_SHIFT) |
53 | |
54 | #define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) |
55 | |
56 | #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) |
57 | |
58 | /* |
59 | * Disable preemption until the scheduler is running -- use an unconditional |
60 | * value so that it also works on !PREEMPT_COUNT kernels. |
61 | * |
62 | * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). |
63 | */ |
64 | #define INIT_PREEMPT_COUNT PREEMPT_OFFSET |
65 | |
66 | /* |
67 | * Initial preempt_count value; reflects the preempt_count schedule invariant |
68 | * which states that during context switches: |
69 | * |
70 | * preempt_count() == 2*PREEMPT_DISABLE_OFFSET |
71 | * |
72 | * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. |
73 | * Note: See finish_task_switch(). |
74 | */ |
75 | #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) |
76 | |
77 | /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ |
78 | #include <asm/preempt.h> |
79 | |
80 | /** |
81 | * interrupt_context_level - return interrupt context level |
82 | * |
83 | * Returns the current interrupt context level. |
84 | * 0 - normal context |
85 | * 1 - softirq context |
86 | * 2 - hardirq context |
87 | * 3 - NMI context |
88 | */ |
89 | static __always_inline unsigned char interrupt_context_level(void) |
90 | { |
91 | unsigned long pc = preempt_count(); |
92 | unsigned char level = 0; |
93 | |
94 | level += !!(pc & (NMI_MASK)); |
95 | level += !!(pc & (NMI_MASK | HARDIRQ_MASK)); |
96 | level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); |
97 | |
98 | return level; |
99 | } |
100 | |
101 | #define nmi_count() (preempt_count() & NMI_MASK) |
102 | #define hardirq_count() (preempt_count() & HARDIRQ_MASK) |
103 | #ifdef CONFIG_PREEMPT_RT |
104 | # define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) |
105 | #else |
106 | # define softirq_count() (preempt_count() & SOFTIRQ_MASK) |
107 | #endif |
108 | #define irq_count() (nmi_count() | hardirq_count() | softirq_count()) |
109 | |
110 | /* |
111 | * Macros to retrieve the current execution context: |
112 | * |
113 | * in_nmi() - We're in NMI context |
114 | * in_hardirq() - We're in hard IRQ context |
115 | * in_serving_softirq() - We're in softirq context |
116 | * in_task() - We're in task context |
117 | */ |
118 | #define in_nmi() (nmi_count()) |
119 | #define in_hardirq() (hardirq_count()) |
120 | #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) |
121 | #define in_task() (!(in_nmi() | in_hardirq() | in_serving_softirq())) |
122 | |
123 | /* |
124 | * The following macros are deprecated and should not be used in new code: |
125 | * in_irq() - Obsolete version of in_hardirq() |
126 | * in_softirq() - We have BH disabled, or are processing softirqs |
127 | * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled |
128 | */ |
129 | #define in_irq() (hardirq_count()) |
130 | #define in_softirq() (softirq_count()) |
131 | #define in_interrupt() (irq_count()) |
132 | |
133 | /* |
134 | * The preempt_count offset after preempt_disable(); |
135 | */ |
136 | #if defined(CONFIG_PREEMPT_COUNT) |
137 | # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET |
138 | #else |
139 | # define PREEMPT_DISABLE_OFFSET 0 |
140 | #endif |
141 | |
142 | /* |
143 | * The preempt_count offset after spin_lock() |
144 | */ |
145 | #if !defined(CONFIG_PREEMPT_RT) |
146 | #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET |
147 | #else |
148 | /* Locks on RT do not disable preemption */ |
149 | #define PREEMPT_LOCK_OFFSET 0 |
150 | #endif |
151 | |
152 | /* |
153 | * The preempt_count offset needed for things like: |
154 | * |
155 | * spin_lock_bh() |
156 | * |
157 | * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and |
158 | * softirqs, such that unlock sequences of: |
159 | * |
160 | * spin_unlock(); |
161 | * local_bh_enable(); |
162 | * |
163 | * Work as expected. |
164 | */ |
165 | #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) |
166 | |
167 | /* |
168 | * Are we running in atomic context? WARNING: this macro cannot |
169 | * always detect atomic context; in particular, it cannot know about |
170 | * held spinlocks in non-preemptible kernels. Thus it should not be |
171 | * used in the general case to determine whether sleeping is possible. |
172 | * Do not use in_atomic() in driver code. |
173 | */ |
174 | #define in_atomic() (preempt_count() != 0) |
175 | |
176 | /* |
177 | * Check whether we were atomic before we did preempt_disable(): |
178 | * (used by the scheduler) |
179 | */ |
180 | #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) |
181 | |
182 | #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) |
183 | extern void preempt_count_add(int val); |
184 | extern void preempt_count_sub(int val); |
185 | #define preempt_count_dec_and_test() \ |
186 | ({ preempt_count_sub(1); should_resched(0); }) |
187 | #else |
188 | #define preempt_count_add(val) __preempt_count_add(val) |
189 | #define preempt_count_sub(val) __preempt_count_sub(val) |
190 | #define preempt_count_dec_and_test() __preempt_count_dec_and_test() |
191 | #endif |
192 | |
193 | #define __preempt_count_inc() __preempt_count_add(1) |
194 | #define __preempt_count_dec() __preempt_count_sub(1) |
195 | |
196 | #define preempt_count_inc() preempt_count_add(1) |
197 | #define preempt_count_dec() preempt_count_sub(1) |
198 | |
199 | #ifdef CONFIG_PREEMPT_COUNT |
200 | |
201 | #define preempt_disable() \ |
202 | do { \ |
203 | preempt_count_inc(); \ |
204 | barrier(); \ |
205 | } while (0) |
206 | |
207 | #define sched_preempt_enable_no_resched() \ |
208 | do { \ |
209 | barrier(); \ |
210 | preempt_count_dec(); \ |
211 | } while (0) |
212 | |
213 | #define preempt_enable_no_resched() sched_preempt_enable_no_resched() |
214 | |
215 | #define preemptible() (preempt_count() == 0 && !irqs_disabled()) |
216 | |
217 | #ifdef CONFIG_PREEMPTION |
218 | #define preempt_enable() \ |
219 | do { \ |
220 | barrier(); \ |
221 | if (unlikely(preempt_count_dec_and_test())) \ |
222 | __preempt_schedule(); \ |
223 | } while (0) |
224 | |
225 | #define preempt_enable_notrace() \ |
226 | do { \ |
227 | barrier(); \ |
228 | if (unlikely(__preempt_count_dec_and_test())) \ |
229 | __preempt_schedule_notrace(); \ |
230 | } while (0) |
231 | |
232 | #define preempt_check_resched() \ |
233 | do { \ |
234 | if (should_resched(0)) \ |
235 | __preempt_schedule(); \ |
236 | } while (0) |
237 | |
238 | #else /* !CONFIG_PREEMPTION */ |
239 | #define preempt_enable() \ |
240 | do { \ |
241 | barrier(); \ |
242 | preempt_count_dec(); \ |
243 | } while (0) |
244 | |
245 | #define preempt_enable_notrace() \ |
246 | do { \ |
247 | barrier(); \ |
248 | __preempt_count_dec(); \ |
249 | } while (0) |
250 | |
251 | #define preempt_check_resched() do { } while (0) |
252 | #endif /* CONFIG_PREEMPTION */ |
253 | |
254 | #define preempt_disable_notrace() \ |
255 | do { \ |
256 | __preempt_count_inc(); \ |
257 | barrier(); \ |
258 | } while (0) |
259 | |
260 | #define preempt_enable_no_resched_notrace() \ |
261 | do { \ |
262 | barrier(); \ |
263 | __preempt_count_dec(); \ |
264 | } while (0) |
265 | |
266 | #else /* !CONFIG_PREEMPT_COUNT */ |
267 | |
268 | /* |
269 | * Even if we don't have any preemption, we need preempt disable/enable |
270 | * to be barriers, so that we don't have things like get_user/put_user |
271 | * that can cause faults and scheduling migrate into our preempt-protected |
272 | * region. |
273 | */ |
274 | #define preempt_disable() barrier() |
275 | #define sched_preempt_enable_no_resched() barrier() |
276 | #define preempt_enable_no_resched() barrier() |
277 | #define preempt_enable() barrier() |
278 | #define preempt_check_resched() do { } while (0) |
279 | |
280 | #define preempt_disable_notrace() barrier() |
281 | #define preempt_enable_no_resched_notrace() barrier() |
282 | #define preempt_enable_notrace() barrier() |
283 | #define preemptible() 0 |
284 | |
285 | #endif /* CONFIG_PREEMPT_COUNT */ |
286 | |
287 | #ifdef MODULE |
288 | /* |
289 | * Modules have no business playing preemption tricks. |
290 | */ |
291 | #undef sched_preempt_enable_no_resched |
292 | #undef preempt_enable_no_resched |
293 | #undef preempt_enable_no_resched_notrace |
294 | #undef preempt_check_resched |
295 | #endif |
296 | |
297 | #define preempt_set_need_resched() \ |
298 | do { \ |
299 | set_preempt_need_resched(); \ |
300 | } while (0) |
301 | #define preempt_fold_need_resched() \ |
302 | do { \ |
303 | if (tif_need_resched()) \ |
304 | set_preempt_need_resched(); \ |
305 | } while (0) |
306 | |
307 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
308 | |
309 | struct preempt_notifier; |
310 | |
311 | /** |
312 | * preempt_ops - notifiers called when a task is preempted and rescheduled |
313 | * @sched_in: we're about to be rescheduled: |
314 | * notifier: struct preempt_notifier for the task being scheduled |
315 | * cpu: cpu we're scheduled on |
316 | * @sched_out: we've just been preempted |
317 | * notifier: struct preempt_notifier for the task being preempted |
318 | * next: the task that's kicking us out |
319 | * |
320 | * Please note that sched_in and out are called under different |
321 | * contexts. sched_out is called with rq lock held and irq disabled |
322 | * while sched_in is called without rq lock and irq enabled. This |
323 | * difference is intentional and depended upon by its users. |
324 | */ |
325 | struct preempt_ops { |
326 | void (*sched_in)(struct preempt_notifier *notifier, int cpu); |
327 | void (*sched_out)(struct preempt_notifier *notifier, |
328 | struct task_struct *next); |
329 | }; |
330 | |
331 | /** |
332 | * preempt_notifier - key for installing preemption notifiers |
333 | * @link: internal use |
334 | * @ops: defines the notifier functions to be called |
335 | * |
336 | * Usually used in conjunction with container_of(). |
337 | */ |
338 | struct preempt_notifier { |
339 | struct hlist_node link; |
340 | struct preempt_ops *ops; |
341 | }; |
342 | |
343 | void preempt_notifier_inc(void); |
344 | void preempt_notifier_dec(void); |
345 | void preempt_notifier_register(struct preempt_notifier *notifier); |
346 | void preempt_notifier_unregister(struct preempt_notifier *notifier); |
347 | |
348 | static inline void preempt_notifier_init(struct preempt_notifier *notifier, |
349 | struct preempt_ops *ops) |
350 | { |
351 | INIT_HLIST_NODE(¬ifier->link); |
352 | notifier->ops = ops; |
353 | } |
354 | |
355 | #endif |
356 | |
357 | #ifdef CONFIG_SMP |
358 | |
359 | /* |
360 | * Migrate-Disable and why it is undesired. |
361 | * |
362 | * When a preempted task becomes elegible to run under the ideal model (IOW it |
363 | * becomes one of the M highest priority tasks), it might still have to wait |
364 | * for the preemptee's migrate_disable() section to complete. Thereby suffering |
365 | * a reduction in bandwidth in the exact duration of the migrate_disable() |
366 | * section. |
367 | * |
368 | * Per this argument, the change from preempt_disable() to migrate_disable() |
369 | * gets us: |
370 | * |
371 | * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() |
372 | * it would have had to wait for the lower priority task. |
373 | * |
374 | * - a lower priority tasks; which under preempt_disable() could've instantly |
375 | * migrated away when another CPU becomes available, is now constrained |
376 | * by the ability to push the higher priority task away, which might itself be |
377 | * in a migrate_disable() section, reducing it's available bandwidth. |
378 | * |
379 | * IOW it trades latency / moves the interference term, but it stays in the |
380 | * system, and as long as it remains unbounded, the system is not fully |
381 | * deterministic. |
382 | * |
383 | * |
384 | * The reason we have it anyway. |
385 | * |
386 | * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a |
387 | * number of primitives into becoming preemptible, they would also allow |
388 | * migration. This turns out to break a bunch of per-cpu usage. To this end, |
389 | * all these primitives employ migirate_disable() to restore this implicit |
390 | * assumption. |
391 | * |
392 | * This is a 'temporary' work-around at best. The correct solution is getting |
393 | * rid of the above assumptions and reworking the code to employ explicit |
394 | * per-cpu locking or short preempt-disable regions. |
395 | * |
396 | * The end goal must be to get rid of migrate_disable(), alternatively we need |
397 | * a schedulability theory that does not depend on abritrary migration. |
398 | * |
399 | * |
400 | * Notes on the implementation. |
401 | * |
402 | * The implementation is particularly tricky since existing code patterns |
403 | * dictate neither migrate_disable() nor migrate_enable() is allowed to block. |
404 | * This means that it cannot use cpus_read_lock() to serialize against hotplug, |
405 | * nor can it easily migrate itself into a pending affinity mask change on |
406 | * migrate_enable(). |
407 | * |
408 | * |
409 | * Note: even non-work-conserving schedulers like semi-partitioned depends on |
410 | * migration, so migrate_disable() is not only a problem for |
411 | * work-conserving schedulers. |
412 | * |
413 | */ |
414 | extern void migrate_disable(void); |
415 | extern void migrate_enable(void); |
416 | |
417 | #else |
418 | |
419 | static inline void migrate_disable(void) { } |
420 | static inline void migrate_enable(void) { } |
421 | |
422 | #endif /* CONFIG_SMP */ |
423 | |
424 | /** |
425 | * preempt_disable_nested - Disable preemption inside a normally preempt disabled section |
426 | * |
427 | * Use for code which requires preemption protection inside a critical |
428 | * section which has preemption disabled implicitly on non-PREEMPT_RT |
429 | * enabled kernels, by e.g.: |
430 | * - holding a spinlock/rwlock |
431 | * - soft interrupt context |
432 | * - regular interrupt handlers |
433 | * |
434 | * On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft |
435 | * interrupt context and regular interrupt handlers are preemptible and |
436 | * only prevent migration. preempt_disable_nested() ensures that preemption |
437 | * is disabled for cases which require CPU local serialization even on |
438 | * PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP. |
439 | * |
440 | * The use cases are code sequences which are not serialized by a |
441 | * particular lock instance, e.g.: |
442 | * - seqcount write side critical sections where the seqcount is not |
443 | * associated to a particular lock and therefore the automatic |
444 | * protection mechanism does not work. This prevents a live lock |
445 | * against a preempting high priority reader. |
446 | * - RMW per CPU variable updates like vmstat. |
447 | */ |
448 | /* Macro to avoid header recursion hell vs. lockdep */ |
449 | #define preempt_disable_nested() \ |
450 | do { \ |
451 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) \ |
452 | preempt_disable(); \ |
453 | else \ |
454 | lockdep_assert_preemption_disabled(); \ |
455 | } while (0) |
456 | |
457 | /** |
458 | * preempt_enable_nested - Undo the effect of preempt_disable_nested() |
459 | */ |
460 | static __always_inline void preempt_enable_nested(void) |
461 | { |
462 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
463 | preempt_enable(); |
464 | } |
465 | |
466 | #endif /* __LINUX_PREEMPT_H */ |
467 | |