1 | /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ |
2 | /* |
3 | * Performance events: |
4 | * |
5 | * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> |
6 | * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar |
7 | * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra |
8 | * |
9 | * Data type definitions, declarations, prototypes. |
10 | * |
11 | * Started by: Thomas Gleixner and Ingo Molnar |
12 | * |
13 | * For licencing details see kernel-base/COPYING |
14 | */ |
15 | #ifndef _UAPI_LINUX_PERF_EVENT_H |
16 | #define _UAPI_LINUX_PERF_EVENT_H |
17 | |
18 | #include <linux/types.h> |
19 | #include <linux/ioctl.h> |
20 | #include <asm/byteorder.h> |
21 | |
22 | /* |
23 | * User-space ABI bits: |
24 | */ |
25 | |
26 | /* |
27 | * attr.type |
28 | */ |
29 | enum perf_type_id { |
30 | PERF_TYPE_HARDWARE = 0, |
31 | PERF_TYPE_SOFTWARE = 1, |
32 | PERF_TYPE_TRACEPOINT = 2, |
33 | PERF_TYPE_HW_CACHE = 3, |
34 | PERF_TYPE_RAW = 4, |
35 | PERF_TYPE_BREAKPOINT = 5, |
36 | |
37 | PERF_TYPE_MAX, /* non-ABI */ |
38 | }; |
39 | |
40 | /* |
41 | * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE |
42 | * |
43 | * PERF_TYPE_HARDWARE: 0xEEEEEEEE000000AA |
44 | * AA: hardware event ID |
45 | * EEEEEEEE: PMU type ID |
46 | * |
47 | * PERF_TYPE_HW_CACHE: 0xEEEEEEEE00DDCCBB |
48 | * BB: hardware cache ID |
49 | * CC: hardware cache op ID |
50 | * DD: hardware cache op result ID |
51 | * EEEEEEEE: PMU type ID |
52 | * |
53 | * If the PMU type ID is 0, PERF_TYPE_RAW will be applied. |
54 | */ |
55 | #define PERF_PMU_TYPE_SHIFT 32 |
56 | #define PERF_HW_EVENT_MASK 0xffffffff |
57 | |
58 | /* |
59 | * Generalized performance event event_id types, used by the |
60 | * attr.event_id parameter of the sys_perf_event_open() |
61 | * syscall: |
62 | */ |
63 | enum perf_hw_id { |
64 | /* |
65 | * Common hardware events, generalized by the kernel: |
66 | */ |
67 | PERF_COUNT_HW_CPU_CYCLES = 0, |
68 | PERF_COUNT_HW_INSTRUCTIONS = 1, |
69 | PERF_COUNT_HW_CACHE_REFERENCES = 2, |
70 | PERF_COUNT_HW_CACHE_MISSES = 3, |
71 | PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, |
72 | PERF_COUNT_HW_BRANCH_MISSES = 5, |
73 | PERF_COUNT_HW_BUS_CYCLES = 6, |
74 | PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, |
75 | PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, |
76 | PERF_COUNT_HW_REF_CPU_CYCLES = 9, |
77 | |
78 | PERF_COUNT_HW_MAX, /* non-ABI */ |
79 | }; |
80 | |
81 | /* |
82 | * Generalized hardware cache events: |
83 | * |
84 | * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x |
85 | * { read, write, prefetch } x |
86 | * { accesses, misses } |
87 | */ |
88 | enum perf_hw_cache_id { |
89 | PERF_COUNT_HW_CACHE_L1D = 0, |
90 | PERF_COUNT_HW_CACHE_L1I = 1, |
91 | PERF_COUNT_HW_CACHE_LL = 2, |
92 | PERF_COUNT_HW_CACHE_DTLB = 3, |
93 | PERF_COUNT_HW_CACHE_ITLB = 4, |
94 | PERF_COUNT_HW_CACHE_BPU = 5, |
95 | PERF_COUNT_HW_CACHE_NODE = 6, |
96 | |
97 | PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ |
98 | }; |
99 | |
100 | enum perf_hw_cache_op_id { |
101 | PERF_COUNT_HW_CACHE_OP_READ = 0, |
102 | PERF_COUNT_HW_CACHE_OP_WRITE = 1, |
103 | PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, |
104 | |
105 | PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ |
106 | }; |
107 | |
108 | enum perf_hw_cache_op_result_id { |
109 | PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, |
110 | PERF_COUNT_HW_CACHE_RESULT_MISS = 1, |
111 | |
112 | PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ |
113 | }; |
114 | |
115 | /* |
116 | * Special "software" events provided by the kernel, even if the hardware |
117 | * does not support performance events. These events measure various |
118 | * physical and SW events of the kernel (and allow the profiling of them as |
119 | * well): |
120 | */ |
121 | enum perf_sw_ids { |
122 | PERF_COUNT_SW_CPU_CLOCK = 0, |
123 | PERF_COUNT_SW_TASK_CLOCK = 1, |
124 | PERF_COUNT_SW_PAGE_FAULTS = 2, |
125 | PERF_COUNT_SW_CONTEXT_SWITCHES = 3, |
126 | PERF_COUNT_SW_CPU_MIGRATIONS = 4, |
127 | PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, |
128 | PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, |
129 | PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, |
130 | PERF_COUNT_SW_EMULATION_FAULTS = 8, |
131 | PERF_COUNT_SW_DUMMY = 9, |
132 | PERF_COUNT_SW_BPF_OUTPUT = 10, |
133 | PERF_COUNT_SW_CGROUP_SWITCHES = 11, |
134 | |
135 | PERF_COUNT_SW_MAX, /* non-ABI */ |
136 | }; |
137 | |
138 | /* |
139 | * Bits that can be set in attr.sample_type to request information |
140 | * in the overflow packets. |
141 | */ |
142 | enum perf_event_sample_format { |
143 | PERF_SAMPLE_IP = 1U << 0, |
144 | PERF_SAMPLE_TID = 1U << 1, |
145 | PERF_SAMPLE_TIME = 1U << 2, |
146 | PERF_SAMPLE_ADDR = 1U << 3, |
147 | PERF_SAMPLE_READ = 1U << 4, |
148 | PERF_SAMPLE_CALLCHAIN = 1U << 5, |
149 | PERF_SAMPLE_ID = 1U << 6, |
150 | PERF_SAMPLE_CPU = 1U << 7, |
151 | PERF_SAMPLE_PERIOD = 1U << 8, |
152 | PERF_SAMPLE_STREAM_ID = 1U << 9, |
153 | PERF_SAMPLE_RAW = 1U << 10, |
154 | PERF_SAMPLE_BRANCH_STACK = 1U << 11, |
155 | PERF_SAMPLE_REGS_USER = 1U << 12, |
156 | PERF_SAMPLE_STACK_USER = 1U << 13, |
157 | PERF_SAMPLE_WEIGHT = 1U << 14, |
158 | PERF_SAMPLE_DATA_SRC = 1U << 15, |
159 | PERF_SAMPLE_IDENTIFIER = 1U << 16, |
160 | PERF_SAMPLE_TRANSACTION = 1U << 17, |
161 | PERF_SAMPLE_REGS_INTR = 1U << 18, |
162 | PERF_SAMPLE_PHYS_ADDR = 1U << 19, |
163 | PERF_SAMPLE_AUX = 1U << 20, |
164 | PERF_SAMPLE_CGROUP = 1U << 21, |
165 | PERF_SAMPLE_DATA_PAGE_SIZE = 1U << 22, |
166 | PERF_SAMPLE_CODE_PAGE_SIZE = 1U << 23, |
167 | PERF_SAMPLE_WEIGHT_STRUCT = 1U << 24, |
168 | |
169 | PERF_SAMPLE_MAX = 1U << 25, /* non-ABI */ |
170 | }; |
171 | |
172 | #define PERF_SAMPLE_WEIGHT_TYPE (PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT) |
173 | |
174 | /* |
175 | * Values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set. |
176 | * |
177 | * If the user does not pass priv level information via branch_sample_type, |
178 | * the kernel uses the event's priv level. Branch and event priv levels do |
179 | * not have to match. Branch priv level is checked for permissions. |
180 | * |
181 | * The branch types can be combined, however BRANCH_ANY covers all types |
182 | * of branches and therefore it supersedes all the other types. |
183 | */ |
184 | enum perf_branch_sample_type_shift { |
185 | PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */ |
186 | PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */ |
187 | PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */ |
188 | |
189 | PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */ |
190 | PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */ |
191 | PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */ |
192 | PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */ |
193 | PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */ |
194 | PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */ |
195 | PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */ |
196 | PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */ |
197 | |
198 | PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* CALL/RET stack */ |
199 | PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */ |
200 | PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */ |
201 | |
202 | PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */ |
203 | PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */ |
204 | |
205 | PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */ |
206 | |
207 | PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */ |
208 | |
209 | PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT = 18, /* save privilege mode */ |
210 | |
211 | PERF_SAMPLE_BRANCH_COUNTERS_SHIFT = 19, /* save occurrences of events on a branch */ |
212 | |
213 | PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */ |
214 | }; |
215 | |
216 | enum perf_branch_sample_type { |
217 | PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT, |
218 | PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT, |
219 | PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT, |
220 | |
221 | PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT, |
222 | PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT, |
223 | PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT, |
224 | PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT, |
225 | PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT, |
226 | PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT, |
227 | PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT, |
228 | PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT, |
229 | |
230 | PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT, |
231 | PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT, |
232 | PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT, |
233 | |
234 | PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT, |
235 | PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT, |
236 | |
237 | PERF_SAMPLE_BRANCH_TYPE_SAVE = 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT, |
238 | |
239 | PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT, |
240 | |
241 | PERF_SAMPLE_BRANCH_PRIV_SAVE = 1U << PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT, |
242 | |
243 | PERF_SAMPLE_BRANCH_COUNTERS = 1U << PERF_SAMPLE_BRANCH_COUNTERS_SHIFT, |
244 | |
245 | PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT, |
246 | }; |
247 | |
248 | /* |
249 | * Common control flow change classifications: |
250 | */ |
251 | enum { |
252 | PERF_BR_UNKNOWN = 0, /* Unknown */ |
253 | PERF_BR_COND = 1, /* Conditional */ |
254 | PERF_BR_UNCOND = 2, /* Unconditional */ |
255 | PERF_BR_IND = 3, /* Indirect */ |
256 | PERF_BR_CALL = 4, /* Function call */ |
257 | PERF_BR_IND_CALL = 5, /* Indirect function call */ |
258 | PERF_BR_RET = 6, /* Function return */ |
259 | PERF_BR_SYSCALL = 7, /* Syscall */ |
260 | PERF_BR_SYSRET = 8, /* Syscall return */ |
261 | PERF_BR_COND_CALL = 9, /* Conditional function call */ |
262 | PERF_BR_COND_RET = 10, /* Conditional function return */ |
263 | PERF_BR_ERET = 11, /* Exception return */ |
264 | PERF_BR_IRQ = 12, /* IRQ */ |
265 | PERF_BR_SERROR = 13, /* System error */ |
266 | PERF_BR_NO_TX = 14, /* Not in transaction */ |
267 | PERF_BR_EXTEND_ABI = 15, /* Extend ABI */ |
268 | PERF_BR_MAX, |
269 | }; |
270 | |
271 | /* |
272 | * Common branch speculation outcome classifications: |
273 | */ |
274 | enum { |
275 | PERF_BR_SPEC_NA = 0, /* Not available */ |
276 | PERF_BR_SPEC_WRONG_PATH = 1, /* Speculative but on wrong path */ |
277 | PERF_BR_NON_SPEC_CORRECT_PATH = 2, /* Non-speculative but on correct path */ |
278 | PERF_BR_SPEC_CORRECT_PATH = 3, /* Speculative and on correct path */ |
279 | PERF_BR_SPEC_MAX, |
280 | }; |
281 | |
282 | enum { |
283 | PERF_BR_NEW_FAULT_ALGN = 0, /* Alignment fault */ |
284 | PERF_BR_NEW_FAULT_DATA = 1, /* Data fault */ |
285 | PERF_BR_NEW_FAULT_INST = 2, /* Inst fault */ |
286 | PERF_BR_NEW_ARCH_1 = 3, /* Architecture specific */ |
287 | PERF_BR_NEW_ARCH_2 = 4, /* Architecture specific */ |
288 | PERF_BR_NEW_ARCH_3 = 5, /* Architecture specific */ |
289 | PERF_BR_NEW_ARCH_4 = 6, /* Architecture specific */ |
290 | PERF_BR_NEW_ARCH_5 = 7, /* Architecture specific */ |
291 | PERF_BR_NEW_MAX, |
292 | }; |
293 | |
294 | enum { |
295 | PERF_BR_PRIV_UNKNOWN = 0, |
296 | PERF_BR_PRIV_USER = 1, |
297 | PERF_BR_PRIV_KERNEL = 2, |
298 | PERF_BR_PRIV_HV = 3, |
299 | }; |
300 | |
301 | #define PERF_BR_ARM64_FIQ PERF_BR_NEW_ARCH_1 |
302 | #define PERF_BR_ARM64_DEBUG_HALT PERF_BR_NEW_ARCH_2 |
303 | #define PERF_BR_ARM64_DEBUG_EXIT PERF_BR_NEW_ARCH_3 |
304 | #define PERF_BR_ARM64_DEBUG_INST PERF_BR_NEW_ARCH_4 |
305 | #define PERF_BR_ARM64_DEBUG_DATA PERF_BR_NEW_ARCH_5 |
306 | |
307 | #define PERF_SAMPLE_BRANCH_PLM_ALL \ |
308 | (PERF_SAMPLE_BRANCH_USER|\ |
309 | PERF_SAMPLE_BRANCH_KERNEL|\ |
310 | PERF_SAMPLE_BRANCH_HV) |
311 | |
312 | /* |
313 | * Values to determine ABI of the registers dump. |
314 | */ |
315 | enum perf_sample_regs_abi { |
316 | PERF_SAMPLE_REGS_ABI_NONE = 0, |
317 | PERF_SAMPLE_REGS_ABI_32 = 1, |
318 | PERF_SAMPLE_REGS_ABI_64 = 2, |
319 | }; |
320 | |
321 | /* |
322 | * Values for the memory transaction event qualifier, mostly for |
323 | * abort events. Multiple bits can be set. |
324 | */ |
325 | enum { |
326 | PERF_TXN_ELISION = (1 << 0), /* From elision */ |
327 | PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */ |
328 | PERF_TXN_SYNC = (1 << 2), /* Instruction is related */ |
329 | PERF_TXN_ASYNC = (1 << 3), /* Instruction is not related */ |
330 | PERF_TXN_RETRY = (1 << 4), /* Retry possible */ |
331 | PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */ |
332 | PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */ |
333 | PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */ |
334 | |
335 | PERF_TXN_MAX = (1 << 8), /* non-ABI */ |
336 | |
337 | /* Bits 32..63 are reserved for the abort code */ |
338 | |
339 | PERF_TXN_ABORT_MASK = (0xffffffffULL << 32), |
340 | PERF_TXN_ABORT_SHIFT = 32, |
341 | }; |
342 | |
343 | /* |
344 | * The format of the data returned by read() on a perf event fd, |
345 | * as specified by attr.read_format: |
346 | * |
347 | * struct read_format { |
348 | * { u64 value; |
349 | * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED |
350 | * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING |
351 | * { u64 id; } && PERF_FORMAT_ID |
352 | * { u64 lost; } && PERF_FORMAT_LOST |
353 | * } && !PERF_FORMAT_GROUP |
354 | * |
355 | * { u64 nr; |
356 | * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED |
357 | * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING |
358 | * { u64 value; |
359 | * { u64 id; } && PERF_FORMAT_ID |
360 | * { u64 lost; } && PERF_FORMAT_LOST |
361 | * } cntr[nr]; |
362 | * } && PERF_FORMAT_GROUP |
363 | * }; |
364 | */ |
365 | enum perf_event_read_format { |
366 | PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, |
367 | PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, |
368 | PERF_FORMAT_ID = 1U << 2, |
369 | PERF_FORMAT_GROUP = 1U << 3, |
370 | PERF_FORMAT_LOST = 1U << 4, |
371 | |
372 | PERF_FORMAT_MAX = 1U << 5, /* non-ABI */ |
373 | }; |
374 | |
375 | #define PERF_ATTR_SIZE_VER0 64 /* Size of first published 'struct perf_event_attr' */ |
376 | #define PERF_ATTR_SIZE_VER1 72 /* Add: config2 */ |
377 | #define PERF_ATTR_SIZE_VER2 80 /* Add: branch_sample_type */ |
378 | #define PERF_ATTR_SIZE_VER3 96 /* Add: sample_regs_user */ |
379 | /* Add: sample_stack_user */ |
380 | #define PERF_ATTR_SIZE_VER4 104 /* Add: sample_regs_intr */ |
381 | #define PERF_ATTR_SIZE_VER5 112 /* Add: aux_watermark */ |
382 | #define PERF_ATTR_SIZE_VER6 120 /* Add: aux_sample_size */ |
383 | #define PERF_ATTR_SIZE_VER7 128 /* Add: sig_data */ |
384 | #define PERF_ATTR_SIZE_VER8 136 /* Add: config3 */ |
385 | |
386 | /* |
387 | * 'struct perf_event_attr' contains various attributes that define |
388 | * a performance event - most of them hardware related configuration |
389 | * details, but also a lot of behavioral switches and values implemented |
390 | * by the kernel. |
391 | */ |
392 | struct perf_event_attr { |
393 | |
394 | /* |
395 | * Major type: hardware/software/tracepoint/etc. |
396 | */ |
397 | __u32 type; |
398 | |
399 | /* |
400 | * Size of the attr structure, for forward/backwards compatibility. |
401 | */ |
402 | __u32 size; |
403 | |
404 | /* |
405 | * Type specific configuration information. |
406 | */ |
407 | __u64 config; |
408 | |
409 | union { |
410 | __u64 sample_period; |
411 | __u64 sample_freq; |
412 | }; |
413 | |
414 | __u64 sample_type; |
415 | __u64 read_format; |
416 | |
417 | __u64 disabled : 1, /* off by default */ |
418 | inherit : 1, /* children inherit it */ |
419 | pinned : 1, /* must always be on PMU */ |
420 | exclusive : 1, /* only group on PMU */ |
421 | exclude_user : 1, /* don't count user */ |
422 | exclude_kernel : 1, /* ditto kernel */ |
423 | exclude_hv : 1, /* ditto hypervisor */ |
424 | exclude_idle : 1, /* don't count when idle */ |
425 | mmap : 1, /* include mmap data */ |
426 | comm : 1, /* include comm data */ |
427 | freq : 1, /* use freq, not period */ |
428 | inherit_stat : 1, /* per task counts */ |
429 | enable_on_exec : 1, /* next exec enables */ |
430 | task : 1, /* trace fork/exit */ |
431 | watermark : 1, /* wakeup_watermark */ |
432 | /* |
433 | * precise_ip: |
434 | * |
435 | * 0 - SAMPLE_IP can have arbitrary skid |
436 | * 1 - SAMPLE_IP must have constant skid |
437 | * 2 - SAMPLE_IP requested to have 0 skid |
438 | * 3 - SAMPLE_IP must have 0 skid |
439 | * |
440 | * See also PERF_RECORD_MISC_EXACT_IP |
441 | */ |
442 | precise_ip : 2, /* skid constraint */ |
443 | mmap_data : 1, /* non-exec mmap data */ |
444 | sample_id_all : 1, /* sample_type all events */ |
445 | |
446 | exclude_host : 1, /* don't count in host */ |
447 | exclude_guest : 1, /* don't count in guest */ |
448 | |
449 | exclude_callchain_kernel : 1, /* exclude kernel callchains */ |
450 | exclude_callchain_user : 1, /* exclude user callchains */ |
451 | mmap2 : 1, /* include mmap with inode data */ |
452 | comm_exec : 1, /* flag comm events that are due to an exec */ |
453 | use_clockid : 1, /* use @clockid for time fields */ |
454 | context_switch : 1, /* context switch data */ |
455 | write_backward : 1, /* write ring buffer from end to beginning */ |
456 | namespaces : 1, /* include namespaces data */ |
457 | ksymbol : 1, /* include ksymbol events */ |
458 | bpf_event : 1, /* include BPF events */ |
459 | aux_output : 1, /* generate AUX records instead of events */ |
460 | cgroup : 1, /* include cgroup events */ |
461 | text_poke : 1, /* include text poke events */ |
462 | build_id : 1, /* use build ID in mmap2 events */ |
463 | inherit_thread : 1, /* children only inherit if cloned with CLONE_THREAD */ |
464 | remove_on_exec : 1, /* event is removed from task on exec */ |
465 | sigtrap : 1, /* send synchronous SIGTRAP on event */ |
466 | __reserved_1 : 26; |
467 | |
468 | union { |
469 | __u32 wakeup_events; /* wake up every n events */ |
470 | __u32 wakeup_watermark; /* bytes before wakeup */ |
471 | }; |
472 | |
473 | __u32 bp_type; |
474 | union { |
475 | __u64 bp_addr; |
476 | __u64 kprobe_func; /* for perf_kprobe */ |
477 | __u64 uprobe_path; /* for perf_uprobe */ |
478 | __u64 config1; /* extension of config */ |
479 | }; |
480 | union { |
481 | __u64 bp_len; |
482 | __u64 kprobe_addr; /* when kprobe_func == NULL */ |
483 | __u64 probe_offset; /* for perf_[k,u]probe */ |
484 | __u64 config2; /* extension of config1 */ |
485 | }; |
486 | __u64 branch_sample_type; /* enum perf_branch_sample_type */ |
487 | |
488 | /* |
489 | * Defines set of user regs to dump on samples. |
490 | * See asm/perf_regs.h for details. |
491 | */ |
492 | __u64 sample_regs_user; |
493 | |
494 | /* |
495 | * Defines size of the user stack to dump on samples. |
496 | */ |
497 | __u32 sample_stack_user; |
498 | |
499 | __s32 clockid; |
500 | /* |
501 | * Defines set of regs to dump for each sample |
502 | * state captured on: |
503 | * - precise = 0: PMU interrupt |
504 | * - precise > 0: sampled instruction |
505 | * |
506 | * See asm/perf_regs.h for details. |
507 | */ |
508 | __u64 sample_regs_intr; |
509 | |
510 | /* |
511 | * Wakeup watermark for AUX area |
512 | */ |
513 | __u32 aux_watermark; |
514 | |
515 | /* |
516 | * Max number of frame pointers in a callchain, should be |
517 | * lower than /proc/sys/kernel/perf_event_max_stack. |
518 | * |
519 | * Max number of entries of branch stack should be lower |
520 | * than the hardware limit. |
521 | */ |
522 | __u16 sample_max_stack; |
523 | |
524 | __u16 __reserved_2; |
525 | __u32 aux_sample_size; |
526 | |
527 | union { |
528 | __u32 aux_action; |
529 | struct { |
530 | __u32 aux_start_paused : 1, /* start AUX area tracing paused */ |
531 | aux_pause : 1, /* on overflow, pause AUX area tracing */ |
532 | aux_resume : 1, /* on overflow, resume AUX area tracing */ |
533 | __reserved_3 : 29; |
534 | }; |
535 | }; |
536 | |
537 | /* |
538 | * User provided data if sigtrap=1, passed back to user via |
539 | * siginfo_t::si_perf_data, e.g. to permit user to identify the event. |
540 | * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be |
541 | * truncated accordingly on 32 bit architectures. |
542 | */ |
543 | __u64 sig_data; |
544 | |
545 | __u64 config3; /* extension of config2 */ |
546 | }; |
547 | |
548 | /* |
549 | * Structure used by below PERF_EVENT_IOC_QUERY_BPF command |
550 | * to query BPF programs attached to the same perf tracepoint |
551 | * as the given perf event. |
552 | */ |
553 | struct perf_event_query_bpf { |
554 | /* |
555 | * The below ids array length |
556 | */ |
557 | __u32 ids_len; |
558 | /* |
559 | * Set by the kernel to indicate the number of |
560 | * available programs |
561 | */ |
562 | __u32 prog_cnt; |
563 | /* |
564 | * User provided buffer to store program ids |
565 | */ |
566 | __u32 ids[]; |
567 | }; |
568 | |
569 | /* |
570 | * Ioctls that can be done on a perf event fd: |
571 | */ |
572 | #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) |
573 | #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) |
574 | #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) |
575 | #define PERF_EVENT_IOC_RESET _IO ('$', 3) |
576 | #define PERF_EVENT_IOC_PERIOD _IOW ('$', 4, __u64) |
577 | #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) |
578 | #define PERF_EVENT_IOC_SET_FILTER _IOW ('$', 6, char *) |
579 | #define PERF_EVENT_IOC_ID _IOR ('$', 7, __u64 *) |
580 | #define PERF_EVENT_IOC_SET_BPF _IOW ('$', 8, __u32) |
581 | #define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW ('$', 9, __u32) |
582 | #define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *) |
583 | #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW ('$', 11, struct perf_event_attr *) |
584 | |
585 | enum perf_event_ioc_flags { |
586 | PERF_IOC_FLAG_GROUP = 1U << 0, |
587 | }; |
588 | |
589 | /* |
590 | * Structure of the page that can be mapped via mmap |
591 | */ |
592 | struct perf_event_mmap_page { |
593 | __u32 version; /* version number of this structure */ |
594 | __u32 compat_version; /* lowest version this is compat with */ |
595 | |
596 | /* |
597 | * Bits needed to read the HW events in user-space. |
598 | * |
599 | * u32 seq, time_mult, time_shift, index, width; |
600 | * u64 count, enabled, running; |
601 | * u64 cyc, time_offset; |
602 | * s64 pmc = 0; |
603 | * |
604 | * do { |
605 | * seq = pc->lock; |
606 | * barrier() |
607 | * |
608 | * enabled = pc->time_enabled; |
609 | * running = pc->time_running; |
610 | * |
611 | * if (pc->cap_usr_time && enabled != running) { |
612 | * cyc = rdtsc(); |
613 | * time_offset = pc->time_offset; |
614 | * time_mult = pc->time_mult; |
615 | * time_shift = pc->time_shift; |
616 | * } |
617 | * |
618 | * index = pc->index; |
619 | * count = pc->offset; |
620 | * if (pc->cap_user_rdpmc && index) { |
621 | * width = pc->pmc_width; |
622 | * pmc = rdpmc(index - 1); |
623 | * } |
624 | * |
625 | * barrier(); |
626 | * } while (pc->lock != seq); |
627 | * |
628 | * NOTE: for obvious reason this only works on self-monitoring |
629 | * processes. |
630 | */ |
631 | __u32 lock; /* seqlock for synchronization */ |
632 | __u32 index; /* hardware event identifier */ |
633 | __s64 offset; /* add to hardware event value */ |
634 | __u64 time_enabled; /* time event active */ |
635 | __u64 time_running; /* time event on CPU */ |
636 | union { |
637 | __u64 capabilities; |
638 | struct { |
639 | __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */ |
640 | cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ |
641 | |
642 | cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ |
643 | cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */ |
644 | cap_user_time_zero : 1, /* The time_zero field is used */ |
645 | cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */ |
646 | cap_____res : 58; |
647 | }; |
648 | }; |
649 | |
650 | /* |
651 | * If cap_user_rdpmc this field provides the bit-width of the value |
652 | * read using the rdpmc() or equivalent instruction. This can be used |
653 | * to sign extend the result like: |
654 | * |
655 | * pmc <<= 64 - width; |
656 | * pmc >>= 64 - width; // signed shift right |
657 | * count += pmc; |
658 | */ |
659 | __u16 pmc_width; |
660 | |
661 | /* |
662 | * If cap_usr_time the below fields can be used to compute the time |
663 | * delta since time_enabled (in ns) using RDTSC or similar. |
664 | * |
665 | * u64 quot, rem; |
666 | * u64 delta; |
667 | * |
668 | * quot = (cyc >> time_shift); |
669 | * rem = cyc & (((u64)1 << time_shift) - 1); |
670 | * delta = time_offset + quot * time_mult + |
671 | * ((rem * time_mult) >> time_shift); |
672 | * |
673 | * Where time_offset,time_mult,time_shift and cyc are read in the |
674 | * seqcount loop described above. This delta can then be added to |
675 | * enabled and possible running (if index), improving the scaling: |
676 | * |
677 | * enabled += delta; |
678 | * if (index) |
679 | * running += delta; |
680 | * |
681 | * quot = count / running; |
682 | * rem = count % running; |
683 | * count = quot * enabled + (rem * enabled) / running; |
684 | */ |
685 | __u16 time_shift; |
686 | __u32 time_mult; |
687 | __u64 time_offset; |
688 | /* |
689 | * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated |
690 | * from sample timestamps. |
691 | * |
692 | * time = timestamp - time_zero; |
693 | * quot = time / time_mult; |
694 | * rem = time % time_mult; |
695 | * cyc = (quot << time_shift) + (rem << time_shift) / time_mult; |
696 | * |
697 | * And vice versa: |
698 | * |
699 | * quot = cyc >> time_shift; |
700 | * rem = cyc & (((u64)1 << time_shift) - 1); |
701 | * timestamp = time_zero + quot * time_mult + |
702 | * ((rem * time_mult) >> time_shift); |
703 | */ |
704 | __u64 time_zero; |
705 | |
706 | __u32 size; /* Header size up to __reserved[] fields. */ |
707 | __u32 __reserved_1; |
708 | |
709 | /* |
710 | * If cap_usr_time_short, the hardware clock is less than 64bit wide |
711 | * and we must compute the 'cyc' value, as used by cap_usr_time, as: |
712 | * |
713 | * cyc = time_cycles + ((cyc - time_cycles) & time_mask) |
714 | * |
715 | * NOTE: this form is explicitly chosen such that cap_usr_time_short |
716 | * is a correction on top of cap_usr_time, and code that doesn't |
717 | * know about cap_usr_time_short still works under the assumption |
718 | * the counter doesn't wrap. |
719 | */ |
720 | __u64 time_cycles; |
721 | __u64 time_mask; |
722 | |
723 | /* |
724 | * Hole for extension of the self monitor capabilities |
725 | */ |
726 | |
727 | __u8 __reserved[116*8]; /* align to 1k. */ |
728 | |
729 | /* |
730 | * Control data for the mmap() data buffer. |
731 | * |
732 | * User-space reading the @data_head value should issue an smp_rmb(), |
733 | * after reading this value. |
734 | * |
735 | * When the mapping is PROT_WRITE the @data_tail value should be |
736 | * written by user-space to reflect the last read data, after issuing |
737 | * an smp_mb() to separate the data read from the ->data_tail store. |
738 | * In this case the kernel will not over-write unread data. |
739 | * |
740 | * See perf_output_put_handle() for the data ordering. |
741 | * |
742 | * data_{offset,size} indicate the location and size of the perf record |
743 | * buffer within the mmapped area. |
744 | */ |
745 | __u64 data_head; /* head in the data section */ |
746 | __u64 data_tail; /* user-space written tail */ |
747 | __u64 data_offset; /* where the buffer starts */ |
748 | __u64 data_size; /* data buffer size */ |
749 | |
750 | /* |
751 | * AUX area is defined by aux_{offset,size} fields that should be set |
752 | * by the user-space, so that |
753 | * |
754 | * aux_offset >= data_offset + data_size |
755 | * |
756 | * prior to mmap()ing it. Size of the mmap()ed area should be aux_size. |
757 | * |
758 | * Ring buffer pointers aux_{head,tail} have the same semantics as |
759 | * data_{head,tail} and same ordering rules apply. |
760 | */ |
761 | __u64 aux_head; |
762 | __u64 aux_tail; |
763 | __u64 aux_offset; |
764 | __u64 aux_size; |
765 | }; |
766 | |
767 | /* |
768 | * The current state of perf_event_header::misc bits usage: |
769 | * ('|' used bit, '-' unused bit) |
770 | * |
771 | * 012 CDEF |
772 | * |||---------|||| |
773 | * |
774 | * Where: |
775 | * 0-2 CPUMODE_MASK |
776 | * |
777 | * C PROC_MAP_PARSE_TIMEOUT |
778 | * D MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT |
779 | * E MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT |
780 | * F (reserved) |
781 | */ |
782 | |
783 | #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) |
784 | #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) |
785 | #define PERF_RECORD_MISC_KERNEL (1 << 0) |
786 | #define PERF_RECORD_MISC_USER (2 << 0) |
787 | #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) |
788 | #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) |
789 | #define PERF_RECORD_MISC_GUEST_USER (5 << 0) |
790 | |
791 | /* |
792 | * Indicates that /proc/PID/maps parsing are truncated by time out. |
793 | */ |
794 | #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12) |
795 | /* |
796 | * Following PERF_RECORD_MISC_* are used on different |
797 | * events, so can reuse the same bit position: |
798 | * |
799 | * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events |
800 | * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event |
801 | * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal) |
802 | * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events |
803 | */ |
804 | #define PERF_RECORD_MISC_MMAP_DATA (1 << 13) |
805 | #define PERF_RECORD_MISC_COMM_EXEC (1 << 13) |
806 | #define PERF_RECORD_MISC_FORK_EXEC (1 << 13) |
807 | #define PERF_RECORD_MISC_SWITCH_OUT (1 << 13) |
808 | /* |
809 | * These PERF_RECORD_MISC_* flags below are safely reused |
810 | * for the following events: |
811 | * |
812 | * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events |
813 | * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events |
814 | * PERF_RECORD_MISC_MMAP_BUILD_ID - PERF_RECORD_MMAP2 event |
815 | * |
816 | * |
817 | * PERF_RECORD_MISC_EXACT_IP: |
818 | * Indicates that the content of PERF_SAMPLE_IP points to |
819 | * the actual instruction that triggered the event. See also |
820 | * perf_event_attr::precise_ip. |
821 | * |
822 | * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT: |
823 | * Indicates that thread was preempted in TASK_RUNNING state. |
824 | * |
825 | * PERF_RECORD_MISC_MMAP_BUILD_ID: |
826 | * Indicates that mmap2 event carries build ID data. |
827 | */ |
828 | #define PERF_RECORD_MISC_EXACT_IP (1 << 14) |
829 | #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14) |
830 | #define PERF_RECORD_MISC_MMAP_BUILD_ID (1 << 14) |
831 | /* |
832 | * Reserve the last bit to indicate some extended misc field |
833 | */ |
834 | #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) |
835 | |
836 | struct { |
837 | __u32 ; |
838 | __u16 ; |
839 | __u16 ; |
840 | }; |
841 | |
842 | struct perf_ns_link_info { |
843 | __u64 dev; |
844 | __u64 ino; |
845 | }; |
846 | |
847 | enum { |
848 | NET_NS_INDEX = 0, |
849 | UTS_NS_INDEX = 1, |
850 | IPC_NS_INDEX = 2, |
851 | PID_NS_INDEX = 3, |
852 | USER_NS_INDEX = 4, |
853 | MNT_NS_INDEX = 5, |
854 | CGROUP_NS_INDEX = 6, |
855 | |
856 | NR_NAMESPACES, /* number of available namespaces */ |
857 | }; |
858 | |
859 | enum perf_event_type { |
860 | |
861 | /* |
862 | * If perf_event_attr.sample_id_all is set then all event types will |
863 | * have the sample_type selected fields related to where/when |
864 | * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU, |
865 | * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed |
866 | * just after the perf_event_header and the fields already present for |
867 | * the existing fields, i.e. at the end of the payload. That way a newer |
868 | * perf.data file will be supported by older perf tools, with these new |
869 | * optional fields being ignored. |
870 | * |
871 | * struct sample_id { |
872 | * { u32 pid, tid; } && PERF_SAMPLE_TID |
873 | * { u64 time; } && PERF_SAMPLE_TIME |
874 | * { u64 id; } && PERF_SAMPLE_ID |
875 | * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID |
876 | * { u32 cpu, res; } && PERF_SAMPLE_CPU |
877 | * { u64 id; } && PERF_SAMPLE_IDENTIFIER |
878 | * } && perf_event_attr::sample_id_all |
879 | * |
880 | * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The |
881 | * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed |
882 | * relative to header.size. |
883 | */ |
884 | |
885 | /* |
886 | * The MMAP events record the PROT_EXEC mappings so that we can |
887 | * correlate user-space IPs to code. They have the following structure: |
888 | * |
889 | * struct { |
890 | * struct perf_event_header header; |
891 | * |
892 | * u32 pid, tid; |
893 | * u64 addr; |
894 | * u64 len; |
895 | * u64 pgoff; |
896 | * char filename[]; |
897 | * struct sample_id sample_id; |
898 | * }; |
899 | */ |
900 | PERF_RECORD_MMAP = 1, |
901 | |
902 | /* |
903 | * struct { |
904 | * struct perf_event_header header; |
905 | * u64 id; |
906 | * u64 lost; |
907 | * struct sample_id sample_id; |
908 | * }; |
909 | */ |
910 | PERF_RECORD_LOST = 2, |
911 | |
912 | /* |
913 | * struct { |
914 | * struct perf_event_header header; |
915 | * |
916 | * u32 pid, tid; |
917 | * char comm[]; |
918 | * struct sample_id sample_id; |
919 | * }; |
920 | */ |
921 | PERF_RECORD_COMM = 3, |
922 | |
923 | /* |
924 | * struct { |
925 | * struct perf_event_header header; |
926 | * u32 pid, ppid; |
927 | * u32 tid, ptid; |
928 | * u64 time; |
929 | * struct sample_id sample_id; |
930 | * }; |
931 | */ |
932 | PERF_RECORD_EXIT = 4, |
933 | |
934 | /* |
935 | * struct { |
936 | * struct perf_event_header header; |
937 | * u64 time; |
938 | * u64 id; |
939 | * u64 stream_id; |
940 | * struct sample_id sample_id; |
941 | * }; |
942 | */ |
943 | PERF_RECORD_THROTTLE = 5, |
944 | PERF_RECORD_UNTHROTTLE = 6, |
945 | |
946 | /* |
947 | * struct { |
948 | * struct perf_event_header header; |
949 | * u32 pid, ppid; |
950 | * u32 tid, ptid; |
951 | * u64 time; |
952 | * struct sample_id sample_id; |
953 | * }; |
954 | */ |
955 | PERF_RECORD_FORK = 7, |
956 | |
957 | /* |
958 | * struct { |
959 | * struct perf_event_header header; |
960 | * u32 pid, tid; |
961 | * |
962 | * struct read_format values; |
963 | * struct sample_id sample_id; |
964 | * }; |
965 | */ |
966 | PERF_RECORD_READ = 8, |
967 | |
968 | /* |
969 | * struct { |
970 | * struct perf_event_header header; |
971 | * |
972 | * # |
973 | * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. |
974 | * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position |
975 | * # is fixed relative to header. |
976 | * # |
977 | * |
978 | * { u64 id; } && PERF_SAMPLE_IDENTIFIER |
979 | * { u64 ip; } && PERF_SAMPLE_IP |
980 | * { u32 pid, tid; } && PERF_SAMPLE_TID |
981 | * { u64 time; } && PERF_SAMPLE_TIME |
982 | * { u64 addr; } && PERF_SAMPLE_ADDR |
983 | * { u64 id; } && PERF_SAMPLE_ID |
984 | * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID |
985 | * { u32 cpu, res; } && PERF_SAMPLE_CPU |
986 | * { u64 period; } && PERF_SAMPLE_PERIOD |
987 | * |
988 | * { struct read_format values; } && PERF_SAMPLE_READ |
989 | * |
990 | * { u64 nr, |
991 | * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN |
992 | * |
993 | * # |
994 | * # The RAW record below is opaque data wrt the ABI |
995 | * # |
996 | * # That is, the ABI doesn't make any promises wrt to |
997 | * # the stability of its content, it may vary depending |
998 | * # on event, hardware, kernel version and phase of |
999 | * # the moon. |
1000 | * # |
1001 | * # In other words, PERF_SAMPLE_RAW contents are not an ABI. |
1002 | * # |
1003 | * |
1004 | * { u32 size; |
1005 | * char data[size];}&& PERF_SAMPLE_RAW |
1006 | * |
1007 | * { u64 nr; |
1008 | * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX |
1009 | * { u64 from, to, flags } lbr[nr]; |
1010 | * # |
1011 | * # The format of the counters is decided by the |
1012 | * # "branch_counter_nr" and "branch_counter_width", |
1013 | * # which are defined in the ABI. |
1014 | * # |
1015 | * { u64 counters; } cntr[nr] && PERF_SAMPLE_BRANCH_COUNTERS |
1016 | * } && PERF_SAMPLE_BRANCH_STACK |
1017 | * |
1018 | * { u64 abi; # enum perf_sample_regs_abi |
1019 | * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER |
1020 | * |
1021 | * { u64 size; |
1022 | * char data[size]; |
1023 | * u64 dyn_size; } && PERF_SAMPLE_STACK_USER |
1024 | * |
1025 | * { union perf_sample_weight |
1026 | * { |
1027 | * u64 full; && PERF_SAMPLE_WEIGHT |
1028 | * #if defined(__LITTLE_ENDIAN_BITFIELD) |
1029 | * struct { |
1030 | * u32 var1_dw; |
1031 | * u16 var2_w; |
1032 | * u16 var3_w; |
1033 | * } && PERF_SAMPLE_WEIGHT_STRUCT |
1034 | * #elif defined(__BIG_ENDIAN_BITFIELD) |
1035 | * struct { |
1036 | * u16 var3_w; |
1037 | * u16 var2_w; |
1038 | * u32 var1_dw; |
1039 | * } && PERF_SAMPLE_WEIGHT_STRUCT |
1040 | * #endif |
1041 | * } |
1042 | * } |
1043 | * { u64 data_src; } && PERF_SAMPLE_DATA_SRC |
1044 | * { u64 transaction; } && PERF_SAMPLE_TRANSACTION |
1045 | * { u64 abi; # enum perf_sample_regs_abi |
1046 | * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR |
1047 | * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR |
1048 | * { u64 cgroup;} && PERF_SAMPLE_CGROUP |
1049 | * { u64 data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE |
1050 | * { u64 code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE |
1051 | * { u64 size; |
1052 | * char data[size]; } && PERF_SAMPLE_AUX |
1053 | * }; |
1054 | */ |
1055 | PERF_RECORD_SAMPLE = 9, |
1056 | |
1057 | /* |
1058 | * The MMAP2 records are an augmented version of MMAP, they add |
1059 | * maj, min, ino numbers to be used to uniquely identify each mapping |
1060 | * |
1061 | * struct { |
1062 | * struct perf_event_header header; |
1063 | * |
1064 | * u32 pid, tid; |
1065 | * u64 addr; |
1066 | * u64 len; |
1067 | * u64 pgoff; |
1068 | * union { |
1069 | * struct { |
1070 | * u32 maj; |
1071 | * u32 min; |
1072 | * u64 ino; |
1073 | * u64 ino_generation; |
1074 | * }; |
1075 | * struct { |
1076 | * u8 build_id_size; |
1077 | * u8 __reserved_1; |
1078 | * u16 __reserved_2; |
1079 | * u8 build_id[20]; |
1080 | * }; |
1081 | * }; |
1082 | * u32 prot, flags; |
1083 | * char filename[]; |
1084 | * struct sample_id sample_id; |
1085 | * }; |
1086 | */ |
1087 | PERF_RECORD_MMAP2 = 10, |
1088 | |
1089 | /* |
1090 | * Records that new data landed in the AUX buffer part. |
1091 | * |
1092 | * struct { |
1093 | * struct perf_event_header header; |
1094 | * |
1095 | * u64 aux_offset; |
1096 | * u64 aux_size; |
1097 | * u64 flags; |
1098 | * struct sample_id sample_id; |
1099 | * }; |
1100 | */ |
1101 | PERF_RECORD_AUX = 11, |
1102 | |
1103 | /* |
1104 | * Indicates that instruction trace has started |
1105 | * |
1106 | * struct { |
1107 | * struct perf_event_header header; |
1108 | * u32 pid; |
1109 | * u32 tid; |
1110 | * struct sample_id sample_id; |
1111 | * }; |
1112 | */ |
1113 | PERF_RECORD_ITRACE_START = 12, |
1114 | |
1115 | /* |
1116 | * Records the dropped/lost sample number. |
1117 | * |
1118 | * struct { |
1119 | * struct perf_event_header header; |
1120 | * |
1121 | * u64 lost; |
1122 | * struct sample_id sample_id; |
1123 | * }; |
1124 | */ |
1125 | PERF_RECORD_LOST_SAMPLES = 13, |
1126 | |
1127 | /* |
1128 | * Records a context switch in or out (flagged by |
1129 | * PERF_RECORD_MISC_SWITCH_OUT). See also |
1130 | * PERF_RECORD_SWITCH_CPU_WIDE. |
1131 | * |
1132 | * struct { |
1133 | * struct perf_event_header header; |
1134 | * struct sample_id sample_id; |
1135 | * }; |
1136 | */ |
1137 | PERF_RECORD_SWITCH = 14, |
1138 | |
1139 | /* |
1140 | * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and |
1141 | * next_prev_tid that are the next (switching out) or previous |
1142 | * (switching in) pid/tid. |
1143 | * |
1144 | * struct { |
1145 | * struct perf_event_header header; |
1146 | * u32 next_prev_pid; |
1147 | * u32 next_prev_tid; |
1148 | * struct sample_id sample_id; |
1149 | * }; |
1150 | */ |
1151 | PERF_RECORD_SWITCH_CPU_WIDE = 15, |
1152 | |
1153 | /* |
1154 | * struct { |
1155 | * struct perf_event_header header; |
1156 | * u32 pid; |
1157 | * u32 tid; |
1158 | * u64 nr_namespaces; |
1159 | * { u64 dev, inode; } [nr_namespaces]; |
1160 | * struct sample_id sample_id; |
1161 | * }; |
1162 | */ |
1163 | PERF_RECORD_NAMESPACES = 16, |
1164 | |
1165 | /* |
1166 | * Record ksymbol register/unregister events: |
1167 | * |
1168 | * struct { |
1169 | * struct perf_event_header header; |
1170 | * u64 addr; |
1171 | * u32 len; |
1172 | * u16 ksym_type; |
1173 | * u16 flags; |
1174 | * char name[]; |
1175 | * struct sample_id sample_id; |
1176 | * }; |
1177 | */ |
1178 | PERF_RECORD_KSYMBOL = 17, |
1179 | |
1180 | /* |
1181 | * Record BPF events: |
1182 | * enum perf_bpf_event_type { |
1183 | * PERF_BPF_EVENT_UNKNOWN = 0, |
1184 | * PERF_BPF_EVENT_PROG_LOAD = 1, |
1185 | * PERF_BPF_EVENT_PROG_UNLOAD = 2, |
1186 | * }; |
1187 | * |
1188 | * struct { |
1189 | * struct perf_event_header header; |
1190 | * u16 type; |
1191 | * u16 flags; |
1192 | * u32 id; |
1193 | * u8 tag[BPF_TAG_SIZE]; |
1194 | * struct sample_id sample_id; |
1195 | * }; |
1196 | */ |
1197 | PERF_RECORD_BPF_EVENT = 18, |
1198 | |
1199 | /* |
1200 | * struct { |
1201 | * struct perf_event_header header; |
1202 | * u64 id; |
1203 | * char path[]; |
1204 | * struct sample_id sample_id; |
1205 | * }; |
1206 | */ |
1207 | PERF_RECORD_CGROUP = 19, |
1208 | |
1209 | /* |
1210 | * Records changes to kernel text i.e. self-modified code. 'old_len' is |
1211 | * the number of old bytes, 'new_len' is the number of new bytes. Either |
1212 | * 'old_len' or 'new_len' may be zero to indicate, for example, the |
1213 | * addition or removal of a trampoline. 'bytes' contains the old bytes |
1214 | * followed immediately by the new bytes. |
1215 | * |
1216 | * struct { |
1217 | * struct perf_event_header header; |
1218 | * u64 addr; |
1219 | * u16 old_len; |
1220 | * u16 new_len; |
1221 | * u8 bytes[]; |
1222 | * struct sample_id sample_id; |
1223 | * }; |
1224 | */ |
1225 | PERF_RECORD_TEXT_POKE = 20, |
1226 | |
1227 | /* |
1228 | * Data written to the AUX area by hardware due to aux_output, may need |
1229 | * to be matched to the event by an architecture-specific hardware ID. |
1230 | * This records the hardware ID, but requires sample_id to provide the |
1231 | * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT |
1232 | * records from multiple events. |
1233 | * |
1234 | * struct { |
1235 | * struct perf_event_header header; |
1236 | * u64 hw_id; |
1237 | * struct sample_id sample_id; |
1238 | * }; |
1239 | */ |
1240 | PERF_RECORD_AUX_OUTPUT_HW_ID = 21, |
1241 | |
1242 | PERF_RECORD_MAX, /* non-ABI */ |
1243 | }; |
1244 | |
1245 | enum perf_record_ksymbol_type { |
1246 | PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0, |
1247 | PERF_RECORD_KSYMBOL_TYPE_BPF = 1, |
1248 | /* |
1249 | * Out of line code such as kprobe-replaced instructions or optimized |
1250 | * kprobes or ftrace trampolines. |
1251 | */ |
1252 | PERF_RECORD_KSYMBOL_TYPE_OOL = 2, |
1253 | PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */ |
1254 | }; |
1255 | |
1256 | #define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0) |
1257 | |
1258 | enum perf_bpf_event_type { |
1259 | PERF_BPF_EVENT_UNKNOWN = 0, |
1260 | PERF_BPF_EVENT_PROG_LOAD = 1, |
1261 | PERF_BPF_EVENT_PROG_UNLOAD = 2, |
1262 | PERF_BPF_EVENT_MAX, /* non-ABI */ |
1263 | }; |
1264 | |
1265 | #define PERF_MAX_STACK_DEPTH 127 |
1266 | #define PERF_MAX_CONTEXTS_PER_STACK 8 |
1267 | |
1268 | enum perf_callchain_context { |
1269 | PERF_CONTEXT_HV = (__u64)-32, |
1270 | PERF_CONTEXT_KERNEL = (__u64)-128, |
1271 | PERF_CONTEXT_USER = (__u64)-512, |
1272 | |
1273 | PERF_CONTEXT_GUEST = (__u64)-2048, |
1274 | PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, |
1275 | PERF_CONTEXT_GUEST_USER = (__u64)-2560, |
1276 | |
1277 | PERF_CONTEXT_MAX = (__u64)-4095, |
1278 | }; |
1279 | |
1280 | /** |
1281 | * PERF_RECORD_AUX::flags bits |
1282 | */ |
1283 | #define PERF_AUX_FLAG_TRUNCATED 0x0001 /* Record was truncated to fit */ |
1284 | #define PERF_AUX_FLAG_OVERWRITE 0x0002 /* Snapshot from overwrite mode */ |
1285 | #define PERF_AUX_FLAG_PARTIAL 0x0004 /* Record contains gaps */ |
1286 | #define PERF_AUX_FLAG_COLLISION 0x0008 /* Sample collided with another */ |
1287 | #define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK 0xff00 /* PMU specific trace format type */ |
1288 | |
1289 | /* CoreSight PMU AUX buffer formats */ |
1290 | #define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT 0x0000 /* Default for backward compatibility */ |
1291 | #define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW 0x0100 /* Raw format of the source */ |
1292 | |
1293 | #define PERF_FLAG_FD_NO_GROUP (1UL << 0) |
1294 | #define PERF_FLAG_FD_OUTPUT (1UL << 1) |
1295 | #define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup ID, per-CPU mode only */ |
1296 | #define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */ |
1297 | |
1298 | #if defined(__LITTLE_ENDIAN_BITFIELD) |
1299 | union perf_mem_data_src { |
1300 | __u64 val; |
1301 | struct { |
1302 | __u64 mem_op : 5, /* Type of opcode */ |
1303 | mem_lvl : 14, /* Memory hierarchy level */ |
1304 | mem_snoop : 5, /* Snoop mode */ |
1305 | mem_lock : 2, /* Lock instr */ |
1306 | mem_dtlb : 7, /* TLB access */ |
1307 | mem_lvl_num : 4, /* Memory hierarchy level number */ |
1308 | mem_remote : 1, /* Remote */ |
1309 | mem_snoopx : 2, /* Snoop mode, ext */ |
1310 | mem_blk : 3, /* Access blocked */ |
1311 | mem_hops : 3, /* Hop level */ |
1312 | mem_rsvd : 18; |
1313 | }; |
1314 | }; |
1315 | #elif defined(__BIG_ENDIAN_BITFIELD) |
1316 | union perf_mem_data_src { |
1317 | __u64 val; |
1318 | struct { |
1319 | __u64 mem_rsvd : 18, |
1320 | mem_hops : 3, /* Hop level */ |
1321 | mem_blk : 3, /* Access blocked */ |
1322 | mem_snoopx : 2, /* Snoop mode, ext */ |
1323 | mem_remote : 1, /* Remote */ |
1324 | mem_lvl_num : 4, /* Memory hierarchy level number */ |
1325 | mem_dtlb : 7, /* TLB access */ |
1326 | mem_lock : 2, /* Lock instr */ |
1327 | mem_snoop : 5, /* Snoop mode */ |
1328 | mem_lvl : 14, /* Memory hierarchy level */ |
1329 | mem_op : 5; /* Type of opcode */ |
1330 | }; |
1331 | }; |
1332 | #else |
1333 | # error "Unknown endianness" |
1334 | #endif |
1335 | |
1336 | /* Type of memory opcode: */ |
1337 | #define PERF_MEM_OP_NA 0x0001 /* Not available */ |
1338 | #define PERF_MEM_OP_LOAD 0x0002 /* Load instruction */ |
1339 | #define PERF_MEM_OP_STORE 0x0004 /* Store instruction */ |
1340 | #define PERF_MEM_OP_PFETCH 0x0008 /* Prefetch */ |
1341 | #define PERF_MEM_OP_EXEC 0x0010 /* Code (execution) */ |
1342 | #define PERF_MEM_OP_SHIFT 0 |
1343 | |
1344 | /* |
1345 | * The PERF_MEM_LVL_* namespace is being deprecated to some extent in |
1346 | * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields. |
1347 | * We support this namespace in order to not break defined ABIs. |
1348 | * |
1349 | * Memory hierarchy (memory level, hit or miss) |
1350 | */ |
1351 | #define PERF_MEM_LVL_NA 0x0001 /* Not available */ |
1352 | #define PERF_MEM_LVL_HIT 0x0002 /* Hit level */ |
1353 | #define PERF_MEM_LVL_MISS 0x0004 /* Miss level */ |
1354 | #define PERF_MEM_LVL_L1 0x0008 /* L1 */ |
1355 | #define PERF_MEM_LVL_LFB 0x0010 /* Line Fill Buffer */ |
1356 | #define PERF_MEM_LVL_L2 0x0020 /* L2 */ |
1357 | #define PERF_MEM_LVL_L3 0x0040 /* L3 */ |
1358 | #define PERF_MEM_LVL_LOC_RAM 0x0080 /* Local DRAM */ |
1359 | #define PERF_MEM_LVL_REM_RAM1 0x0100 /* Remote DRAM (1 hop) */ |
1360 | #define PERF_MEM_LVL_REM_RAM2 0x0200 /* Remote DRAM (2 hops) */ |
1361 | #define PERF_MEM_LVL_REM_CCE1 0x0400 /* Remote Cache (1 hop) */ |
1362 | #define PERF_MEM_LVL_REM_CCE2 0x0800 /* Remote Cache (2 hops) */ |
1363 | #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */ |
1364 | #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */ |
1365 | #define PERF_MEM_LVL_SHIFT 5 |
1366 | |
1367 | #define PERF_MEM_REMOTE_REMOTE 0x0001 /* Remote */ |
1368 | #define PERF_MEM_REMOTE_SHIFT 37 |
1369 | |
1370 | #define PERF_MEM_LVLNUM_L1 0x0001 /* L1 */ |
1371 | #define PERF_MEM_LVLNUM_L2 0x0002 /* L2 */ |
1372 | #define PERF_MEM_LVLNUM_L3 0x0003 /* L3 */ |
1373 | #define PERF_MEM_LVLNUM_L4 0x0004 /* L4 */ |
1374 | #define PERF_MEM_LVLNUM_L2_MHB 0x0005 /* L2 Miss Handling Buffer */ |
1375 | #define PERF_MEM_LVLNUM_MSC 0x0006 /* Memory-side Cache */ |
1376 | /* 0x007 available */ |
1377 | #define PERF_MEM_LVLNUM_UNC 0x0008 /* Uncached */ |
1378 | #define PERF_MEM_LVLNUM_CXL 0x0009 /* CXL */ |
1379 | #define PERF_MEM_LVLNUM_IO 0x000a /* I/O */ |
1380 | #define PERF_MEM_LVLNUM_ANY_CACHE 0x000b /* Any cache */ |
1381 | #define PERF_MEM_LVLNUM_LFB 0x000c /* LFB / L1 Miss Handling Buffer */ |
1382 | #define PERF_MEM_LVLNUM_RAM 0x000d /* RAM */ |
1383 | #define PERF_MEM_LVLNUM_PMEM 0x000e /* PMEM */ |
1384 | #define PERF_MEM_LVLNUM_NA 0x000f /* N/A */ |
1385 | |
1386 | #define PERF_MEM_LVLNUM_SHIFT 33 |
1387 | |
1388 | /* Snoop mode */ |
1389 | #define PERF_MEM_SNOOP_NA 0x0001 /* Not available */ |
1390 | #define PERF_MEM_SNOOP_NONE 0x0002 /* No snoop */ |
1391 | #define PERF_MEM_SNOOP_HIT 0x0004 /* Snoop hit */ |
1392 | #define PERF_MEM_SNOOP_MISS 0x0008 /* Snoop miss */ |
1393 | #define PERF_MEM_SNOOP_HITM 0x0010 /* Snoop hit modified */ |
1394 | #define PERF_MEM_SNOOP_SHIFT 19 |
1395 | |
1396 | #define PERF_MEM_SNOOPX_FWD 0x0001 /* Forward */ |
1397 | #define PERF_MEM_SNOOPX_PEER 0x0002 /* Transfer from peer */ |
1398 | #define PERF_MEM_SNOOPX_SHIFT 38 |
1399 | |
1400 | /* Locked instruction */ |
1401 | #define PERF_MEM_LOCK_NA 0x0001 /* Not available */ |
1402 | #define PERF_MEM_LOCK_LOCKED 0x0002 /* Locked transaction */ |
1403 | #define PERF_MEM_LOCK_SHIFT 24 |
1404 | |
1405 | /* TLB access */ |
1406 | #define PERF_MEM_TLB_NA 0x0001 /* Not available */ |
1407 | #define PERF_MEM_TLB_HIT 0x0002 /* Hit level */ |
1408 | #define PERF_MEM_TLB_MISS 0x0004 /* Miss level */ |
1409 | #define PERF_MEM_TLB_L1 0x0008 /* L1 */ |
1410 | #define PERF_MEM_TLB_L2 0x0010 /* L2 */ |
1411 | #define PERF_MEM_TLB_WK 0x0020 /* Hardware Walker*/ |
1412 | #define PERF_MEM_TLB_OS 0x0040 /* OS fault handler */ |
1413 | #define PERF_MEM_TLB_SHIFT 26 |
1414 | |
1415 | /* Access blocked */ |
1416 | #define PERF_MEM_BLK_NA 0x0001 /* Not available */ |
1417 | #define PERF_MEM_BLK_DATA 0x0002 /* Data could not be forwarded */ |
1418 | #define PERF_MEM_BLK_ADDR 0x0004 /* Address conflict */ |
1419 | #define PERF_MEM_BLK_SHIFT 40 |
1420 | |
1421 | /* Hop level */ |
1422 | #define PERF_MEM_HOPS_0 0x0001 /* Remote core, same node */ |
1423 | #define PERF_MEM_HOPS_1 0x0002 /* Remote node, same socket */ |
1424 | #define PERF_MEM_HOPS_2 0x0003 /* Remote socket, same board */ |
1425 | #define PERF_MEM_HOPS_3 0x0004 /* Remote board */ |
1426 | /* 5-7 available */ |
1427 | #define PERF_MEM_HOPS_SHIFT 43 |
1428 | |
1429 | #define PERF_MEM_S(a, s) \ |
1430 | (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT) |
1431 | |
1432 | /* |
1433 | * Layout of single taken branch records: |
1434 | * |
1435 | * from: source instruction (may not always be a branch insn) |
1436 | * to: branch target |
1437 | * mispred: branch target was mispredicted |
1438 | * predicted: branch target was predicted |
1439 | * |
1440 | * support for mispred, predicted is optional. In case it |
1441 | * is not supported mispred = predicted = 0. |
1442 | * |
1443 | * in_tx: running in a hardware transaction |
1444 | * abort: aborting a hardware transaction |
1445 | * cycles: cycles from last branch (or 0 if not supported) |
1446 | * type: branch type |
1447 | * spec: branch speculation info (or 0 if not supported) |
1448 | */ |
1449 | struct perf_branch_entry { |
1450 | __u64 from; |
1451 | __u64 to; |
1452 | __u64 mispred : 1, /* target mispredicted */ |
1453 | predicted : 1, /* target predicted */ |
1454 | in_tx : 1, /* in transaction */ |
1455 | abort : 1, /* transaction abort */ |
1456 | cycles : 16, /* cycle count to last branch */ |
1457 | type : 4, /* branch type */ |
1458 | spec : 2, /* branch speculation info */ |
1459 | new_type : 4, /* additional branch type */ |
1460 | priv : 3, /* privilege level */ |
1461 | reserved : 31; |
1462 | }; |
1463 | |
1464 | /* Size of used info bits in struct perf_branch_entry */ |
1465 | #define PERF_BRANCH_ENTRY_INFO_BITS_MAX 33 |
1466 | |
1467 | union perf_sample_weight { |
1468 | __u64 full; |
1469 | #if defined(__LITTLE_ENDIAN_BITFIELD) |
1470 | struct { |
1471 | __u32 var1_dw; |
1472 | __u16 var2_w; |
1473 | __u16 var3_w; |
1474 | }; |
1475 | #elif defined(__BIG_ENDIAN_BITFIELD) |
1476 | struct { |
1477 | __u16 var3_w; |
1478 | __u16 var2_w; |
1479 | __u32 var1_dw; |
1480 | }; |
1481 | #else |
1482 | # error "Unknown endianness" |
1483 | #endif |
1484 | }; |
1485 | |
1486 | #endif /* _UAPI_LINUX_PERF_EVENT_H */ |
1487 | |