1 | /* |
---|---|
2 | * Generic binary BCH encoding/decoding library |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 as published by |
6 | * the Free Software Foundation. |
7 | * |
8 | * This program is distributed in the hope that it will be useful, but WITHOUT |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
11 | * more details. |
12 | * |
13 | * You should have received a copy of the GNU General Public License along with |
14 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
15 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
16 | * |
17 | * Copyright © 2011 Parrot S.A. |
18 | * |
19 | * Author: Ivan Djelic <ivan.djelic@parrot.com> |
20 | * |
21 | * Description: |
22 | * |
23 | * This library provides runtime configurable encoding/decoding of binary |
24 | * Bose-Chaudhuri-Hocquenghem (BCH) codes. |
25 | * |
26 | * Call bch_init to get a pointer to a newly allocated bch_control structure for |
27 | * the given m (Galois field order), t (error correction capability) and |
28 | * (optional) primitive polynomial parameters. |
29 | * |
30 | * Call bch_encode to compute and store ecc parity bytes to a given buffer. |
31 | * Call bch_decode to detect and locate errors in received data. |
32 | * |
33 | * On systems supporting hw BCH features, intermediate results may be provided |
34 | * to bch_decode in order to skip certain steps. See bch_decode() documentation |
35 | * for details. |
36 | * |
37 | * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of |
38 | * parameters m and t; thus allowing extra compiler optimizations and providing |
39 | * better (up to 2x) encoding performance. Using this option makes sense when |
40 | * (m,t) are fixed and known in advance, e.g. when using BCH error correction |
41 | * on a particular NAND flash device. |
42 | * |
43 | * Algorithmic details: |
44 | * |
45 | * Encoding is performed by processing 32 input bits in parallel, using 4 |
46 | * remainder lookup tables. |
47 | * |
48 | * The final stage of decoding involves the following internal steps: |
49 | * a. Syndrome computation |
50 | * b. Error locator polynomial computation using Berlekamp-Massey algorithm |
51 | * c. Error locator root finding (by far the most expensive step) |
52 | * |
53 | * In this implementation, step c is not performed using the usual Chien search. |
54 | * Instead, an alternative approach described in [1] is used. It consists in |
55 | * factoring the error locator polynomial using the Berlekamp Trace algorithm |
56 | * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial |
57 | * solving techniques [2] are used. The resulting algorithm, called BTZ, yields |
58 | * much better performance than Chien search for usual (m,t) values (typically |
59 | * m >= 13, t < 32, see [1]). |
60 | * |
61 | * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields |
62 | * of characteristic 2, in: Western European Workshop on Research in Cryptology |
63 | * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. |
64 | * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over |
65 | * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. |
66 | */ |
67 | |
68 | #include <linux/kernel.h> |
69 | #include <linux/errno.h> |
70 | #include <linux/init.h> |
71 | #include <linux/module.h> |
72 | #include <linux/slab.h> |
73 | #include <linux/bitops.h> |
74 | #include <linux/bitrev.h> |
75 | #include <asm/byteorder.h> |
76 | #include <linux/bch.h> |
77 | |
78 | #if defined(CONFIG_BCH_CONST_PARAMS) |
79 | #define GF_M(_p) (CONFIG_BCH_CONST_M) |
80 | #define GF_T(_p) (CONFIG_BCH_CONST_T) |
81 | #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) |
82 | #define BCH_MAX_M (CONFIG_BCH_CONST_M) |
83 | #define BCH_MAX_T (CONFIG_BCH_CONST_T) |
84 | #else |
85 | #define GF_M(_p) ((_p)->m) |
86 | #define GF_T(_p) ((_p)->t) |
87 | #define GF_N(_p) ((_p)->n) |
88 | #define BCH_MAX_M 15 /* 2KB */ |
89 | #define BCH_MAX_T 64 /* 64 bit correction */ |
90 | #endif |
91 | |
92 | #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) |
93 | #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) |
94 | |
95 | #define BCH_ECC_MAX_WORDS DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32) |
96 | |
97 | #ifndef dbg |
98 | #define dbg(_fmt, args...) do {} while (0) |
99 | #endif |
100 | |
101 | /* |
102 | * represent a polynomial over GF(2^m) |
103 | */ |
104 | struct gf_poly { |
105 | unsigned int deg; /* polynomial degree */ |
106 | unsigned int c[]; /* polynomial terms */ |
107 | }; |
108 | |
109 | /* given its degree, compute a polynomial size in bytes */ |
110 | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) |
111 | |
112 | /* polynomial of degree 1 */ |
113 | struct gf_poly_deg1 { |
114 | struct gf_poly poly; |
115 | unsigned int c[2]; |
116 | }; |
117 | |
118 | static u8 swap_bits(struct bch_control *bch, u8 in) |
119 | { |
120 | if (!bch->swap_bits) |
121 | return in; |
122 | |
123 | return bitrev8(in); |
124 | } |
125 | |
126 | /* |
127 | * same as bch_encode(), but process input data one byte at a time |
128 | */ |
129 | static void bch_encode_unaligned(struct bch_control *bch, |
130 | const unsigned char *data, unsigned int len, |
131 | uint32_t *ecc) |
132 | { |
133 | int i; |
134 | const uint32_t *p; |
135 | const int l = BCH_ECC_WORDS(bch)-1; |
136 | |
137 | while (len--) { |
138 | u8 tmp = swap_bits(bch, in: *data++); |
139 | |
140 | p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff); |
141 | |
142 | for (i = 0; i < l; i++) |
143 | ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); |
144 | |
145 | ecc[l] = (ecc[l] << 8)^(*p); |
146 | } |
147 | } |
148 | |
149 | /* |
150 | * convert ecc bytes to aligned, zero-padded 32-bit ecc words |
151 | */ |
152 | static void load_ecc8(struct bch_control *bch, uint32_t *dst, |
153 | const uint8_t *src) |
154 | { |
155 | uint8_t pad[4] = {0, 0, 0, 0}; |
156 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; |
157 | |
158 | for (i = 0; i < nwords; i++, src += 4) |
159 | dst[i] = ((u32)swap_bits(bch, in: src[0]) << 24) | |
160 | ((u32)swap_bits(bch, in: src[1]) << 16) | |
161 | ((u32)swap_bits(bch, in: src[2]) << 8) | |
162 | swap_bits(bch, in: src[3]); |
163 | |
164 | memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); |
165 | dst[nwords] = ((u32)swap_bits(bch, in: pad[0]) << 24) | |
166 | ((u32)swap_bits(bch, in: pad[1]) << 16) | |
167 | ((u32)swap_bits(bch, in: pad[2]) << 8) | |
168 | swap_bits(bch, in: pad[3]); |
169 | } |
170 | |
171 | /* |
172 | * convert 32-bit ecc words to ecc bytes |
173 | */ |
174 | static void store_ecc8(struct bch_control *bch, uint8_t *dst, |
175 | const uint32_t *src) |
176 | { |
177 | uint8_t pad[4]; |
178 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; |
179 | |
180 | for (i = 0; i < nwords; i++) { |
181 | *dst++ = swap_bits(bch, in: src[i] >> 24); |
182 | *dst++ = swap_bits(bch, in: src[i] >> 16); |
183 | *dst++ = swap_bits(bch, in: src[i] >> 8); |
184 | *dst++ = swap_bits(bch, in: src[i]); |
185 | } |
186 | pad[0] = swap_bits(bch, in: src[nwords] >> 24); |
187 | pad[1] = swap_bits(bch, in: src[nwords] >> 16); |
188 | pad[2] = swap_bits(bch, in: src[nwords] >> 8); |
189 | pad[3] = swap_bits(bch, in: src[nwords]); |
190 | memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); |
191 | } |
192 | |
193 | /** |
194 | * bch_encode - calculate BCH ecc parity of data |
195 | * @bch: BCH control structure |
196 | * @data: data to encode |
197 | * @len: data length in bytes |
198 | * @ecc: ecc parity data, must be initialized by caller |
199 | * |
200 | * The @ecc parity array is used both as input and output parameter, in order to |
201 | * allow incremental computations. It should be of the size indicated by member |
202 | * @ecc_bytes of @bch, and should be initialized to 0 before the first call. |
203 | * |
204 | * The exact number of computed ecc parity bits is given by member @ecc_bits of |
205 | * @bch; it may be less than m*t for large values of t. |
206 | */ |
207 | void bch_encode(struct bch_control *bch, const uint8_t *data, |
208 | unsigned int len, uint8_t *ecc) |
209 | { |
210 | const unsigned int l = BCH_ECC_WORDS(bch)-1; |
211 | unsigned int i, mlen; |
212 | unsigned long m; |
213 | uint32_t w, r[BCH_ECC_MAX_WORDS]; |
214 | const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r); |
215 | const uint32_t * const tab0 = bch->mod8_tab; |
216 | const uint32_t * const tab1 = tab0 + 256*(l+1); |
217 | const uint32_t * const tab2 = tab1 + 256*(l+1); |
218 | const uint32_t * const tab3 = tab2 + 256*(l+1); |
219 | const uint32_t *pdata, *p0, *p1, *p2, *p3; |
220 | |
221 | if (WARN_ON(r_bytes > sizeof(r))) |
222 | return; |
223 | |
224 | if (ecc) { |
225 | /* load ecc parity bytes into internal 32-bit buffer */ |
226 | load_ecc8(bch, dst: bch->ecc_buf, src: ecc); |
227 | } else { |
228 | memset(bch->ecc_buf, 0, r_bytes); |
229 | } |
230 | |
231 | /* process first unaligned data bytes */ |
232 | m = ((unsigned long)data) & 3; |
233 | if (m) { |
234 | mlen = (len < (4-m)) ? len : 4-m; |
235 | bch_encode_unaligned(bch, data, len: mlen, ecc: bch->ecc_buf); |
236 | data += mlen; |
237 | len -= mlen; |
238 | } |
239 | |
240 | /* process 32-bit aligned data words */ |
241 | pdata = (uint32_t *)data; |
242 | mlen = len/4; |
243 | data += 4*mlen; |
244 | len -= 4*mlen; |
245 | memcpy(r, bch->ecc_buf, r_bytes); |
246 | |
247 | /* |
248 | * split each 32-bit word into 4 polynomials of weight 8 as follows: |
249 | * |
250 | * 31 ...24 23 ...16 15 ... 8 7 ... 0 |
251 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt |
252 | * tttttttt mod g = r0 (precomputed) |
253 | * zzzzzzzz 00000000 mod g = r1 (precomputed) |
254 | * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) |
255 | * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) |
256 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 |
257 | */ |
258 | while (mlen--) { |
259 | /* input data is read in big-endian format */ |
260 | w = cpu_to_be32(*pdata++); |
261 | if (bch->swap_bits) |
262 | w = (u32)swap_bits(bch, in: w) | |
263 | ((u32)swap_bits(bch, in: w >> 8) << 8) | |
264 | ((u32)swap_bits(bch, in: w >> 16) << 16) | |
265 | ((u32)swap_bits(bch, in: w >> 24) << 24); |
266 | w ^= r[0]; |
267 | p0 = tab0 + (l+1)*((w >> 0) & 0xff); |
268 | p1 = tab1 + (l+1)*((w >> 8) & 0xff); |
269 | p2 = tab2 + (l+1)*((w >> 16) & 0xff); |
270 | p3 = tab3 + (l+1)*((w >> 24) & 0xff); |
271 | |
272 | for (i = 0; i < l; i++) |
273 | r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; |
274 | |
275 | r[l] = p0[l]^p1[l]^p2[l]^p3[l]; |
276 | } |
277 | memcpy(bch->ecc_buf, r, r_bytes); |
278 | |
279 | /* process last unaligned bytes */ |
280 | if (len) |
281 | bch_encode_unaligned(bch, data, len, ecc: bch->ecc_buf); |
282 | |
283 | /* store ecc parity bytes into original parity buffer */ |
284 | if (ecc) |
285 | store_ecc8(bch, dst: ecc, src: bch->ecc_buf); |
286 | } |
287 | EXPORT_SYMBOL_GPL(bch_encode); |
288 | |
289 | static inline int modulo(struct bch_control *bch, unsigned int v) |
290 | { |
291 | const unsigned int n = GF_N(bch); |
292 | while (v >= n) { |
293 | v -= n; |
294 | v = (v & n) + (v >> GF_M(bch)); |
295 | } |
296 | return v; |
297 | } |
298 | |
299 | /* |
300 | * shorter and faster modulo function, only works when v < 2N. |
301 | */ |
302 | static inline int mod_s(struct bch_control *bch, unsigned int v) |
303 | { |
304 | const unsigned int n = GF_N(bch); |
305 | return (v < n) ? v : v-n; |
306 | } |
307 | |
308 | static inline int deg(unsigned int poly) |
309 | { |
310 | /* polynomial degree is the most-significant bit index */ |
311 | return fls(x: poly)-1; |
312 | } |
313 | |
314 | static inline int parity(unsigned int x) |
315 | { |
316 | /* |
317 | * public domain code snippet, lifted from |
318 | * http://www-graphics.stanford.edu/~seander/bithacks.html |
319 | */ |
320 | x ^= x >> 1; |
321 | x ^= x >> 2; |
322 | x = (x & 0x11111111U) * 0x11111111U; |
323 | return (x >> 28) & 1; |
324 | } |
325 | |
326 | /* Galois field basic operations: multiply, divide, inverse, etc. */ |
327 | |
328 | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, |
329 | unsigned int b) |
330 | { |
331 | return (a && b) ? bch->a_pow_tab[mod_s(bch, v: bch->a_log_tab[a]+ |
332 | bch->a_log_tab[b])] : 0; |
333 | } |
334 | |
335 | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) |
336 | { |
337 | return a ? bch->a_pow_tab[mod_s(bch, v: 2*bch->a_log_tab[a])] : 0; |
338 | } |
339 | |
340 | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, |
341 | unsigned int b) |
342 | { |
343 | return a ? bch->a_pow_tab[mod_s(bch, v: bch->a_log_tab[a]+ |
344 | GF_N(bch)-bch->a_log_tab[b])] : 0; |
345 | } |
346 | |
347 | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) |
348 | { |
349 | return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; |
350 | } |
351 | |
352 | static inline unsigned int a_pow(struct bch_control *bch, int i) |
353 | { |
354 | return bch->a_pow_tab[modulo(bch, v: i)]; |
355 | } |
356 | |
357 | static inline int a_log(struct bch_control *bch, unsigned int x) |
358 | { |
359 | return bch->a_log_tab[x]; |
360 | } |
361 | |
362 | static inline int a_ilog(struct bch_control *bch, unsigned int x) |
363 | { |
364 | return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); |
365 | } |
366 | |
367 | /* |
368 | * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t |
369 | */ |
370 | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, |
371 | unsigned int *syn) |
372 | { |
373 | int i, j, s; |
374 | unsigned int m; |
375 | uint32_t poly; |
376 | const int t = GF_T(bch); |
377 | |
378 | s = bch->ecc_bits; |
379 | |
380 | /* make sure extra bits in last ecc word are cleared */ |
381 | m = ((unsigned int)s) & 31; |
382 | if (m) |
383 | ecc[s/32] &= ~((1u << (32-m))-1); |
384 | memset(syn, 0, 2*t*sizeof(*syn)); |
385 | |
386 | /* compute v(a^j) for j=1 .. 2t-1 */ |
387 | do { |
388 | poly = *ecc++; |
389 | s -= 32; |
390 | while (poly) { |
391 | i = deg(poly); |
392 | for (j = 0; j < 2*t; j += 2) |
393 | syn[j] ^= a_pow(bch, i: (j+1)*(i+s)); |
394 | |
395 | poly ^= (1 << i); |
396 | } |
397 | } while (s > 0); |
398 | |
399 | /* v(a^(2j)) = v(a^j)^2 */ |
400 | for (j = 0; j < t; j++) |
401 | syn[2*j+1] = gf_sqr(bch, a: syn[j]); |
402 | } |
403 | |
404 | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) |
405 | { |
406 | memcpy(dst, src, GF_POLY_SZ(src->deg)); |
407 | } |
408 | |
409 | static int compute_error_locator_polynomial(struct bch_control *bch, |
410 | const unsigned int *syn) |
411 | { |
412 | const unsigned int t = GF_T(bch); |
413 | const unsigned int n = GF_N(bch); |
414 | unsigned int i, j, tmp, l, pd = 1, d = syn[0]; |
415 | struct gf_poly *elp = bch->elp; |
416 | struct gf_poly *pelp = bch->poly_2t[0]; |
417 | struct gf_poly *elp_copy = bch->poly_2t[1]; |
418 | int k, pp = -1; |
419 | |
420 | memset(pelp, 0, GF_POLY_SZ(2*t)); |
421 | memset(elp, 0, GF_POLY_SZ(2*t)); |
422 | |
423 | pelp->deg = 0; |
424 | pelp->c[0] = 1; |
425 | elp->deg = 0; |
426 | elp->c[0] = 1; |
427 | |
428 | /* use simplified binary Berlekamp-Massey algorithm */ |
429 | for (i = 0; (i < t) && (elp->deg <= t); i++) { |
430 | if (d) { |
431 | k = 2*i-pp; |
432 | gf_poly_copy(dst: elp_copy, src: elp); |
433 | /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ |
434 | tmp = a_log(bch, x: d)+n-a_log(bch, x: pd); |
435 | for (j = 0; j <= pelp->deg; j++) { |
436 | if (pelp->c[j]) { |
437 | l = a_log(bch, x: pelp->c[j]); |
438 | elp->c[j+k] ^= a_pow(bch, i: tmp+l); |
439 | } |
440 | } |
441 | /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ |
442 | tmp = pelp->deg+k; |
443 | if (tmp > elp->deg) { |
444 | elp->deg = tmp; |
445 | gf_poly_copy(dst: pelp, src: elp_copy); |
446 | pd = d; |
447 | pp = 2*i; |
448 | } |
449 | } |
450 | /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ |
451 | if (i < t-1) { |
452 | d = syn[2*i+2]; |
453 | for (j = 1; j <= elp->deg; j++) |
454 | d ^= gf_mul(bch, a: elp->c[j], b: syn[2*i+2-j]); |
455 | } |
456 | } |
457 | dbg("elp=%s\n", gf_poly_str(elp)); |
458 | return (elp->deg > t) ? -1 : (int)elp->deg; |
459 | } |
460 | |
461 | /* |
462 | * solve a m x m linear system in GF(2) with an expected number of solutions, |
463 | * and return the number of found solutions |
464 | */ |
465 | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, |
466 | unsigned int *sol, int nsol) |
467 | { |
468 | const int m = GF_M(bch); |
469 | unsigned int tmp, mask; |
470 | int rem, c, r, p, k, param[BCH_MAX_M]; |
471 | |
472 | k = 0; |
473 | mask = 1 << m; |
474 | |
475 | /* Gaussian elimination */ |
476 | for (c = 0; c < m; c++) { |
477 | rem = 0; |
478 | p = c-k; |
479 | /* find suitable row for elimination */ |
480 | for (r = p; r < m; r++) { |
481 | if (rows[r] & mask) { |
482 | if (r != p) { |
483 | tmp = rows[r]; |
484 | rows[r] = rows[p]; |
485 | rows[p] = tmp; |
486 | } |
487 | rem = r+1; |
488 | break; |
489 | } |
490 | } |
491 | if (rem) { |
492 | /* perform elimination on remaining rows */ |
493 | tmp = rows[p]; |
494 | for (r = rem; r < m; r++) { |
495 | if (rows[r] & mask) |
496 | rows[r] ^= tmp; |
497 | } |
498 | } else { |
499 | /* elimination not needed, store defective row index */ |
500 | param[k++] = c; |
501 | } |
502 | mask >>= 1; |
503 | } |
504 | /* rewrite system, inserting fake parameter rows */ |
505 | if (k > 0) { |
506 | p = k; |
507 | for (r = m-1; r >= 0; r--) { |
508 | if ((r > m-1-k) && rows[r]) |
509 | /* system has no solution */ |
510 | return 0; |
511 | |
512 | rows[r] = (p && (r == param[p-1])) ? |
513 | p--, 1u << (m-r) : rows[r-p]; |
514 | } |
515 | } |
516 | |
517 | if (nsol != (1 << k)) |
518 | /* unexpected number of solutions */ |
519 | return 0; |
520 | |
521 | for (p = 0; p < nsol; p++) { |
522 | /* set parameters for p-th solution */ |
523 | for (c = 0; c < k; c++) |
524 | rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); |
525 | |
526 | /* compute unique solution */ |
527 | tmp = 0; |
528 | for (r = m-1; r >= 0; r--) { |
529 | mask = rows[r] & (tmp|1); |
530 | tmp |= parity(x: mask) << (m-r); |
531 | } |
532 | sol[p] = tmp >> 1; |
533 | } |
534 | return nsol; |
535 | } |
536 | |
537 | /* |
538 | * this function builds and solves a linear system for finding roots of a degree |
539 | * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). |
540 | */ |
541 | static int find_affine4_roots(struct bch_control *bch, unsigned int a, |
542 | unsigned int b, unsigned int c, |
543 | unsigned int *roots) |
544 | { |
545 | int i, j, k; |
546 | const int m = GF_M(bch); |
547 | unsigned int mask = 0xff, t, rows[16] = {0,}; |
548 | |
549 | j = a_log(bch, x: b); |
550 | k = a_log(bch, x: a); |
551 | rows[0] = c; |
552 | |
553 | /* build linear system to solve X^4+aX^2+bX+c = 0 */ |
554 | for (i = 0; i < m; i++) { |
555 | rows[i+1] = bch->a_pow_tab[4*i]^ |
556 | (a ? bch->a_pow_tab[mod_s(bch, v: k)] : 0)^ |
557 | (b ? bch->a_pow_tab[mod_s(bch, v: j)] : 0); |
558 | j++; |
559 | k += 2; |
560 | } |
561 | /* |
562 | * transpose 16x16 matrix before passing it to linear solver |
563 | * warning: this code assumes m < 16 |
564 | */ |
565 | for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { |
566 | for (k = 0; k < 16; k = (k+j+1) & ~j) { |
567 | t = ((rows[k] >> j)^rows[k+j]) & mask; |
568 | rows[k] ^= (t << j); |
569 | rows[k+j] ^= t; |
570 | } |
571 | } |
572 | return solve_linear_system(bch, rows, sol: roots, nsol: 4); |
573 | } |
574 | |
575 | /* |
576 | * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) |
577 | */ |
578 | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, |
579 | unsigned int *roots) |
580 | { |
581 | int n = 0; |
582 | |
583 | if (poly->c[0]) |
584 | /* poly[X] = bX+c with c!=0, root=c/b */ |
585 | roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ |
586 | bch->a_log_tab[poly->c[1]]); |
587 | return n; |
588 | } |
589 | |
590 | /* |
591 | * compute roots of a degree 2 polynomial over GF(2^m) |
592 | */ |
593 | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, |
594 | unsigned int *roots) |
595 | { |
596 | int n = 0, i, l0, l1, l2; |
597 | unsigned int u, v, r; |
598 | |
599 | if (poly->c[0] && poly->c[1]) { |
600 | |
601 | l0 = bch->a_log_tab[poly->c[0]]; |
602 | l1 = bch->a_log_tab[poly->c[1]]; |
603 | l2 = bch->a_log_tab[poly->c[2]]; |
604 | |
605 | /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ |
606 | u = a_pow(bch, i: l0+l2+2*(GF_N(bch)-l1)); |
607 | /* |
608 | * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): |
609 | * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = |
610 | * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) |
611 | * i.e. r and r+1 are roots iff Tr(u)=0 |
612 | */ |
613 | r = 0; |
614 | v = u; |
615 | while (v) { |
616 | i = deg(poly: v); |
617 | r ^= bch->xi_tab[i]; |
618 | v ^= (1 << i); |
619 | } |
620 | /* verify root */ |
621 | if ((gf_sqr(bch, a: r)^r) == u) { |
622 | /* reverse z=a/bX transformation and compute log(1/r) */ |
623 | roots[n++] = modulo(bch, v: 2*GF_N(bch)-l1- |
624 | bch->a_log_tab[r]+l2); |
625 | roots[n++] = modulo(bch, v: 2*GF_N(bch)-l1- |
626 | bch->a_log_tab[r^1]+l2); |
627 | } |
628 | } |
629 | return n; |
630 | } |
631 | |
632 | /* |
633 | * compute roots of a degree 3 polynomial over GF(2^m) |
634 | */ |
635 | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, |
636 | unsigned int *roots) |
637 | { |
638 | int i, n = 0; |
639 | unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; |
640 | |
641 | if (poly->c[0]) { |
642 | /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ |
643 | e3 = poly->c[3]; |
644 | c2 = gf_div(bch, a: poly->c[0], b: e3); |
645 | b2 = gf_div(bch, a: poly->c[1], b: e3); |
646 | a2 = gf_div(bch, a: poly->c[2], b: e3); |
647 | |
648 | /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ |
649 | c = gf_mul(bch, a: a2, b: c2); /* c = a2c2 */ |
650 | b = gf_mul(bch, a: a2, b: b2)^c2; /* b = a2b2 + c2 */ |
651 | a = gf_sqr(bch, a: a2)^b2; /* a = a2^2 + b2 */ |
652 | |
653 | /* find the 4 roots of this affine polynomial */ |
654 | if (find_affine4_roots(bch, a, b, c, roots: tmp) == 4) { |
655 | /* remove a2 from final list of roots */ |
656 | for (i = 0; i < 4; i++) { |
657 | if (tmp[i] != a2) |
658 | roots[n++] = a_ilog(bch, x: tmp[i]); |
659 | } |
660 | } |
661 | } |
662 | return n; |
663 | } |
664 | |
665 | /* |
666 | * compute roots of a degree 4 polynomial over GF(2^m) |
667 | */ |
668 | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, |
669 | unsigned int *roots) |
670 | { |
671 | int i, l, n = 0; |
672 | unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; |
673 | |
674 | if (poly->c[0] == 0) |
675 | return 0; |
676 | |
677 | /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ |
678 | e4 = poly->c[4]; |
679 | d = gf_div(bch, a: poly->c[0], b: e4); |
680 | c = gf_div(bch, a: poly->c[1], b: e4); |
681 | b = gf_div(bch, a: poly->c[2], b: e4); |
682 | a = gf_div(bch, a: poly->c[3], b: e4); |
683 | |
684 | /* use Y=1/X transformation to get an affine polynomial */ |
685 | if (a) { |
686 | /* first, eliminate cX by using z=X+e with ae^2+c=0 */ |
687 | if (c) { |
688 | /* compute e such that e^2 = c/a */ |
689 | f = gf_div(bch, a: c, b: a); |
690 | l = a_log(bch, x: f); |
691 | l += (l & 1) ? GF_N(bch) : 0; |
692 | e = a_pow(bch, i: l/2); |
693 | /* |
694 | * use transformation z=X+e: |
695 | * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d |
696 | * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d |
697 | * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d |
698 | * z^4 + az^3 + b'z^2 + d' |
699 | */ |
700 | d = a_pow(bch, i: 2*l)^gf_mul(bch, a: b, b: f)^d; |
701 | b = gf_mul(bch, a, b: e)^b; |
702 | } |
703 | /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ |
704 | if (d == 0) |
705 | /* assume all roots have multiplicity 1 */ |
706 | return 0; |
707 | |
708 | c2 = gf_inv(bch, a: d); |
709 | b2 = gf_div(bch, a, b: d); |
710 | a2 = gf_div(bch, a: b, b: d); |
711 | } else { |
712 | /* polynomial is already affine */ |
713 | c2 = d; |
714 | b2 = c; |
715 | a2 = b; |
716 | } |
717 | /* find the 4 roots of this affine polynomial */ |
718 | if (find_affine4_roots(bch, a: a2, b: b2, c: c2, roots) == 4) { |
719 | for (i = 0; i < 4; i++) { |
720 | /* post-process roots (reverse transformations) */ |
721 | f = a ? gf_inv(bch, a: roots[i]) : roots[i]; |
722 | roots[i] = a_ilog(bch, x: f^e); |
723 | } |
724 | n = 4; |
725 | } |
726 | return n; |
727 | } |
728 | |
729 | /* |
730 | * build monic, log-based representation of a polynomial |
731 | */ |
732 | static void gf_poly_logrep(struct bch_control *bch, |
733 | const struct gf_poly *a, int *rep) |
734 | { |
735 | int i, d = a->deg, l = GF_N(bch)-a_log(bch, x: a->c[a->deg]); |
736 | |
737 | /* represent 0 values with -1; warning, rep[d] is not set to 1 */ |
738 | for (i = 0; i < d; i++) |
739 | rep[i] = a->c[i] ? mod_s(bch, v: a_log(bch, x: a->c[i])+l) : -1; |
740 | } |
741 | |
742 | /* |
743 | * compute polynomial Euclidean division remainder in GF(2^m)[X] |
744 | */ |
745 | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, |
746 | const struct gf_poly *b, int *rep) |
747 | { |
748 | int la, p, m; |
749 | unsigned int i, j, *c = a->c; |
750 | const unsigned int d = b->deg; |
751 | |
752 | if (a->deg < d) |
753 | return; |
754 | |
755 | /* reuse or compute log representation of denominator */ |
756 | if (!rep) { |
757 | rep = bch->cache; |
758 | gf_poly_logrep(bch, a: b, rep); |
759 | } |
760 | |
761 | for (j = a->deg; j >= d; j--) { |
762 | if (c[j]) { |
763 | la = a_log(bch, x: c[j]); |
764 | p = j-d; |
765 | for (i = 0; i < d; i++, p++) { |
766 | m = rep[i]; |
767 | if (m >= 0) |
768 | c[p] ^= bch->a_pow_tab[mod_s(bch, |
769 | v: m+la)]; |
770 | } |
771 | } |
772 | } |
773 | a->deg = d-1; |
774 | while (!c[a->deg] && a->deg) |
775 | a->deg--; |
776 | } |
777 | |
778 | /* |
779 | * compute polynomial Euclidean division quotient in GF(2^m)[X] |
780 | */ |
781 | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, |
782 | const struct gf_poly *b, struct gf_poly *q) |
783 | { |
784 | if (a->deg >= b->deg) { |
785 | q->deg = a->deg-b->deg; |
786 | /* compute a mod b (modifies a) */ |
787 | gf_poly_mod(bch, a, b, NULL); |
788 | /* quotient is stored in upper part of polynomial a */ |
789 | memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); |
790 | } else { |
791 | q->deg = 0; |
792 | q->c[0] = 0; |
793 | } |
794 | } |
795 | |
796 | /* |
797 | * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] |
798 | */ |
799 | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, |
800 | struct gf_poly *b) |
801 | { |
802 | struct gf_poly *tmp; |
803 | |
804 | dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); |
805 | |
806 | if (a->deg < b->deg) { |
807 | tmp = b; |
808 | b = a; |
809 | a = tmp; |
810 | } |
811 | |
812 | while (b->deg > 0) { |
813 | gf_poly_mod(bch, a, b, NULL); |
814 | tmp = b; |
815 | b = a; |
816 | a = tmp; |
817 | } |
818 | |
819 | dbg("%s\n", gf_poly_str(a)); |
820 | |
821 | return a; |
822 | } |
823 | |
824 | /* |
825 | * Given a polynomial f and an integer k, compute Tr(a^kX) mod f |
826 | * This is used in Berlekamp Trace algorithm for splitting polynomials |
827 | */ |
828 | static void compute_trace_bk_mod(struct bch_control *bch, int k, |
829 | const struct gf_poly *f, struct gf_poly *z, |
830 | struct gf_poly *out) |
831 | { |
832 | const int m = GF_M(bch); |
833 | int i, j; |
834 | |
835 | /* z contains z^2j mod f */ |
836 | z->deg = 1; |
837 | z->c[0] = 0; |
838 | z->c[1] = bch->a_pow_tab[k]; |
839 | |
840 | out->deg = 0; |
841 | memset(out, 0, GF_POLY_SZ(f->deg)); |
842 | |
843 | /* compute f log representation only once */ |
844 | gf_poly_logrep(bch, a: f, rep: bch->cache); |
845 | |
846 | for (i = 0; i < m; i++) { |
847 | /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ |
848 | for (j = z->deg; j >= 0; j--) { |
849 | out->c[j] ^= z->c[j]; |
850 | z->c[2*j] = gf_sqr(bch, a: z->c[j]); |
851 | z->c[2*j+1] = 0; |
852 | } |
853 | if (z->deg > out->deg) |
854 | out->deg = z->deg; |
855 | |
856 | if (i < m-1) { |
857 | z->deg *= 2; |
858 | /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ |
859 | gf_poly_mod(bch, a: z, b: f, rep: bch->cache); |
860 | } |
861 | } |
862 | while (!out->c[out->deg] && out->deg) |
863 | out->deg--; |
864 | |
865 | dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); |
866 | } |
867 | |
868 | /* |
869 | * factor a polynomial using Berlekamp Trace algorithm (BTA) |
870 | */ |
871 | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, |
872 | struct gf_poly **g, struct gf_poly **h) |
873 | { |
874 | struct gf_poly *f2 = bch->poly_2t[0]; |
875 | struct gf_poly *q = bch->poly_2t[1]; |
876 | struct gf_poly *tk = bch->poly_2t[2]; |
877 | struct gf_poly *z = bch->poly_2t[3]; |
878 | struct gf_poly *gcd; |
879 | |
880 | dbg("factoring %s...\n", gf_poly_str(f)); |
881 | |
882 | *g = f; |
883 | *h = NULL; |
884 | |
885 | /* tk = Tr(a^k.X) mod f */ |
886 | compute_trace_bk_mod(bch, k, f, z, out: tk); |
887 | |
888 | if (tk->deg > 0) { |
889 | /* compute g = gcd(f, tk) (destructive operation) */ |
890 | gf_poly_copy(dst: f2, src: f); |
891 | gcd = gf_poly_gcd(bch, a: f2, b: tk); |
892 | if (gcd->deg < f->deg) { |
893 | /* compute h=f/gcd(f,tk); this will modify f and q */ |
894 | gf_poly_div(bch, a: f, b: gcd, q); |
895 | /* store g and h in-place (clobbering f) */ |
896 | *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; |
897 | gf_poly_copy(dst: *g, src: gcd); |
898 | gf_poly_copy(dst: *h, src: q); |
899 | } |
900 | } |
901 | } |
902 | |
903 | /* |
904 | * find roots of a polynomial, using BTZ algorithm; see the beginning of this |
905 | * file for details |
906 | */ |
907 | static int find_poly_roots(struct bch_control *bch, unsigned int k, |
908 | struct gf_poly *poly, unsigned int *roots) |
909 | { |
910 | int cnt; |
911 | struct gf_poly *f1, *f2; |
912 | |
913 | switch (poly->deg) { |
914 | /* handle low degree polynomials with ad hoc techniques */ |
915 | case 1: |
916 | cnt = find_poly_deg1_roots(bch, poly, roots); |
917 | break; |
918 | case 2: |
919 | cnt = find_poly_deg2_roots(bch, poly, roots); |
920 | break; |
921 | case 3: |
922 | cnt = find_poly_deg3_roots(bch, poly, roots); |
923 | break; |
924 | case 4: |
925 | cnt = find_poly_deg4_roots(bch, poly, roots); |
926 | break; |
927 | default: |
928 | /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ |
929 | cnt = 0; |
930 | if (poly->deg && (k <= GF_M(bch))) { |
931 | factor_polynomial(bch, k, f: poly, g: &f1, h: &f2); |
932 | if (f1) |
933 | cnt += find_poly_roots(bch, k: k+1, poly: f1, roots); |
934 | if (f2) |
935 | cnt += find_poly_roots(bch, k: k+1, poly: f2, roots: roots+cnt); |
936 | } |
937 | break; |
938 | } |
939 | return cnt; |
940 | } |
941 | |
942 | #if defined(USE_CHIEN_SEARCH) |
943 | /* |
944 | * exhaustive root search (Chien) implementation - not used, included only for |
945 | * reference/comparison tests |
946 | */ |
947 | static int chien_search(struct bch_control *bch, unsigned int len, |
948 | struct gf_poly *p, unsigned int *roots) |
949 | { |
950 | int m; |
951 | unsigned int i, j, syn, syn0, count = 0; |
952 | const unsigned int k = 8*len+bch->ecc_bits; |
953 | |
954 | /* use a log-based representation of polynomial */ |
955 | gf_poly_logrep(bch, p, bch->cache); |
956 | bch->cache[p->deg] = 0; |
957 | syn0 = gf_div(bch, p->c[0], p->c[p->deg]); |
958 | |
959 | for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { |
960 | /* compute elp(a^i) */ |
961 | for (j = 1, syn = syn0; j <= p->deg; j++) { |
962 | m = bch->cache[j]; |
963 | if (m >= 0) |
964 | syn ^= a_pow(bch, m+j*i); |
965 | } |
966 | if (syn == 0) { |
967 | roots[count++] = GF_N(bch)-i; |
968 | if (count == p->deg) |
969 | break; |
970 | } |
971 | } |
972 | return (count == p->deg) ? count : 0; |
973 | } |
974 | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) |
975 | #endif /* USE_CHIEN_SEARCH */ |
976 | |
977 | /** |
978 | * bch_decode - decode received codeword and find bit error locations |
979 | * @bch: BCH control structure |
980 | * @data: received data, ignored if @calc_ecc is provided |
981 | * @len: data length in bytes, must always be provided |
982 | * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc |
983 | * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data |
984 | * @syn: hw computed syndrome data (if NULL, syndrome is calculated) |
985 | * @errloc: output array of error locations |
986 | * |
987 | * Returns: |
988 | * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if |
989 | * invalid parameters were provided |
990 | * |
991 | * Depending on the available hw BCH support and the need to compute @calc_ecc |
992 | * separately (using bch_encode()), this function should be called with one of |
993 | * the following parameter configurations - |
994 | * |
995 | * by providing @data and @recv_ecc only: |
996 | * bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) |
997 | * |
998 | * by providing @recv_ecc and @calc_ecc: |
999 | * bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) |
1000 | * |
1001 | * by providing ecc = recv_ecc XOR calc_ecc: |
1002 | * bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc) |
1003 | * |
1004 | * by providing syndrome results @syn: |
1005 | * bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc) |
1006 | * |
1007 | * Once bch_decode() has successfully returned with a positive value, error |
1008 | * locations returned in array @errloc should be interpreted as follows - |
1009 | * |
1010 | * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for |
1011 | * data correction) |
1012 | * |
1013 | * if (errloc[n] < 8*len), then n-th error is located in data and can be |
1014 | * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); |
1015 | * |
1016 | * Note that this function does not perform any data correction by itself, it |
1017 | * merely indicates error locations. |
1018 | */ |
1019 | int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len, |
1020 | const uint8_t *recv_ecc, const uint8_t *calc_ecc, |
1021 | const unsigned int *syn, unsigned int *errloc) |
1022 | { |
1023 | const unsigned int ecc_words = BCH_ECC_WORDS(bch); |
1024 | unsigned int nbits; |
1025 | int i, err, nroots; |
1026 | uint32_t sum; |
1027 | |
1028 | /* sanity check: make sure data length can be handled */ |
1029 | if (8*len > (bch->n-bch->ecc_bits)) |
1030 | return -EINVAL; |
1031 | |
1032 | /* if caller does not provide syndromes, compute them */ |
1033 | if (!syn) { |
1034 | if (!calc_ecc) { |
1035 | /* compute received data ecc into an internal buffer */ |
1036 | if (!data || !recv_ecc) |
1037 | return -EINVAL; |
1038 | bch_encode(bch, data, len, NULL); |
1039 | } else { |
1040 | /* load provided calculated ecc */ |
1041 | load_ecc8(bch, dst: bch->ecc_buf, src: calc_ecc); |
1042 | } |
1043 | /* load received ecc or assume it was XORed in calc_ecc */ |
1044 | if (recv_ecc) { |
1045 | load_ecc8(bch, dst: bch->ecc_buf2, src: recv_ecc); |
1046 | /* XOR received and calculated ecc */ |
1047 | for (i = 0, sum = 0; i < (int)ecc_words; i++) { |
1048 | bch->ecc_buf[i] ^= bch->ecc_buf2[i]; |
1049 | sum |= bch->ecc_buf[i]; |
1050 | } |
1051 | if (!sum) |
1052 | /* no error found */ |
1053 | return 0; |
1054 | } |
1055 | compute_syndromes(bch, ecc: bch->ecc_buf, syn: bch->syn); |
1056 | syn = bch->syn; |
1057 | } |
1058 | |
1059 | err = compute_error_locator_polynomial(bch, syn); |
1060 | if (err > 0) { |
1061 | nroots = find_poly_roots(bch, k: 1, poly: bch->elp, roots: errloc); |
1062 | if (err != nroots) |
1063 | err = -1; |
1064 | } |
1065 | if (err > 0) { |
1066 | /* post-process raw error locations for easier correction */ |
1067 | nbits = (len*8)+bch->ecc_bits; |
1068 | for (i = 0; i < err; i++) { |
1069 | if (errloc[i] >= nbits) { |
1070 | err = -1; |
1071 | break; |
1072 | } |
1073 | errloc[i] = nbits-1-errloc[i]; |
1074 | if (!bch->swap_bits) |
1075 | errloc[i] = (errloc[i] & ~7) | |
1076 | (7-(errloc[i] & 7)); |
1077 | } |
1078 | } |
1079 | return (err >= 0) ? err : -EBADMSG; |
1080 | } |
1081 | EXPORT_SYMBOL_GPL(bch_decode); |
1082 | |
1083 | /* |
1084 | * generate Galois field lookup tables |
1085 | */ |
1086 | static int build_gf_tables(struct bch_control *bch, unsigned int poly) |
1087 | { |
1088 | unsigned int i, x = 1; |
1089 | const unsigned int k = 1 << deg(poly); |
1090 | |
1091 | /* primitive polynomial must be of degree m */ |
1092 | if (k != (1u << GF_M(bch))) |
1093 | return -1; |
1094 | |
1095 | for (i = 0; i < GF_N(bch); i++) { |
1096 | bch->a_pow_tab[i] = x; |
1097 | bch->a_log_tab[x] = i; |
1098 | if (i && (x == 1)) |
1099 | /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ |
1100 | return -1; |
1101 | x <<= 1; |
1102 | if (x & k) |
1103 | x ^= poly; |
1104 | } |
1105 | bch->a_pow_tab[GF_N(bch)] = 1; |
1106 | bch->a_log_tab[0] = 0; |
1107 | |
1108 | return 0; |
1109 | } |
1110 | |
1111 | /* |
1112 | * compute generator polynomial remainder tables for fast encoding |
1113 | */ |
1114 | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) |
1115 | { |
1116 | int i, j, b, d; |
1117 | uint32_t data, hi, lo, *tab; |
1118 | const int l = BCH_ECC_WORDS(bch); |
1119 | const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); |
1120 | const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); |
1121 | |
1122 | memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); |
1123 | |
1124 | for (i = 0; i < 256; i++) { |
1125 | /* p(X)=i is a small polynomial of weight <= 8 */ |
1126 | for (b = 0; b < 4; b++) { |
1127 | /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ |
1128 | tab = bch->mod8_tab + (b*256+i)*l; |
1129 | data = i << (8*b); |
1130 | while (data) { |
1131 | d = deg(poly: data); |
1132 | /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ |
1133 | data ^= g[0] >> (31-d); |
1134 | for (j = 0; j < ecclen; j++) { |
1135 | hi = (d < 31) ? g[j] << (d+1) : 0; |
1136 | lo = (j+1 < plen) ? |
1137 | g[j+1] >> (31-d) : 0; |
1138 | tab[j] ^= hi|lo; |
1139 | } |
1140 | } |
1141 | } |
1142 | } |
1143 | } |
1144 | |
1145 | /* |
1146 | * build a base for factoring degree 2 polynomials |
1147 | */ |
1148 | static int build_deg2_base(struct bch_control *bch) |
1149 | { |
1150 | const int m = GF_M(bch); |
1151 | int i, j, r; |
1152 | unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M]; |
1153 | |
1154 | /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ |
1155 | for (i = 0; i < m; i++) { |
1156 | for (j = 0, sum = 0; j < m; j++) |
1157 | sum ^= a_pow(bch, i: i*(1 << j)); |
1158 | |
1159 | if (sum) { |
1160 | ak = bch->a_pow_tab[i]; |
1161 | break; |
1162 | } |
1163 | } |
1164 | /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ |
1165 | remaining = m; |
1166 | memset(xi, 0, sizeof(xi)); |
1167 | |
1168 | for (x = 0; (x <= GF_N(bch)) && remaining; x++) { |
1169 | y = gf_sqr(bch, a: x)^x; |
1170 | for (i = 0; i < 2; i++) { |
1171 | r = a_log(bch, x: y); |
1172 | if (y && (r < m) && !xi[r]) { |
1173 | bch->xi_tab[r] = x; |
1174 | xi[r] = 1; |
1175 | remaining--; |
1176 | dbg("x%d = %x\n", r, x); |
1177 | break; |
1178 | } |
1179 | y ^= ak; |
1180 | } |
1181 | } |
1182 | /* should not happen but check anyway */ |
1183 | return remaining ? -1 : 0; |
1184 | } |
1185 | |
1186 | static void *bch_alloc(size_t size, int *err) |
1187 | { |
1188 | void *ptr; |
1189 | |
1190 | ptr = kmalloc(size, GFP_KERNEL); |
1191 | if (ptr == NULL) |
1192 | *err = 1; |
1193 | return ptr; |
1194 | } |
1195 | |
1196 | /* |
1197 | * compute generator polynomial for given (m,t) parameters. |
1198 | */ |
1199 | static uint32_t *compute_generator_polynomial(struct bch_control *bch) |
1200 | { |
1201 | const unsigned int m = GF_M(bch); |
1202 | const unsigned int t = GF_T(bch); |
1203 | int n, err = 0; |
1204 | unsigned int i, j, nbits, r, word, *roots; |
1205 | struct gf_poly *g; |
1206 | uint32_t *genpoly; |
1207 | |
1208 | g = bch_alloc(GF_POLY_SZ(m*t), err: &err); |
1209 | roots = bch_alloc(size: (bch->n+1)*sizeof(*roots), err: &err); |
1210 | genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), err: &err); |
1211 | |
1212 | if (err) { |
1213 | kfree(objp: genpoly); |
1214 | genpoly = NULL; |
1215 | goto finish; |
1216 | } |
1217 | |
1218 | /* enumerate all roots of g(X) */ |
1219 | memset(roots , 0, (bch->n+1)*sizeof(*roots)); |
1220 | for (i = 0; i < t; i++) { |
1221 | for (j = 0, r = 2*i+1; j < m; j++) { |
1222 | roots[r] = 1; |
1223 | r = mod_s(bch, v: 2*r); |
1224 | } |
1225 | } |
1226 | /* build generator polynomial g(X) */ |
1227 | g->deg = 0; |
1228 | g->c[0] = 1; |
1229 | for (i = 0; i < GF_N(bch); i++) { |
1230 | if (roots[i]) { |
1231 | /* multiply g(X) by (X+root) */ |
1232 | r = bch->a_pow_tab[i]; |
1233 | g->c[g->deg+1] = 1; |
1234 | for (j = g->deg; j > 0; j--) |
1235 | g->c[j] = gf_mul(bch, a: g->c[j], b: r)^g->c[j-1]; |
1236 | |
1237 | g->c[0] = gf_mul(bch, a: g->c[0], b: r); |
1238 | g->deg++; |
1239 | } |
1240 | } |
1241 | /* store left-justified binary representation of g(X) */ |
1242 | n = g->deg+1; |
1243 | i = 0; |
1244 | |
1245 | while (n > 0) { |
1246 | nbits = (n > 32) ? 32 : n; |
1247 | for (j = 0, word = 0; j < nbits; j++) { |
1248 | if (g->c[n-1-j]) |
1249 | word |= 1u << (31-j); |
1250 | } |
1251 | genpoly[i++] = word; |
1252 | n -= nbits; |
1253 | } |
1254 | bch->ecc_bits = g->deg; |
1255 | |
1256 | finish: |
1257 | kfree(objp: g); |
1258 | kfree(objp: roots); |
1259 | |
1260 | return genpoly; |
1261 | } |
1262 | |
1263 | /** |
1264 | * bch_init - initialize a BCH encoder/decoder |
1265 | * @m: Galois field order, should be in the range 5-15 |
1266 | * @t: maximum error correction capability, in bits |
1267 | * @prim_poly: user-provided primitive polynomial (or 0 to use default) |
1268 | * @swap_bits: swap bits within data and syndrome bytes |
1269 | * |
1270 | * Returns: |
1271 | * a newly allocated BCH control structure if successful, NULL otherwise |
1272 | * |
1273 | * This initialization can take some time, as lookup tables are built for fast |
1274 | * encoding/decoding; make sure not to call this function from a time critical |
1275 | * path. Usually, bch_init() should be called on module/driver init and |
1276 | * bch_free() should be called to release memory on exit. |
1277 | * |
1278 | * You may provide your own primitive polynomial of degree @m in argument |
1279 | * @prim_poly, or let bch_init() use its default polynomial. |
1280 | * |
1281 | * Once bch_init() has successfully returned a pointer to a newly allocated |
1282 | * BCH control structure, ecc length in bytes is given by member @ecc_bytes of |
1283 | * the structure. |
1284 | */ |
1285 | struct bch_control *bch_init(int m, int t, unsigned int prim_poly, |
1286 | bool swap_bits) |
1287 | { |
1288 | int err = 0; |
1289 | unsigned int i, words; |
1290 | uint32_t *genpoly; |
1291 | struct bch_control *bch = NULL; |
1292 | |
1293 | const int min_m = 5; |
1294 | |
1295 | /* default primitive polynomials */ |
1296 | static const unsigned int prim_poly_tab[] = { |
1297 | 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, |
1298 | 0x402b, 0x8003, |
1299 | }; |
1300 | |
1301 | #if defined(CONFIG_BCH_CONST_PARAMS) |
1302 | if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { |
1303 | printk(KERN_ERR "bch encoder/decoder was configured to support " |
1304 | "parameters m=%d, t=%d only!\n", |
1305 | CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); |
1306 | goto fail; |
1307 | } |
1308 | #endif |
1309 | if ((m < min_m) || (m > BCH_MAX_M)) |
1310 | /* |
1311 | * values of m greater than 15 are not currently supported; |
1312 | * supporting m > 15 would require changing table base type |
1313 | * (uint16_t) and a small patch in matrix transposition |
1314 | */ |
1315 | goto fail; |
1316 | |
1317 | if (t > BCH_MAX_T) |
1318 | /* |
1319 | * we can support larger than 64 bits if necessary, at the |
1320 | * cost of higher stack usage. |
1321 | */ |
1322 | goto fail; |
1323 | |
1324 | /* sanity checks */ |
1325 | if ((t < 1) || (m*t >= ((1 << m)-1))) |
1326 | /* invalid t value */ |
1327 | goto fail; |
1328 | |
1329 | /* select a primitive polynomial for generating GF(2^m) */ |
1330 | if (prim_poly == 0) |
1331 | prim_poly = prim_poly_tab[m-min_m]; |
1332 | |
1333 | bch = kzalloc(size: sizeof(*bch), GFP_KERNEL); |
1334 | if (bch == NULL) |
1335 | goto fail; |
1336 | |
1337 | bch->m = m; |
1338 | bch->t = t; |
1339 | bch->n = (1 << m)-1; |
1340 | words = DIV_ROUND_UP(m*t, 32); |
1341 | bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); |
1342 | bch->a_pow_tab = bch_alloc(size: (1+bch->n)*sizeof(*bch->a_pow_tab), err: &err); |
1343 | bch->a_log_tab = bch_alloc(size: (1+bch->n)*sizeof(*bch->a_log_tab), err: &err); |
1344 | bch->mod8_tab = bch_alloc(size: words*1024*sizeof(*bch->mod8_tab), err: &err); |
1345 | bch->ecc_buf = bch_alloc(size: words*sizeof(*bch->ecc_buf), err: &err); |
1346 | bch->ecc_buf2 = bch_alloc(size: words*sizeof(*bch->ecc_buf2), err: &err); |
1347 | bch->xi_tab = bch_alloc(size: m*sizeof(*bch->xi_tab), err: &err); |
1348 | bch->syn = bch_alloc(size: 2*t*sizeof(*bch->syn), err: &err); |
1349 | bch->cache = bch_alloc(size: 2*t*sizeof(*bch->cache), err: &err); |
1350 | bch->elp = bch_alloc(size: (t+1)*sizeof(struct gf_poly_deg1), err: &err); |
1351 | bch->swap_bits = swap_bits; |
1352 | |
1353 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) |
1354 | bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), err: &err); |
1355 | |
1356 | if (err) |
1357 | goto fail; |
1358 | |
1359 | err = build_gf_tables(bch, poly: prim_poly); |
1360 | if (err) |
1361 | goto fail; |
1362 | |
1363 | /* use generator polynomial for computing encoding tables */ |
1364 | genpoly = compute_generator_polynomial(bch); |
1365 | if (genpoly == NULL) |
1366 | goto fail; |
1367 | |
1368 | build_mod8_tables(bch, g: genpoly); |
1369 | kfree(objp: genpoly); |
1370 | |
1371 | err = build_deg2_base(bch); |
1372 | if (err) |
1373 | goto fail; |
1374 | |
1375 | return bch; |
1376 | |
1377 | fail: |
1378 | bch_free(bch); |
1379 | return NULL; |
1380 | } |
1381 | EXPORT_SYMBOL_GPL(bch_init); |
1382 | |
1383 | /** |
1384 | * bch_free - free the BCH control structure |
1385 | * @bch: BCH control structure to release |
1386 | */ |
1387 | void bch_free(struct bch_control *bch) |
1388 | { |
1389 | unsigned int i; |
1390 | |
1391 | if (bch) { |
1392 | kfree(objp: bch->a_pow_tab); |
1393 | kfree(objp: bch->a_log_tab); |
1394 | kfree(objp: bch->mod8_tab); |
1395 | kfree(objp: bch->ecc_buf); |
1396 | kfree(objp: bch->ecc_buf2); |
1397 | kfree(objp: bch->xi_tab); |
1398 | kfree(objp: bch->syn); |
1399 | kfree(objp: bch->cache); |
1400 | kfree(objp: bch->elp); |
1401 | |
1402 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) |
1403 | kfree(objp: bch->poly_2t[i]); |
1404 | |
1405 | kfree(objp: bch); |
1406 | } |
1407 | } |
1408 | EXPORT_SYMBOL_GPL(bch_free); |
1409 | |
1410 | MODULE_LICENSE("GPL"); |
1411 | MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); |
1412 | MODULE_DESCRIPTION("Binary BCH encoder/decoder"); |
1413 |
Definitions
- gf_poly
- gf_poly_deg1
- swap_bits
- bch_encode_unaligned
- load_ecc8
- store_ecc8
- bch_encode
- modulo
- mod_s
- deg
- parity
- gf_mul
- gf_sqr
- gf_div
- gf_inv
- a_pow
- a_log
- a_ilog
- compute_syndromes
- gf_poly_copy
- compute_error_locator_polynomial
- solve_linear_system
- find_affine4_roots
- find_poly_deg1_roots
- find_poly_deg2_roots
- find_poly_deg3_roots
- find_poly_deg4_roots
- gf_poly_logrep
- gf_poly_mod
- gf_poly_div
- gf_poly_gcd
- compute_trace_bk_mod
- factor_polynomial
- find_poly_roots
- bch_decode
- build_gf_tables
- build_mod8_tables
- build_deg2_base
- bch_alloc
- compute_generator_polynomial
- bch_init
Improve your Profiling and Debugging skills
Find out more