| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // These classes implement wrappers around mlir::Value in order to fully |
| 10 | // represent the range of values for C L- and R- values. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef CLANG_LIB_CIR_CIRGENVALUE_H |
| 15 | #define CLANG_LIB_CIR_CIRGENVALUE_H |
| 16 | |
| 17 | #include "Address.h" |
| 18 | |
| 19 | #include "clang/AST/CharUnits.h" |
| 20 | #include "clang/AST/Type.h" |
| 21 | |
| 22 | #include "mlir/IR/Value.h" |
| 23 | |
| 24 | #include "clang/CIR/MissingFeatures.h" |
| 25 | |
| 26 | namespace clang::CIRGen { |
| 27 | |
| 28 | /// This trivial value class is used to represent the result of an |
| 29 | /// expression that is evaluated. It can be one of three things: either a |
| 30 | /// simple MLIR SSA value, a pair of SSA values for complex numbers, or the |
| 31 | /// address of an aggregate value in memory. |
| 32 | class RValue { |
| 33 | enum Flavor { Scalar, Complex, Aggregate }; |
| 34 | |
| 35 | union { |
| 36 | // Stores first and second value. |
| 37 | struct { |
| 38 | mlir::Value first; |
| 39 | mlir::Value second; |
| 40 | } vals; |
| 41 | |
| 42 | // Stores aggregate address. |
| 43 | Address aggregateAddr; |
| 44 | }; |
| 45 | |
| 46 | unsigned isVolatile : 1; |
| 47 | unsigned flavor : 2; |
| 48 | |
| 49 | public: |
| 50 | RValue() : vals{nullptr, nullptr}, flavor(Scalar) {} |
| 51 | |
| 52 | bool isScalar() const { return flavor == Scalar; } |
| 53 | bool isComplex() const { return flavor == Complex; } |
| 54 | bool isAggregate() const { return flavor == Aggregate; } |
| 55 | |
| 56 | bool isVolatileQualified() const { return isVolatile; } |
| 57 | |
| 58 | /// Return the value of this scalar value. |
| 59 | mlir::Value getScalarVal() const { |
| 60 | assert(isScalar() && "Not a scalar!" ); |
| 61 | return vals.first; |
| 62 | } |
| 63 | |
| 64 | /// Return the real/imag components of this complex value. |
| 65 | std::pair<mlir::Value, mlir::Value> getComplexVal() const { |
| 66 | return std::make_pair(vals.first, vals.second); |
| 67 | } |
| 68 | |
| 69 | /// Return the value of the address of the aggregate. |
| 70 | Address getAggregateAddress() const { |
| 71 | assert(isAggregate() && "Not an aggregate!" ); |
| 72 | return aggregateAddr; |
| 73 | } |
| 74 | |
| 75 | mlir::Value getAggregatePointer(QualType pointeeType) const { |
| 76 | return getAggregateAddress().getPointer(); |
| 77 | } |
| 78 | |
| 79 | static RValue getIgnored() { |
| 80 | // FIXME: should we make this a more explicit state? |
| 81 | return get(nullptr); |
| 82 | } |
| 83 | |
| 84 | static RValue get(mlir::Value v) { |
| 85 | RValue er; |
| 86 | er.vals.first = v; |
| 87 | er.flavor = Scalar; |
| 88 | er.isVolatile = false; |
| 89 | return er; |
| 90 | } |
| 91 | |
| 92 | static RValue getComplex(mlir::Value v1, mlir::Value v2) { |
| 93 | RValue er; |
| 94 | er.vals = {v1, v2}; |
| 95 | er.flavor = Complex; |
| 96 | er.isVolatile = false; |
| 97 | return er; |
| 98 | } |
| 99 | static RValue getComplex(const std::pair<mlir::Value, mlir::Value> &c) { |
| 100 | return getComplex(c.first, c.second); |
| 101 | } |
| 102 | // FIXME: Aggregate rvalues need to retain information about whether they are |
| 103 | // volatile or not. Remove default to find all places that probably get this |
| 104 | // wrong. |
| 105 | |
| 106 | /// Convert an Address to an RValue. If the Address is not |
| 107 | /// signed, create an RValue using the unsigned address. Otherwise, resign the |
| 108 | /// address using the provided type. |
| 109 | static RValue getAggregate(Address addr, bool isVolatile = false) { |
| 110 | RValue er; |
| 111 | er.aggregateAddr = addr; |
| 112 | er.flavor = Aggregate; |
| 113 | er.isVolatile = isVolatile; |
| 114 | return er; |
| 115 | } |
| 116 | }; |
| 117 | |
| 118 | /// The source of the alignment of an l-value; an expression of |
| 119 | /// confidence in the alignment actually matching the estimate. |
| 120 | enum class AlignmentSource { |
| 121 | /// The l-value was an access to a declared entity or something |
| 122 | /// equivalently strong, like the address of an array allocated by a |
| 123 | /// language runtime. |
| 124 | Decl, |
| 125 | |
| 126 | /// The l-value was considered opaque, so the alignment was |
| 127 | /// determined from a type, but that type was an explicitly-aligned |
| 128 | /// typedef. |
| 129 | AttributedType, |
| 130 | |
| 131 | /// The l-value was considered opaque, so the alignment was |
| 132 | /// determined from a type. |
| 133 | Type |
| 134 | }; |
| 135 | |
| 136 | /// Given that the base address has the given alignment source, what's |
| 137 | /// our confidence in the alignment of the field? |
| 138 | static inline AlignmentSource getFieldAlignmentSource(AlignmentSource source) { |
| 139 | // For now, we don't distinguish fields of opaque pointers from |
| 140 | // top-level declarations, but maybe we should. |
| 141 | return AlignmentSource::Decl; |
| 142 | } |
| 143 | |
| 144 | class LValueBaseInfo { |
| 145 | AlignmentSource alignSource; |
| 146 | |
| 147 | public: |
| 148 | explicit LValueBaseInfo(AlignmentSource source = AlignmentSource::Type) |
| 149 | : alignSource(source) {} |
| 150 | AlignmentSource getAlignmentSource() const { return alignSource; } |
| 151 | void setAlignmentSource(AlignmentSource source) { alignSource = source; } |
| 152 | |
| 153 | void mergeForCast(const LValueBaseInfo &info) { |
| 154 | setAlignmentSource(info.getAlignmentSource()); |
| 155 | } |
| 156 | }; |
| 157 | |
| 158 | class LValue { |
| 159 | enum { |
| 160 | Simple, // This is a normal l-value, use getAddress(). |
| 161 | VectorElt, // This is a vector element l-value (V[i]), use getVector* |
| 162 | BitField, // This is a bitfield l-value, use getBitfield*. |
| 163 | ExtVectorElt, // This is an extended vector subset, use getExtVectorComp |
| 164 | GlobalReg, // This is a register l-value, use getGlobalReg() |
| 165 | MatrixElt // This is a matrix element, use getVector* |
| 166 | } lvType; |
| 167 | clang::QualType type; |
| 168 | clang::Qualifiers quals; |
| 169 | |
| 170 | // The alignment to use when accessing this lvalue. (For vector elements, |
| 171 | // this is the alignment of the whole vector) |
| 172 | unsigned alignment; |
| 173 | mlir::Value v; |
| 174 | mlir::Value vectorIdx; // Index for vector subscript |
| 175 | mlir::Type elementType; |
| 176 | LValueBaseInfo baseInfo; |
| 177 | |
| 178 | void initialize(clang::QualType type, clang::Qualifiers quals, |
| 179 | clang::CharUnits alignment, LValueBaseInfo baseInfo) { |
| 180 | assert((!alignment.isZero() || type->isIncompleteType()) && |
| 181 | "initializing l-value with zero alignment!" ); |
| 182 | this->type = type; |
| 183 | this->quals = quals; |
| 184 | const unsigned maxAlign = 1U << 31; |
| 185 | this->alignment = alignment.getQuantity() <= maxAlign |
| 186 | ? alignment.getQuantity() |
| 187 | : maxAlign; |
| 188 | assert(this->alignment == alignment.getQuantity() && |
| 189 | "Alignment exceeds allowed max!" ); |
| 190 | this->baseInfo = baseInfo; |
| 191 | } |
| 192 | |
| 193 | public: |
| 194 | bool isSimple() const { return lvType == Simple; } |
| 195 | bool isVectorElt() const { return lvType == VectorElt; } |
| 196 | bool isBitField() const { return lvType == BitField; } |
| 197 | |
| 198 | // TODO: Add support for volatile |
| 199 | bool isVolatile() const { return false; } |
| 200 | |
| 201 | unsigned getVRQualifiers() const { |
| 202 | return quals.getCVRQualifiers() & ~clang::Qualifiers::Const; |
| 203 | } |
| 204 | |
| 205 | clang::QualType getType() const { return type; } |
| 206 | |
| 207 | mlir::Value getPointer() const { return v; } |
| 208 | |
| 209 | clang::CharUnits getAlignment() const { |
| 210 | return clang::CharUnits::fromQuantity(Quantity: alignment); |
| 211 | } |
| 212 | void setAlignment(clang::CharUnits a) { alignment = a.getQuantity(); } |
| 213 | |
| 214 | Address getAddress() const { |
| 215 | return Address(getPointer(), elementType, getAlignment()); |
| 216 | } |
| 217 | |
| 218 | const clang::Qualifiers &getQuals() const { return quals; } |
| 219 | clang::Qualifiers &getQuals() { return quals; } |
| 220 | |
| 221 | LValueBaseInfo getBaseInfo() const { return baseInfo; } |
| 222 | void setBaseInfo(LValueBaseInfo info) { baseInfo = info; } |
| 223 | |
| 224 | static LValue makeAddr(Address address, clang::QualType t, |
| 225 | LValueBaseInfo baseInfo) { |
| 226 | // Classic codegen sets the objc gc qualifier here. That requires an |
| 227 | // ASTContext, which is passed in from CIRGenFunction::makeAddrLValue. |
| 228 | assert(!cir::MissingFeatures::objCGC()); |
| 229 | |
| 230 | LValue r; |
| 231 | r.lvType = Simple; |
| 232 | r.v = address.getPointer(); |
| 233 | r.elementType = address.getElementType(); |
| 234 | r.initialize(type: t, quals: t.getQualifiers(), alignment: address.getAlignment(), baseInfo); |
| 235 | return r; |
| 236 | } |
| 237 | |
| 238 | Address getVectorAddress() const { |
| 239 | return Address(getVectorPointer(), elementType, getAlignment()); |
| 240 | } |
| 241 | |
| 242 | mlir::Value getVectorPointer() const { |
| 243 | assert(isVectorElt()); |
| 244 | return v; |
| 245 | } |
| 246 | |
| 247 | mlir::Value getVectorIdx() const { |
| 248 | assert(isVectorElt()); |
| 249 | return vectorIdx; |
| 250 | } |
| 251 | |
| 252 | static LValue makeVectorElt(Address vecAddress, mlir::Value index, |
| 253 | clang::QualType t, LValueBaseInfo baseInfo) { |
| 254 | LValue r; |
| 255 | r.lvType = VectorElt; |
| 256 | r.v = vecAddress.getPointer(); |
| 257 | r.elementType = vecAddress.getElementType(); |
| 258 | r.vectorIdx = index; |
| 259 | r.initialize(type: t, quals: t.getQualifiers(), alignment: vecAddress.getAlignment(), baseInfo); |
| 260 | return r; |
| 261 | } |
| 262 | }; |
| 263 | |
| 264 | /// An aggregate value slot. |
| 265 | class AggValueSlot { |
| 266 | |
| 267 | Address addr; |
| 268 | clang::Qualifiers quals; |
| 269 | |
| 270 | /// This is set to true if the memory in the slot is known to be zero before |
| 271 | /// the assignment into it. This means that zero fields don't need to be set. |
| 272 | bool zeroedFlag : 1; |
| 273 | |
| 274 | public: |
| 275 | enum IsZeroed_t { IsNotZeroed, IsZeroed }; |
| 276 | |
| 277 | AggValueSlot(Address addr, clang::Qualifiers quals, bool zeroedFlag) |
| 278 | : addr(addr), quals(quals), zeroedFlag(zeroedFlag) {} |
| 279 | |
| 280 | static AggValueSlot forAddr(Address addr, clang::Qualifiers quals, |
| 281 | IsZeroed_t isZeroed = IsNotZeroed) { |
| 282 | return AggValueSlot(addr, quals, isZeroed); |
| 283 | } |
| 284 | |
| 285 | static AggValueSlot forLValue(const LValue &lv) { |
| 286 | return forAddr(addr: lv.getAddress(), quals: lv.getQuals()); |
| 287 | } |
| 288 | |
| 289 | clang::Qualifiers getQualifiers() const { return quals; } |
| 290 | |
| 291 | Address getAddress() const { return addr; } |
| 292 | |
| 293 | bool isIgnored() const { return !addr.isValid(); } |
| 294 | |
| 295 | IsZeroed_t isZeroed() const { return IsZeroed_t(zeroedFlag); } |
| 296 | }; |
| 297 | |
| 298 | } // namespace clang::CIRGen |
| 299 | |
| 300 | #endif // CLANG_LIB_CIR_CIRGENVALUE_H |
| 301 | |