1 | //== RangedConstraintManager.cpp --------------------------------*- C++ -*--==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines RangedConstraintManager, a class that provides a |
10 | // range-based constraint manager interface. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
15 | #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" |
16 | |
17 | namespace clang { |
18 | |
19 | namespace ento { |
20 | |
21 | RangedConstraintManager::~RangedConstraintManager() {} |
22 | |
23 | ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State, |
24 | SymbolRef Sym, |
25 | bool Assumption) { |
26 | Sym = simplify(State, Sym); |
27 | |
28 | // Handle SymbolData. |
29 | if (isa<SymbolData>(Val: Sym)) |
30 | return assumeSymUnsupported(State, Sym, Assumption); |
31 | |
32 | // Handle symbolic expression. |
33 | if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Val: Sym)) { |
34 | // We can only simplify expressions whose RHS is an integer. |
35 | |
36 | BinaryOperator::Opcode op = SIE->getOpcode(); |
37 | if (BinaryOperator::isComparisonOp(Opc: op) && op != BO_Cmp) { |
38 | if (!Assumption) |
39 | op = BinaryOperator::negateComparisonOp(Opc: op); |
40 | |
41 | return assumeSymRel(State, Sym: SIE->getLHS(), op, Int: SIE->getRHS()); |
42 | } |
43 | |
44 | // Handle adjustment with non-comparison ops. |
45 | const llvm::APSInt &Zero = getBasicVals().getValue(0, SIE->getType()); |
46 | return assumeSymRel(State, SIE, (Assumption ? BO_NE : BO_EQ), Zero); |
47 | } |
48 | |
49 | if (const auto *SSE = dyn_cast<SymSymExpr>(Val: Sym)) { |
50 | BinaryOperator::Opcode Op = SSE->getOpcode(); |
51 | if (BinaryOperator::isComparisonOp(Opc: Op)) { |
52 | |
53 | // We convert equality operations for pointers only. |
54 | if (Loc::isLocType(T: SSE->getLHS()->getType()) && |
55 | Loc::isLocType(T: SSE->getRHS()->getType())) { |
56 | // Translate "a != b" to "(b - a) != 0". |
57 | // We invert the order of the operands as a heuristic for how loop |
58 | // conditions are usually written ("begin != end") as compared to length |
59 | // calculations ("end - begin"). The more correct thing to do would be |
60 | // to canonicalize "a - b" and "b - a", which would allow us to treat |
61 | // "a != b" and "b != a" the same. |
62 | |
63 | SymbolManager &SymMgr = getSymbolManager(); |
64 | QualType DiffTy = SymMgr.getContext().getPointerDiffType(); |
65 | SymbolRef Subtraction = |
66 | SymMgr.getSymSymExpr(lhs: SSE->getRHS(), op: BO_Sub, rhs: SSE->getLHS(), t: DiffTy); |
67 | |
68 | const llvm::APSInt &Zero = getBasicVals().getValue(X: 0, T: DiffTy); |
69 | Op = BinaryOperator::reverseComparisonOp(Opc: Op); |
70 | if (!Assumption) |
71 | Op = BinaryOperator::negateComparisonOp(Opc: Op); |
72 | return assumeSymRel(State, Sym: Subtraction, op: Op, Int: Zero); |
73 | } |
74 | |
75 | if (BinaryOperator::isEqualityOp(Opc: Op)) { |
76 | SymbolManager &SymMgr = getSymbolManager(); |
77 | |
78 | QualType ExprType = SSE->getType(); |
79 | SymbolRef CanonicalEquality = |
80 | SymMgr.getSymSymExpr(lhs: SSE->getLHS(), op: BO_EQ, rhs: SSE->getRHS(), t: ExprType); |
81 | |
82 | bool WasEqual = SSE->getOpcode() == BO_EQ; |
83 | bool IsExpectedEqual = WasEqual == Assumption; |
84 | |
85 | const llvm::APSInt &Zero = getBasicVals().getValue(X: 0, T: ExprType); |
86 | |
87 | if (IsExpectedEqual) { |
88 | return assumeSymNE(State, Sym: CanonicalEquality, V: Zero, Adjustment: Zero); |
89 | } |
90 | |
91 | return assumeSymEQ(State, Sym: CanonicalEquality, V: Zero, Adjustment: Zero); |
92 | } |
93 | } |
94 | } |
95 | |
96 | // If we get here, there's nothing else we can do but treat the symbol as |
97 | // opaque. |
98 | return assumeSymUnsupported(State, Sym, Assumption); |
99 | } |
100 | |
101 | ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange( |
102 | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
103 | const llvm::APSInt &To, bool InRange) { |
104 | |
105 | Sym = simplify(State, Sym); |
106 | |
107 | // Get the type used for calculating wraparound. |
108 | BasicValueFactory &BVF = getBasicVals(); |
109 | APSIntType WraparoundType = BVF.getAPSIntType(T: Sym->getType()); |
110 | |
111 | llvm::APSInt Adjustment = WraparoundType.getZeroValue(); |
112 | SymbolRef AdjustedSym = Sym; |
113 | computeAdjustment(Sym&: AdjustedSym, Adjustment); |
114 | |
115 | // Convert the right-hand side integer as necessary. |
116 | APSIntType ComparisonType = std::max(a: WraparoundType, b: APSIntType(From)); |
117 | llvm::APSInt ConvertedFrom = ComparisonType.convert(Value: From); |
118 | llvm::APSInt ConvertedTo = ComparisonType.convert(Value: To); |
119 | |
120 | // Prefer unsigned comparisons. |
121 | if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && |
122 | ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) |
123 | Adjustment.setIsSigned(false); |
124 | |
125 | if (InRange) |
126 | return assumeSymWithinInclusiveRange(State, Sym: AdjustedSym, From: ConvertedFrom, |
127 | To: ConvertedTo, Adjustment); |
128 | return assumeSymOutsideInclusiveRange(State, Sym: AdjustedSym, From: ConvertedFrom, |
129 | To: ConvertedTo, Adjustment); |
130 | } |
131 | |
132 | ProgramStateRef |
133 | RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State, |
134 | SymbolRef Sym, bool Assumption) { |
135 | Sym = simplify(State, Sym); |
136 | |
137 | BasicValueFactory &BVF = getBasicVals(); |
138 | QualType T = Sym->getType(); |
139 | |
140 | // Non-integer types are not supported. |
141 | if (!T->isIntegralOrEnumerationType()) |
142 | return State; |
143 | |
144 | // Reverse the operation and add directly to state. |
145 | const llvm::APSInt &Zero = BVF.getValue(X: 0, T); |
146 | if (Assumption) |
147 | return assumeSymNE(State, Sym, V: Zero, Adjustment: Zero); |
148 | else |
149 | return assumeSymEQ(State, Sym, V: Zero, Adjustment: Zero); |
150 | } |
151 | |
152 | ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State, |
153 | SymbolRef Sym, |
154 | BinaryOperator::Opcode Op, |
155 | const llvm::APSInt &Int) { |
156 | assert(BinaryOperator::isComparisonOp(Op) && |
157 | "Non-comparison ops should be rewritten as comparisons to zero." ); |
158 | |
159 | // Simplification: translate an assume of a constraint of the form |
160 | // "(exp comparison_op expr) != 0" to true into an assume of |
161 | // "exp comparison_op expr" to true. (And similarly, an assume of the form |
162 | // "(exp comparison_op expr) == 0" to true into an assume of |
163 | // "exp comparison_op expr" to false.) |
164 | if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) { |
165 | if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Val: Sym)) |
166 | if (BinaryOperator::isComparisonOp(Opc: SE->getOpcode())) |
167 | return assumeSym(State, Sym, Assumption: (Op == BO_NE ? true : false)); |
168 | } |
169 | |
170 | // Get the type used for calculating wraparound. |
171 | BasicValueFactory &BVF = getBasicVals(); |
172 | APSIntType WraparoundType = BVF.getAPSIntType(T: Sym->getType()); |
173 | |
174 | // We only handle simple comparisons of the form "$sym == constant" |
175 | // or "($sym+constant1) == constant2". |
176 | // The adjustment is "constant1" in the above expression. It's used to |
177 | // "slide" the solution range around for modular arithmetic. For example, |
178 | // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which |
179 | // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to |
180 | // the subclasses of SimpleConstraintManager to handle the adjustment. |
181 | llvm::APSInt Adjustment = WraparoundType.getZeroValue(); |
182 | computeAdjustment(Sym, Adjustment); |
183 | |
184 | // Convert the right-hand side integer as necessary. |
185 | APSIntType ComparisonType = std::max(a: WraparoundType, b: APSIntType(Int)); |
186 | llvm::APSInt ConvertedInt = ComparisonType.convert(Value: Int); |
187 | |
188 | // Prefer unsigned comparisons. |
189 | if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && |
190 | ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) |
191 | Adjustment.setIsSigned(false); |
192 | |
193 | switch (Op) { |
194 | default: |
195 | llvm_unreachable("invalid operation not caught by assertion above" ); |
196 | |
197 | case BO_EQ: |
198 | return assumeSymEQ(State, Sym, V: ConvertedInt, Adjustment); |
199 | |
200 | case BO_NE: |
201 | return assumeSymNE(State, Sym, V: ConvertedInt, Adjustment); |
202 | |
203 | case BO_GT: |
204 | return assumeSymGT(State, Sym, V: ConvertedInt, Adjustment); |
205 | |
206 | case BO_GE: |
207 | return assumeSymGE(State, Sym, V: ConvertedInt, Adjustment); |
208 | |
209 | case BO_LT: |
210 | return assumeSymLT(State, Sym, V: ConvertedInt, Adjustment); |
211 | |
212 | case BO_LE: |
213 | return assumeSymLE(State, Sym, V: ConvertedInt, Adjustment); |
214 | } // end switch |
215 | } |
216 | |
217 | void RangedConstraintManager::computeAdjustment(SymbolRef &Sym, |
218 | llvm::APSInt &Adjustment) { |
219 | // Is it a "($sym+constant1)" expression? |
220 | if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Val: Sym)) { |
221 | BinaryOperator::Opcode Op = SE->getOpcode(); |
222 | if (Op == BO_Add || Op == BO_Sub) { |
223 | Sym = SE->getLHS(); |
224 | Adjustment = APSIntType(Adjustment).convert(Value: SE->getRHS()); |
225 | |
226 | // Don't forget to negate the adjustment if it's being subtracted. |
227 | // This should happen /after/ promotion, in case the value being |
228 | // subtracted is, say, CHAR_MIN, and the promoted type is 'int'. |
229 | if (Op == BO_Sub) |
230 | Adjustment = -Adjustment; |
231 | } |
232 | } |
233 | } |
234 | |
235 | SVal simplifyToSVal(ProgramStateRef State, SymbolRef Sym) { |
236 | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
237 | return SVB.simplifySVal(State, Val: SVB.makeSymbolVal(Sym)); |
238 | } |
239 | |
240 | SymbolRef simplify(ProgramStateRef State, SymbolRef Sym) { |
241 | SVal SimplifiedVal = simplifyToSVal(State, Sym); |
242 | if (SymbolRef SimplifiedSym = SimplifiedVal.getAsSymbol()) |
243 | return SimplifiedSym; |
244 | return Sym; |
245 | } |
246 | |
247 | } // end of namespace ento |
248 | } // end of namespace clang |
249 | |