1 | //===-- asan_interface_test.cpp -------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of AddressSanitizer, an address sanity checker. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | #include "asan_test_utils.h" |
13 | #include "sanitizer_common/sanitizer_internal_defs.h" |
14 | #include <sanitizer/allocator_interface.h> |
15 | #include <sanitizer/asan_interface.h> |
16 | #include <vector> |
17 | |
18 | TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) { |
19 | EXPECT_EQ(0U, __sanitizer_get_estimated_allocated_size(size: 0)); |
20 | const size_t sizes[] = { 1, 30, 1<<30 }; |
21 | for (size_t i = 0; i < 3; i++) { |
22 | EXPECT_EQ(sizes[i], __sanitizer_get_estimated_allocated_size(size: sizes[i])); |
23 | } |
24 | } |
25 | |
26 | static const char* kGetAllocatedSizeErrorMsg = |
27 | "attempting to call __sanitizer_get_allocated_size" ; |
28 | |
29 | TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) { |
30 | const size_t kArraySize = 100; |
31 | char *array = Ident((char*)malloc(size: kArraySize)); |
32 | int *int_ptr = Ident(new int); |
33 | |
34 | // Allocated memory is owned by allocator. Allocated size should be |
35 | // equal to requested size. |
36 | EXPECT_EQ(true, __sanitizer_get_ownership(p: array)); |
37 | EXPECT_EQ(kArraySize, __sanitizer_get_allocated_size(p: array)); |
38 | EXPECT_EQ(true, __sanitizer_get_ownership(p: int_ptr)); |
39 | EXPECT_EQ(sizeof(int), __sanitizer_get_allocated_size(p: int_ptr)); |
40 | |
41 | // We cannot call GetAllocatedSize from the memory we didn't map, |
42 | // and from the interior pointers (not returned by previous malloc). |
43 | void *wild_addr = (void*)0x1; |
44 | EXPECT_FALSE(__sanitizer_get_ownership(p: wild_addr)); |
45 | EXPECT_DEATH(__sanitizer_get_allocated_size(p: wild_addr), |
46 | kGetAllocatedSizeErrorMsg); |
47 | EXPECT_FALSE(__sanitizer_get_ownership(p: array + kArraySize / 2)); |
48 | EXPECT_DEATH(__sanitizer_get_allocated_size(p: array + kArraySize / 2), |
49 | kGetAllocatedSizeErrorMsg); |
50 | |
51 | // NULL is not owned, but is a valid argument for |
52 | // __sanitizer_get_allocated_size(). |
53 | EXPECT_FALSE(__sanitizer_get_ownership(NULL)); |
54 | EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL)); |
55 | |
56 | // When memory is freed, it's not owned, and call to GetAllocatedSize |
57 | // is forbidden. |
58 | free(ptr: array); |
59 | EXPECT_FALSE(__sanitizer_get_ownership(p: array)); |
60 | EXPECT_DEATH(__sanitizer_get_allocated_size(p: array), |
61 | kGetAllocatedSizeErrorMsg); |
62 | delete int_ptr; |
63 | |
64 | void *zero_alloc = Ident(malloc(size: 0)); |
65 | if (zero_alloc != 0) { |
66 | // If malloc(0) is not null, this pointer is owned and should have valid |
67 | // allocated size. |
68 | EXPECT_TRUE(__sanitizer_get_ownership(p: zero_alloc)); |
69 | // Allocated size is 0 or 1 depending on the allocator used. |
70 | EXPECT_LT(__sanitizer_get_allocated_size(p: zero_alloc), 2U); |
71 | } |
72 | free(ptr: zero_alloc); |
73 | } |
74 | |
75 | TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) { |
76 | size_t before_malloc, after_malloc, after_free; |
77 | char *array; |
78 | const size_t kMallocSize = 100; |
79 | before_malloc = __sanitizer_get_current_allocated_bytes(); |
80 | |
81 | array = Ident((char*)malloc(size: kMallocSize)); |
82 | after_malloc = __sanitizer_get_current_allocated_bytes(); |
83 | EXPECT_EQ(before_malloc + kMallocSize, after_malloc); |
84 | |
85 | free(ptr: array); |
86 | after_free = __sanitizer_get_current_allocated_bytes(); |
87 | EXPECT_EQ(before_malloc, after_free); |
88 | } |
89 | |
90 | TEST(AddressSanitizerInterface, GetHeapSizeTest) { |
91 | // ASan allocator does not keep huge chunks in free list, but unmaps them. |
92 | // The chunk should be greater than the quarantine size, |
93 | // otherwise it will be stuck in quarantine instead of being unmapped. |
94 | static const size_t kLargeMallocSize = (1 << 28) + 1; // 256M |
95 | free(Ident(malloc(size: kLargeMallocSize))); // Drain quarantine. |
96 | size_t old_heap_size = __sanitizer_get_heap_size(); |
97 | for (int i = 0; i < 3; i++) { |
98 | // fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize); |
99 | free(Ident(malloc(size: kLargeMallocSize))); |
100 | EXPECT_EQ(old_heap_size, __sanitizer_get_heap_size()); |
101 | } |
102 | } |
103 | |
104 | #if !defined(__NetBSD__) |
105 | static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<14, 357}; |
106 | static const size_t kManyThreadsIterations = 250; |
107 | static const size_t kManyThreadsNumThreads = |
108 | (SANITIZER_WORDSIZE == 32) ? 40 : 200; |
109 | |
110 | static void *ManyThreadsWithStatsWorker(void *arg) { |
111 | (void)arg; |
112 | for (size_t iter = 0; iter < kManyThreadsIterations; iter++) { |
113 | for (size_t size_index = 0; size_index < 4; size_index++) { |
114 | free(Ident(malloc(size: kManyThreadsMallocSizes[size_index]))); |
115 | } |
116 | } |
117 | // Just one large allocation. |
118 | free(Ident(malloc(size: 1 << 20))); |
119 | return 0; |
120 | } |
121 | |
122 | TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) { |
123 | size_t before_test, after_test, i; |
124 | pthread_t threads[kManyThreadsNumThreads]; |
125 | before_test = __sanitizer_get_current_allocated_bytes(); |
126 | for (i = 0; i < kManyThreadsNumThreads; i++) { |
127 | PTHREAD_CREATE(&threads[i], 0, |
128 | (void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i); |
129 | } |
130 | for (i = 0; i < kManyThreadsNumThreads; i++) { |
131 | PTHREAD_JOIN(threads[i], 0); |
132 | } |
133 | after_test = __sanitizer_get_current_allocated_bytes(); |
134 | // ASan stats also reflect memory usage of internal ASan RTL structs, |
135 | // so we can't check for equality here. |
136 | EXPECT_LT(after_test, before_test + (1UL<<20)); |
137 | } |
138 | #endif |
139 | |
140 | static void DoDoubleFree() { |
141 | int *x = Ident(new int); |
142 | delete Ident(x); |
143 | delete Ident(x); |
144 | } |
145 | |
146 | static void MyDeathCallback() { |
147 | fprintf(stderr, format: "MyDeathCallback\n" ); |
148 | fflush(stream: 0); // On Windows, stderr doesn't flush on crash. |
149 | } |
150 | |
151 | TEST(AddressSanitizerInterface, DeathCallbackTest) { |
152 | __asan_set_death_callback(callback: MyDeathCallback); |
153 | EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback" ); |
154 | __asan_set_death_callback(NULL); |
155 | } |
156 | |
157 | #define GOOD_ACCESS(ptr, offset) \ |
158 | EXPECT_FALSE(__asan_address_is_poisoned(ptr + offset)) |
159 | |
160 | #define BAD_ACCESS(ptr, offset) \ |
161 | EXPECT_TRUE(__asan_address_is_poisoned(ptr + offset)) |
162 | |
163 | static const char* kUseAfterPoisonErrorMessage = "use-after-poison" ; |
164 | |
165 | TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) { |
166 | char *array = Ident((char*)malloc(size: 120)); |
167 | // poison array[40..80) |
168 | __asan_poison_memory_region(addr: array + 40, size: 40); |
169 | GOOD_ACCESS(array, 39); |
170 | GOOD_ACCESS(array, 80); |
171 | BAD_ACCESS(array, 40); |
172 | BAD_ACCESS(array, 60); |
173 | BAD_ACCESS(array, 79); |
174 | EXPECT_DEATH(Ident(array[40]), kUseAfterPoisonErrorMessage); |
175 | __asan_unpoison_memory_region(addr: array + 40, size: 40); |
176 | // access previously poisoned memory. |
177 | GOOD_ACCESS(array, 40); |
178 | GOOD_ACCESS(array, 79); |
179 | free(ptr: array); |
180 | } |
181 | |
182 | TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) { |
183 | char *array = Ident((char*)malloc(size: 120)); |
184 | // Poison [0..40) and [80..120) |
185 | __asan_poison_memory_region(addr: array, size: 40); |
186 | __asan_poison_memory_region(addr: array + 80, size: 40); |
187 | BAD_ACCESS(array, 20); |
188 | GOOD_ACCESS(array, 60); |
189 | BAD_ACCESS(array, 100); |
190 | // Poison whole array - [0..120) |
191 | __asan_poison_memory_region(addr: array, size: 120); |
192 | BAD_ACCESS(array, 60); |
193 | // Unpoison [24..96) |
194 | __asan_unpoison_memory_region(addr: array + 24, size: 72); |
195 | BAD_ACCESS(array, 23); |
196 | GOOD_ACCESS(array, 24); |
197 | GOOD_ACCESS(array, 60); |
198 | GOOD_ACCESS(array, 95); |
199 | BAD_ACCESS(array, 96); |
200 | free(ptr: array); |
201 | } |
202 | |
203 | TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) { |
204 | // Vector of capacity 20 |
205 | char *vec = Ident((char*)malloc(size: 20)); |
206 | __asan_poison_memory_region(addr: vec, size: 20); |
207 | for (size_t i = 0; i < 7; i++) { |
208 | // Simulate push_back. |
209 | __asan_unpoison_memory_region(addr: vec + i, size: 1); |
210 | GOOD_ACCESS(vec, i); |
211 | BAD_ACCESS(vec, i + 1); |
212 | } |
213 | for (size_t i = 7; i > 0; i--) { |
214 | // Simulate pop_back. |
215 | __asan_poison_memory_region(addr: vec + i - 1, size: 1); |
216 | BAD_ACCESS(vec, i - 1); |
217 | if (i > 1) GOOD_ACCESS(vec, i - 2); |
218 | } |
219 | free(ptr: vec); |
220 | } |
221 | |
222 | #if !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3 |
223 | // Make sure that each aligned block of size "2^granularity" doesn't have |
224 | // "true" value before "false" value. |
225 | static void MakeShadowValid(bool *shadow, int length, int granularity) { |
226 | bool can_be_poisoned = true; |
227 | for (int i = length - 1; i >= 0; i--) { |
228 | if (!shadow[i]) |
229 | can_be_poisoned = false; |
230 | if (!can_be_poisoned) |
231 | shadow[i] = false; |
232 | if (i % (1 << granularity) == 0) { |
233 | can_be_poisoned = true; |
234 | } |
235 | } |
236 | } |
237 | |
238 | TEST(AddressSanitizerInterface, PoisoningStressTest) { |
239 | const size_t kSize = 24; |
240 | bool expected[kSize]; |
241 | char *arr = Ident((char*)malloc(size: kSize)); |
242 | for (size_t l1 = 0; l1 < kSize; l1++) { |
243 | for (size_t s1 = 1; l1 + s1 <= kSize; s1++) { |
244 | for (size_t l2 = 0; l2 < kSize; l2++) { |
245 | for (size_t s2 = 1; l2 + s2 <= kSize; s2++) { |
246 | // Poison [l1, l1+s1), [l2, l2+s2) and check result. |
247 | __asan_unpoison_memory_region(addr: arr, size: kSize); |
248 | __asan_poison_memory_region(addr: arr + l1, size: s1); |
249 | __asan_poison_memory_region(addr: arr + l2, size: s2); |
250 | memset(s: expected, c: false, n: kSize); |
251 | memset(s: expected + l1, c: true, n: s1); |
252 | MakeShadowValid(shadow: expected, length: kSize, /*granularity*/ 3); |
253 | memset(s: expected + l2, c: true, n: s2); |
254 | MakeShadowValid(shadow: expected, length: kSize, /*granularity*/ 3); |
255 | for (size_t i = 0; i < kSize; i++) { |
256 | ASSERT_EQ(expected[i], __asan_address_is_poisoned(addr: arr + i)); |
257 | } |
258 | // Unpoison [l1, l1+s1) and [l2, l2+s2) and check result. |
259 | __asan_poison_memory_region(addr: arr, size: kSize); |
260 | __asan_unpoison_memory_region(addr: arr + l1, size: s1); |
261 | __asan_unpoison_memory_region(addr: arr + l2, size: s2); |
262 | memset(s: expected, c: true, n: kSize); |
263 | memset(s: expected + l1, c: false, n: s1); |
264 | MakeShadowValid(shadow: expected, length: kSize, /*granularity*/ 3); |
265 | memset(s: expected + l2, c: false, n: s2); |
266 | MakeShadowValid(shadow: expected, length: kSize, /*granularity*/ 3); |
267 | for (size_t i = 0; i < kSize; i++) { |
268 | ASSERT_EQ(expected[i], __asan_address_is_poisoned(addr: arr + i)); |
269 | } |
270 | } |
271 | } |
272 | } |
273 | } |
274 | free(ptr: arr); |
275 | } |
276 | #endif // !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3 |
277 | |
278 | TEST(AddressSanitizerInterface, GlobalRedzones) { |
279 | GOOD_ACCESS(glob1, 1 - 1); |
280 | GOOD_ACCESS(glob2, 2 - 1); |
281 | GOOD_ACCESS(glob3, 3 - 1); |
282 | GOOD_ACCESS(glob4, 4 - 1); |
283 | GOOD_ACCESS(glob5, 5 - 1); |
284 | GOOD_ACCESS(glob6, 6 - 1); |
285 | GOOD_ACCESS(glob7, 7 - 1); |
286 | GOOD_ACCESS(glob8, 8 - 1); |
287 | GOOD_ACCESS(glob9, 9 - 1); |
288 | GOOD_ACCESS(glob10, 10 - 1); |
289 | GOOD_ACCESS(glob11, 11 - 1); |
290 | GOOD_ACCESS(glob12, 12 - 1); |
291 | GOOD_ACCESS(glob13, 13 - 1); |
292 | GOOD_ACCESS(glob14, 14 - 1); |
293 | GOOD_ACCESS(glob15, 15 - 1); |
294 | GOOD_ACCESS(glob16, 16 - 1); |
295 | GOOD_ACCESS(glob17, 17 - 1); |
296 | GOOD_ACCESS(glob1000, 1000 - 1); |
297 | GOOD_ACCESS(glob10000, 10000 - 1); |
298 | GOOD_ACCESS(glob100000, 100000 - 1); |
299 | |
300 | BAD_ACCESS(glob1, 1); |
301 | BAD_ACCESS(glob2, 2); |
302 | BAD_ACCESS(glob3, 3); |
303 | BAD_ACCESS(glob4, 4); |
304 | BAD_ACCESS(glob5, 5); |
305 | BAD_ACCESS(glob6, 6); |
306 | BAD_ACCESS(glob7, 7); |
307 | BAD_ACCESS(glob8, 8); |
308 | BAD_ACCESS(glob9, 9); |
309 | BAD_ACCESS(glob10, 10); |
310 | BAD_ACCESS(glob11, 11); |
311 | BAD_ACCESS(glob12, 12); |
312 | BAD_ACCESS(glob13, 13); |
313 | BAD_ACCESS(glob14, 14); |
314 | BAD_ACCESS(glob15, 15); |
315 | BAD_ACCESS(glob16, 16); |
316 | BAD_ACCESS(glob17, 17); |
317 | BAD_ACCESS(glob1000, 1000); |
318 | BAD_ACCESS(glob1000, 1100); // Redzone is at least 101 bytes. |
319 | BAD_ACCESS(glob10000, 10000); |
320 | BAD_ACCESS(glob10000, 11000); // Redzone is at least 1001 bytes. |
321 | BAD_ACCESS(glob100000, 100000); |
322 | BAD_ACCESS(glob100000, 110000); // Redzone is at least 10001 bytes. |
323 | } |
324 | |
325 | TEST(AddressSanitizerInterface, PoisonedRegion) { |
326 | size_t rz = 16; |
327 | for (size_t size = 1; size <= 64; size++) { |
328 | char *p = new char[size]; |
329 | for (size_t beg = 0; beg < size + rz; beg++) { |
330 | for (size_t end = beg; end < size + rz; end++) { |
331 | void *first_poisoned = __asan_region_is_poisoned(beg: p + beg, size: end - beg); |
332 | if (beg == end) { |
333 | EXPECT_FALSE(first_poisoned); |
334 | } else if (beg < size && end <= size) { |
335 | EXPECT_FALSE(first_poisoned); |
336 | } else if (beg >= size) { |
337 | EXPECT_EQ(p + beg, first_poisoned); |
338 | } else { |
339 | EXPECT_GT(end, size); |
340 | EXPECT_EQ(p + size, first_poisoned); |
341 | } |
342 | } |
343 | } |
344 | delete [] p; |
345 | } |
346 | } |
347 | |
348 | // This is a performance benchmark for manual runs. |
349 | // asan's memset interceptor calls mem_is_zero for the entire shadow region. |
350 | // the profile should look like this: |
351 | // 89.10% [.] __memset_sse2 |
352 | // 10.50% [.] __sanitizer::mem_is_zero |
353 | // I.e. mem_is_zero should consume ~ SHADOW_GRANULARITY less CPU cycles |
354 | // than memset itself. |
355 | TEST(AddressSanitizerInterface, DISABLED_StressLargeMemset) { |
356 | size_t size = 1 << 20; |
357 | char *x = new char[size]; |
358 | for (int i = 0; i < 100000; i++) |
359 | Ident(memset)(x, 0, size); |
360 | delete [] x; |
361 | } |
362 | |
363 | // Same here, but we run memset with small sizes. |
364 | TEST(AddressSanitizerInterface, DISABLED_StressSmallMemset) { |
365 | size_t size = 32; |
366 | char *x = new char[size]; |
367 | for (int i = 0; i < 100000000; i++) |
368 | Ident(memset)(x, 0, size); |
369 | delete [] x; |
370 | } |
371 | static const char *kInvalidPoisonMessage = "invalid-poison-memory-range" ; |
372 | static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range" ; |
373 | |
374 | TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) { |
375 | char *array = Ident((char*)malloc(size: 120)); |
376 | __asan_unpoison_memory_region(addr: array, size: 120); |
377 | // Try to unpoison not owned memory |
378 | EXPECT_DEATH(__asan_unpoison_memory_region(addr: array, size: 121), |
379 | kInvalidUnpoisonMessage); |
380 | EXPECT_DEATH(__asan_unpoison_memory_region(addr: array - 1, size: 120), |
381 | kInvalidUnpoisonMessage); |
382 | |
383 | __asan_poison_memory_region(addr: array, size: 120); |
384 | // Try to poison not owned memory. |
385 | EXPECT_DEATH(__asan_poison_memory_region(addr: array, size: 121), kInvalidPoisonMessage); |
386 | EXPECT_DEATH(__asan_poison_memory_region(addr: array - 1, size: 120), |
387 | kInvalidPoisonMessage); |
388 | free(ptr: array); |
389 | } |
390 | |
391 | TEST(AddressSanitizerInterface, GetOwnershipStressTest) { |
392 | std::vector<char *> pointers; |
393 | std::vector<size_t> sizes; |
394 | const size_t kNumMallocs = 1 << 9; |
395 | for (size_t i = 0; i < kNumMallocs; i++) { |
396 | size_t size = i * 100 + 1; |
397 | pointers.push_back((char*)malloc(size)); |
398 | sizes.push_back(size); |
399 | } |
400 | for (size_t i = 0; i < 4000000; i++) { |
401 | EXPECT_FALSE(__sanitizer_get_ownership(&pointers)); |
402 | EXPECT_FALSE(__sanitizer_get_ownership(p: (void*)0x1234)); |
403 | size_t idx = i % kNumMallocs; |
404 | EXPECT_TRUE(__sanitizer_get_ownership(pointers[idx])); |
405 | EXPECT_EQ(sizes[idx], __sanitizer_get_allocated_size(pointers[idx])); |
406 | } |
407 | for (size_t i = 0, n = pointers.size(); i < n; i++) |
408 | free(pointers[i]); |
409 | } |
410 | |
411 | TEST(AddressSanitizerInterface, HandleNoReturnTest) { |
412 | char array[40]; |
413 | __asan_poison_memory_region(addr: array, size: sizeof(array)); |
414 | BAD_ACCESS(array, 20); |
415 | __asan_handle_no_return(); |
416 | // Fake stack does not need to be unpoisoned. |
417 | if (__asan_get_current_fake_stack()) |
418 | return; |
419 | // It unpoisons the whole thread stack. |
420 | GOOD_ACCESS(array, 20); |
421 | } |
422 | |