1 | //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a configuration header for soft-float routines in compiler-rt. |
10 | // This file does not provide any part of the compiler-rt interface, but defines |
11 | // many useful constants and utility routines that are used in the |
12 | // implementation of the soft-float routines in compiler-rt. |
13 | // |
14 | // Assumes that float, double and long double correspond to the IEEE-754 |
15 | // binary32, binary64 and binary 128 types, respectively, and that integer |
16 | // endianness matches floating point endianness on the target platform. |
17 | // |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | #ifndef FP_LIB_HEADER |
21 | #define |
22 | |
23 | #include "int_lib.h" |
24 | #include "int_math.h" |
25 | #include "int_types.h" |
26 | #include <limits.h> |
27 | #include <stdbool.h> |
28 | #include <stdint.h> |
29 | |
30 | #if defined SINGLE_PRECISION |
31 | |
32 | typedef uint16_t half_rep_t; |
33 | typedef uint32_t rep_t; |
34 | typedef uint64_t twice_rep_t; |
35 | typedef int32_t srep_t; |
36 | typedef float fp_t; |
37 | #define HALF_REP_C UINT16_C |
38 | #define REP_C UINT32_C |
39 | #define significandBits 23 |
40 | |
41 | static __inline int rep_clz(rep_t a) { return clzsi(a); } |
42 | |
43 | // 32x32 --> 64 bit multiply |
44 | static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { |
45 | const uint64_t product = (uint64_t)a * b; |
46 | *hi = (rep_t)(product >> 32); |
47 | *lo = (rep_t)product; |
48 | } |
49 | COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b); |
50 | |
51 | #elif defined DOUBLE_PRECISION |
52 | |
53 | typedef uint32_t half_rep_t; |
54 | typedef uint64_t rep_t; |
55 | typedef int64_t srep_t; |
56 | typedef double fp_t; |
57 | #define HALF_REP_C UINT32_C |
58 | #define REP_C UINT64_C |
59 | #define significandBits 52 |
60 | |
61 | static __inline int rep_clz(rep_t a) { |
62 | #if defined __LP64__ |
63 | return __builtin_clzl(a); |
64 | #else |
65 | if (a & REP_C(0xffffffff00000000)) |
66 | return clzsi(a >> 32); |
67 | else |
68 | return 32 + clzsi(a & REP_C(0xffffffff)); |
69 | #endif |
70 | } |
71 | |
72 | #define loWord(a) (a & 0xffffffffU) |
73 | #define hiWord(a) (a >> 32) |
74 | |
75 | // 64x64 -> 128 wide multiply for platforms that don't have such an operation; |
76 | // many 64-bit platforms have this operation, but they tend to have hardware |
77 | // floating-point, so we don't bother with a special case for them here. |
78 | static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { |
79 | // Each of the component 32x32 -> 64 products |
80 | const uint64_t plolo = loWord(a) * loWord(b); |
81 | const uint64_t plohi = loWord(a) * hiWord(b); |
82 | const uint64_t philo = hiWord(a) * loWord(b); |
83 | const uint64_t phihi = hiWord(a) * hiWord(b); |
84 | // Sum terms that contribute to lo in a way that allows us to get the carry |
85 | const uint64_t r0 = loWord(plolo); |
86 | const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo); |
87 | *lo = r0 + (r1 << 32); |
88 | // Sum terms contributing to hi with the carry from lo |
89 | *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi; |
90 | } |
91 | #undef loWord |
92 | #undef hiWord |
93 | |
94 | COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b); |
95 | |
96 | #elif defined QUAD_PRECISION |
97 | #if defined(CRT_HAS_F128) && defined(CRT_HAS_128BIT) |
98 | typedef uint64_t half_rep_t; |
99 | typedef __uint128_t rep_t; |
100 | typedef __int128_t srep_t; |
101 | typedef tf_float fp_t; |
102 | #define HALF_REP_C UINT64_C |
103 | #define REP_C (__uint128_t) |
104 | #if defined(CRT_HAS_IEEE_TF) |
105 | // Note: Since there is no explicit way to tell compiler the constant is a |
106 | // 128-bit integer, we let the constant be casted to 128-bit integer |
107 | #define significandBits 112 |
108 | #define TF_MANT_DIG (significandBits + 1) |
109 | |
110 | static __inline int rep_clz(rep_t a) { |
111 | const union { |
112 | __uint128_t ll; |
113 | #if _YUGA_BIG_ENDIAN |
114 | struct { |
115 | uint64_t high, low; |
116 | } s; |
117 | #else |
118 | struct { |
119 | uint64_t low, high; |
120 | } s; |
121 | #endif |
122 | } uu = {.ll = a}; |
123 | |
124 | uint64_t word; |
125 | uint64_t add; |
126 | |
127 | if (uu.s.high) { |
128 | word = uu.s.high; |
129 | add = 0; |
130 | } else { |
131 | word = uu.s.low; |
132 | add = 64; |
133 | } |
134 | return __builtin_clzll(word) + add; |
135 | } |
136 | |
137 | #define Word_LoMask UINT64_C(0x00000000ffffffff) |
138 | #define Word_HiMask UINT64_C(0xffffffff00000000) |
139 | #define Word_FullMask UINT64_C(0xffffffffffffffff) |
140 | #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask) |
141 | #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask) |
142 | #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask) |
143 | #define Word_4(a) (uint64_t)(a & Word_LoMask) |
144 | |
145 | // 128x128 -> 256 wide multiply for platforms that don't have such an operation; |
146 | // many 64-bit platforms have this operation, but they tend to have hardware |
147 | // floating-point, so we don't bother with a special case for them here. |
148 | static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { |
149 | |
150 | const uint64_t product11 = Word_1(a) * Word_1(b); |
151 | const uint64_t product12 = Word_1(a) * Word_2(b); |
152 | const uint64_t product13 = Word_1(a) * Word_3(b); |
153 | const uint64_t product14 = Word_1(a) * Word_4(b); |
154 | const uint64_t product21 = Word_2(a) * Word_1(b); |
155 | const uint64_t product22 = Word_2(a) * Word_2(b); |
156 | const uint64_t product23 = Word_2(a) * Word_3(b); |
157 | const uint64_t product24 = Word_2(a) * Word_4(b); |
158 | const uint64_t product31 = Word_3(a) * Word_1(b); |
159 | const uint64_t product32 = Word_3(a) * Word_2(b); |
160 | const uint64_t product33 = Word_3(a) * Word_3(b); |
161 | const uint64_t product34 = Word_3(a) * Word_4(b); |
162 | const uint64_t product41 = Word_4(a) * Word_1(b); |
163 | const uint64_t product42 = Word_4(a) * Word_2(b); |
164 | const uint64_t product43 = Word_4(a) * Word_3(b); |
165 | const uint64_t product44 = Word_4(a) * Word_4(b); |
166 | |
167 | const __uint128_t sum0 = (__uint128_t)product44; |
168 | const __uint128_t sum1 = (__uint128_t)product34 + (__uint128_t)product43; |
169 | const __uint128_t sum2 = |
170 | (__uint128_t)product24 + (__uint128_t)product33 + (__uint128_t)product42; |
171 | const __uint128_t sum3 = (__uint128_t)product14 + (__uint128_t)product23 + |
172 | (__uint128_t)product32 + (__uint128_t)product41; |
173 | const __uint128_t sum4 = |
174 | (__uint128_t)product13 + (__uint128_t)product22 + (__uint128_t)product31; |
175 | const __uint128_t sum5 = (__uint128_t)product12 + (__uint128_t)product21; |
176 | const __uint128_t sum6 = (__uint128_t)product11; |
177 | |
178 | const __uint128_t r0 = (sum0 & Word_FullMask) + ((sum1 & Word_LoMask) << 32); |
179 | const __uint128_t r1 = (sum0 >> 64) + ((sum1 >> 32) & Word_FullMask) + |
180 | (sum2 & Word_FullMask) + ((sum3 << 32) & Word_HiMask); |
181 | |
182 | *lo = r0 + (r1 << 64); |
183 | *hi = (r1 >> 64) + (sum1 >> 96) + (sum2 >> 64) + (sum3 >> 32) + sum4 + |
184 | (sum5 << 32) + (sum6 << 64); |
185 | } |
186 | #undef Word_1 |
187 | #undef Word_2 |
188 | #undef Word_3 |
189 | #undef Word_4 |
190 | #undef Word_HiMask |
191 | #undef Word_LoMask |
192 | #undef Word_FullMask |
193 | #endif // defined(CRT_HAS_IEEE_TF) |
194 | #else |
195 | typedef long double fp_t; |
196 | #endif // defined(CRT_HAS_F128) && defined(CRT_HAS_128BIT) |
197 | #else |
198 | #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined. |
199 | #endif |
200 | |
201 | #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \ |
202 | (defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE)) |
203 | #define typeWidth (sizeof(rep_t) * CHAR_BIT) |
204 | |
205 | static __inline rep_t toRep(fp_t x) { |
206 | const union { |
207 | fp_t f; |
208 | rep_t i; |
209 | } rep = {.f = x}; |
210 | return rep.i; |
211 | } |
212 | |
213 | static __inline fp_t fromRep(rep_t x) { |
214 | const union { |
215 | fp_t f; |
216 | rep_t i; |
217 | } rep = {.i = x}; |
218 | return rep.f; |
219 | } |
220 | |
221 | #if !defined(QUAD_PRECISION) || defined(CRT_HAS_IEEE_TF) |
222 | #define exponentBits (typeWidth - significandBits - 1) |
223 | #define maxExponent ((1 << exponentBits) - 1) |
224 | #define exponentBias (maxExponent >> 1) |
225 | |
226 | #define implicitBit (REP_C(1) << significandBits) |
227 | #define significandMask (implicitBit - 1U) |
228 | #define signBit (REP_C(1) << (significandBits + exponentBits)) |
229 | #define absMask (signBit - 1U) |
230 | #define exponentMask (absMask ^ significandMask) |
231 | #define oneRep ((rep_t)exponentBias << significandBits) |
232 | #define infRep exponentMask |
233 | #define quietBit (implicitBit >> 1) |
234 | #define qnanRep (exponentMask | quietBit) |
235 | |
236 | static __inline int normalize(rep_t *significand) { |
237 | const int shift = rep_clz(a: *significand) - rep_clz(implicitBit); |
238 | *significand <<= shift; |
239 | return 1 - shift; |
240 | } |
241 | |
242 | static __inline void wideLeftShift(rep_t *hi, rep_t *lo, unsigned int count) { |
243 | *hi = *hi << count | *lo >> (typeWidth - count); |
244 | *lo = *lo << count; |
245 | } |
246 | |
247 | static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, |
248 | unsigned int count) { |
249 | if (count < typeWidth) { |
250 | const bool sticky = (*lo << (typeWidth - count)) != 0; |
251 | *lo = *hi << (typeWidth - count) | *lo >> count | sticky; |
252 | *hi = *hi >> count; |
253 | } else if (count < 2 * typeWidth) { |
254 | const bool sticky = *hi << (2 * typeWidth - count) | *lo; |
255 | *lo = *hi >> (count - typeWidth) | sticky; |
256 | *hi = 0; |
257 | } else { |
258 | const bool sticky = *hi | *lo; |
259 | *lo = sticky; |
260 | *hi = 0; |
261 | } |
262 | } |
263 | |
264 | // Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids |
265 | // pulling in a libm dependency from compiler-rt, but is not meant to replace |
266 | // it (i.e. code calling logb() should get the one from libm, not this), hence |
267 | // the __compiler_rt prefix. |
268 | static __inline fp_t __compiler_rt_logbX(fp_t x) { |
269 | rep_t rep = toRep(x); |
270 | int exp = (rep & exponentMask) >> significandBits; |
271 | |
272 | // Abnormal cases: |
273 | // 1) +/- inf returns +inf; NaN returns NaN |
274 | // 2) 0.0 returns -inf |
275 | if (exp == maxExponent) { |
276 | if (((rep & signBit) == 0) || (x != x)) { |
277 | return x; // NaN or +inf: return x |
278 | } else { |
279 | return -x; // -inf: return -x |
280 | } |
281 | } else if (x == 0.0) { |
282 | // 0.0: return -inf |
283 | return fromRep(infRep | signBit); |
284 | } |
285 | |
286 | if (exp != 0) { |
287 | // Normal number |
288 | return exp - exponentBias; // Unbias exponent |
289 | } else { |
290 | // Subnormal number; normalize and repeat |
291 | rep &= absMask; |
292 | const int shift = 1 - normalize(significand: &rep); |
293 | exp = (rep & exponentMask) >> significandBits; |
294 | return exp - exponentBias - shift; // Unbias exponent |
295 | } |
296 | } |
297 | |
298 | // Avoid using scalbn from libm. Unlike libc/libm scalbn, this function never |
299 | // sets errno on underflow/overflow. |
300 | static __inline fp_t __compiler_rt_scalbnX(fp_t x, int y) { |
301 | const rep_t rep = toRep(x); |
302 | int exp = (rep & exponentMask) >> significandBits; |
303 | |
304 | if (x == 0.0 || exp == maxExponent) |
305 | return x; // +/- 0.0, NaN, or inf: return x |
306 | |
307 | // Normalize subnormal input. |
308 | rep_t sig = rep & significandMask; |
309 | if (exp == 0) { |
310 | exp += normalize(significand: &sig); |
311 | sig &= ~implicitBit; // clear the implicit bit again |
312 | } |
313 | |
314 | if (__builtin_sadd_overflow(exp, y, &exp)) { |
315 | // Saturate the exponent, which will guarantee an underflow/overflow below. |
316 | exp = (y >= 0) ? INT_MAX : INT_MIN; |
317 | } |
318 | |
319 | // Return this value: [+/-] 1.sig * 2 ** (exp - exponentBias). |
320 | const rep_t sign = rep & signBit; |
321 | if (exp >= maxExponent) { |
322 | // Overflow, which could produce infinity or the largest-magnitude value, |
323 | // depending on the rounding mode. |
324 | return fromRep(x: sign | ((rep_t)(maxExponent - 1) << significandBits)) * 2.0f; |
325 | } else if (exp <= 0) { |
326 | // Subnormal or underflow. Use floating-point multiply to handle truncation |
327 | // correctly. |
328 | fp_t tmp = fromRep(x: sign | (REP_C(1) << significandBits) | sig); |
329 | exp += exponentBias - 1; |
330 | if (exp < 1) |
331 | exp = 1; |
332 | tmp *= fromRep(x: (rep_t)exp << significandBits); |
333 | return tmp; |
334 | } else |
335 | return fromRep(x: sign | ((rep_t)exp << significandBits) | sig); |
336 | } |
337 | |
338 | #endif // !defined(QUAD_PRECISION) || defined(CRT_HAS_IEEE_TF) |
339 | |
340 | // Avoid using fmax from libm. |
341 | static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) { |
342 | // If either argument is NaN, return the other argument. If both are NaN, |
343 | // arbitrarily return the second one. Otherwise, if both arguments are +/-0, |
344 | // arbitrarily return the first one. |
345 | return (crt_isnan(x) || x < y) ? y : x; |
346 | } |
347 | |
348 | #endif |
349 | |
350 | #if defined(SINGLE_PRECISION) |
351 | |
352 | static __inline fp_t __compiler_rt_logbf(fp_t x) { |
353 | return __compiler_rt_logbX(x); |
354 | } |
355 | static __inline fp_t __compiler_rt_scalbnf(fp_t x, int y) { |
356 | return __compiler_rt_scalbnX(x, y); |
357 | } |
358 | static __inline fp_t __compiler_rt_fmaxf(fp_t x, fp_t y) { |
359 | #if defined(__aarch64__) |
360 | // Use __builtin_fmaxf which turns into an fmaxnm instruction on AArch64. |
361 | return __builtin_fmaxf(x, y); |
362 | #else |
363 | // __builtin_fmaxf frequently turns into a libm call, so inline the function. |
364 | return __compiler_rt_fmaxX(x, y); |
365 | #endif |
366 | } |
367 | |
368 | #elif defined(DOUBLE_PRECISION) |
369 | |
370 | static __inline fp_t __compiler_rt_logb(fp_t x) { |
371 | return __compiler_rt_logbX(x); |
372 | } |
373 | static __inline fp_t __compiler_rt_scalbn(fp_t x, int y) { |
374 | return __compiler_rt_scalbnX(x, y); |
375 | } |
376 | static __inline fp_t __compiler_rt_fmax(fp_t x, fp_t y) { |
377 | #if defined(__aarch64__) |
378 | // Use __builtin_fmax which turns into an fmaxnm instruction on AArch64. |
379 | return __builtin_fmax(x, y); |
380 | #else |
381 | // __builtin_fmax frequently turns into a libm call, so inline the function. |
382 | return __compiler_rt_fmaxX(x, y); |
383 | #endif |
384 | } |
385 | |
386 | #elif defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE) |
387 | // The generic implementation only works for ieee754 floating point. For other |
388 | // floating point types, continue to rely on the libm implementation for now. |
389 | #if defined(CRT_HAS_IEEE_TF) |
390 | static __inline tf_float __compiler_rt_logbtf(tf_float x) { |
391 | return __compiler_rt_logbX(x); |
392 | } |
393 | static __inline tf_float __compiler_rt_scalbntf(tf_float x, int y) { |
394 | return __compiler_rt_scalbnX(x, y); |
395 | } |
396 | static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) { |
397 | return __compiler_rt_fmaxX(x, y); |
398 | } |
399 | #define __compiler_rt_logbl __compiler_rt_logbtf |
400 | #define __compiler_rt_scalbnl __compiler_rt_scalbntf |
401 | #define __compiler_rt_fmaxl __compiler_rt_fmaxtf |
402 | #define crt_fabstf crt_fabsf128 |
403 | #define crt_copysigntf crt_copysignf128 |
404 | #elif defined(CRT_LDBL_128BIT) |
405 | static __inline tf_float __compiler_rt_logbtf(tf_float x) { |
406 | return crt_logbl(x); |
407 | } |
408 | static __inline tf_float __compiler_rt_scalbntf(tf_float x, int y) { |
409 | return crt_scalbnl(x, y); |
410 | } |
411 | static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) { |
412 | return crt_fmaxl(x, y); |
413 | } |
414 | #define __compiler_rt_logbl crt_logbl |
415 | #define __compiler_rt_scalbnl crt_scalbnl |
416 | #define __compiler_rt_fmaxl crt_fmaxl |
417 | #define crt_fabstf crt_fabsl |
418 | #define crt_copysigntf crt_copysignl |
419 | #else |
420 | #error Unsupported TF mode type |
421 | #endif |
422 | |
423 | #endif // *_PRECISION |
424 | |
425 | #endif // FP_LIB_HEADER |
426 | |