1 | //= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements a fairly generic conversion from a wider to a narrower |
10 | // IEEE-754 floating-point type in the default (round to nearest, ties to even) |
11 | // rounding mode. The constants and types defined following the includes below |
12 | // parameterize the conversion. |
13 | // |
14 | // This routine can be trivially adapted to support conversions to |
15 | // half-precision or from quad-precision. It does not support types that don't |
16 | // use the usual IEEE-754 interchange formats; specifically, some work would be |
17 | // needed to adapt it to (for example) the Intel 80-bit format or PowerPC |
18 | // double-double format. |
19 | // |
20 | // Note please, however, that this implementation is only intended to support |
21 | // *narrowing* operations; if you need to convert to a *wider* floating-point |
22 | // type (e.g. float -> double), then this routine will not do what you want it |
23 | // to. |
24 | // |
25 | // It also requires that integer types at least as large as both formats |
26 | // are available on the target platform; this may pose a problem when trying |
27 | // to add support for quad on some 32-bit systems, for example. |
28 | // |
29 | // Finally, the following assumptions are made: |
30 | // |
31 | // 1. Floating-point types and integer types have the same endianness on the |
32 | // target platform. |
33 | // |
34 | // 2. Quiet NaNs, if supported, are indicated by the leading bit of the |
35 | // significand field being set. |
36 | // |
37 | //===----------------------------------------------------------------------===// |
38 | |
39 | #include "fp_trunc.h" |
40 | |
41 | // The destination type may use a usual IEEE-754 interchange format or Intel |
42 | // 80-bit format. In particular, for the destination type dstSigFracBits may be |
43 | // not equal to dstSigBits. The source type is assumed to be one of IEEE-754 |
44 | // standard types. |
45 | static __inline dst_t __truncXfYf2__(src_t a) { |
46 | // Various constants whose values follow from the type parameters. |
47 | // Any reasonable optimizer will fold and propagate all of these. |
48 | const int srcInfExp = (1 << srcExpBits) - 1; |
49 | const int srcExpBias = srcInfExp >> 1; |
50 | |
51 | const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigFracBits; |
52 | const src_rep_t roundMask = |
53 | (SRC_REP_C(1) << (srcSigFracBits - dstSigFracBits)) - 1; |
54 | const src_rep_t halfway = SRC_REP_C(1) |
55 | << (srcSigFracBits - dstSigFracBits - 1); |
56 | const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigFracBits - 1); |
57 | const src_rep_t srcNaNCode = srcQNaN - 1; |
58 | |
59 | const int dstInfExp = (1 << dstExpBits) - 1; |
60 | const int dstExpBias = dstInfExp >> 1; |
61 | const int overflowExponent = srcExpBias + dstInfExp - dstExpBias; |
62 | |
63 | const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigFracBits - 1); |
64 | const dst_rep_t dstNaNCode = dstQNaN - 1; |
65 | |
66 | const src_rep_t aRep = srcToRep(x: a); |
67 | const src_rep_t srcSign = extract_sign_from_src(x: aRep); |
68 | const src_rep_t srcExp = extract_exp_from_src(x: aRep); |
69 | const src_rep_t srcSigFrac = extract_sig_frac_from_src(x: aRep); |
70 | |
71 | dst_rep_t dstSign = srcSign; |
72 | dst_rep_t dstExp; |
73 | dst_rep_t dstSigFrac; |
74 | |
75 | // Same size exponents and a's significand tail is 0. |
76 | // The significand can be truncated and the exponent can be copied over. |
77 | const int sigFracTailBits = srcSigFracBits - dstSigFracBits; |
78 | if (srcExpBits == dstExpBits && |
79 | ((aRep >> sigFracTailBits) << sigFracTailBits) == aRep) { |
80 | dstExp = srcExp; |
81 | dstSigFrac = (dst_rep_t)(srcSigFrac >> sigFracTailBits); |
82 | return dstFromRep(x: construct_dst_rep(sign: dstSign, exp: dstExp, sigFrac: dstSigFrac)); |
83 | } |
84 | |
85 | const int dstExpCandidate = ((int)srcExp - srcExpBias) + dstExpBias; |
86 | if (dstExpCandidate >= 1 && dstExpCandidate < dstInfExp) { |
87 | // The exponent of a is within the range of normal numbers in the |
88 | // destination format. We can convert by simply right-shifting with |
89 | // rounding and adjusting the exponent. |
90 | dstExp = dstExpCandidate; |
91 | dstSigFrac = (dst_rep_t)(srcSigFrac >> sigFracTailBits); |
92 | |
93 | const src_rep_t roundBits = srcSigFrac & roundMask; |
94 | // Round to nearest. |
95 | if (roundBits > halfway) |
96 | dstSigFrac++; |
97 | // Tie to even. |
98 | else if (roundBits == halfway) |
99 | dstSigFrac += dstSigFrac & 1; |
100 | |
101 | // Rounding has changed the exponent. |
102 | if (dstSigFrac >= (DST_REP_C(1) << dstSigFracBits)) { |
103 | dstExp += 1; |
104 | dstSigFrac ^= (DST_REP_C(1) << dstSigFracBits); |
105 | } |
106 | } else if (srcExp == srcInfExp && srcSigFrac) { |
107 | // a is NaN. |
108 | // Conjure the result by beginning with infinity, setting the qNaN |
109 | // bit and inserting the (truncated) trailing NaN field. |
110 | dstExp = dstInfExp; |
111 | dstSigFrac = dstQNaN; |
112 | dstSigFrac |= ((srcSigFrac & srcNaNCode) >> sigFracTailBits) & dstNaNCode; |
113 | } else if ((int)srcExp >= overflowExponent) { |
114 | dstExp = dstInfExp; |
115 | dstSigFrac = 0; |
116 | } else { |
117 | // a underflows on conversion to the destination type or is an exact |
118 | // zero. The result may be a denormal or zero. Extract the exponent |
119 | // to get the shift amount for the denormalization. |
120 | src_rep_t significand = srcSigFrac; |
121 | int shift = srcExpBias - dstExpBias - srcExp; |
122 | |
123 | if (srcExp) { |
124 | // Set the implicit integer bit if the source is a normal number. |
125 | significand |= srcMinNormal; |
126 | shift += 1; |
127 | } |
128 | |
129 | // Right shift by the denormalization amount with sticky. |
130 | if (shift > srcSigFracBits) { |
131 | dstExp = 0; |
132 | dstSigFrac = 0; |
133 | } else { |
134 | dstExp = 0; |
135 | const bool sticky = shift && ((significand << (srcBits - shift)) != 0); |
136 | src_rep_t denormalizedSignificand = significand >> shift | sticky; |
137 | dstSigFrac = denormalizedSignificand >> sigFracTailBits; |
138 | const src_rep_t roundBits = denormalizedSignificand & roundMask; |
139 | // Round to nearest |
140 | if (roundBits > halfway) |
141 | dstSigFrac++; |
142 | // Ties to even |
143 | else if (roundBits == halfway) |
144 | dstSigFrac += dstSigFrac & 1; |
145 | |
146 | // Rounding has changed the exponent. |
147 | if (dstSigFrac >= (DST_REP_C(1) << dstSigFracBits)) { |
148 | dstExp += 1; |
149 | dstSigFrac ^= (DST_REP_C(1) << dstSigFracBits); |
150 | } |
151 | } |
152 | } |
153 | |
154 | return dstFromRep(x: construct_dst_rep(sign: dstSign, exp: dstExp, sigFrac: dstSigFrac)); |
155 | } |
156 | |