| 1 | //===----------------------Hexagon builtin routine ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // Double Precision Multiply |
| 10 | #define A r1:0 |
| 11 | #define AH r1 |
| 12 | #define AL r0 |
| 13 | #define B r3:2 |
| 14 | #define BH r3 |
| 15 | #define BL r2 |
| 16 | |
| 17 | #define BTMP r5:4 |
| 18 | #define BTMPH r5 |
| 19 | #define BTMPL r4 |
| 20 | |
| 21 | #define PP_ODD r7:6 |
| 22 | #define PP_ODD_H r7 |
| 23 | #define PP_ODD_L r6 |
| 24 | |
| 25 | #define ONE r9:8 |
| 26 | #define S_ONE r8 |
| 27 | #define S_ZERO r9 |
| 28 | |
| 29 | #define PP_HH r11:10 |
| 30 | #define PP_HH_H r11 |
| 31 | #define PP_HH_L r10 |
| 32 | |
| 33 | #define ATMP r13:12 |
| 34 | #define ATMPH r13 |
| 35 | #define ATMPL r12 |
| 36 | |
| 37 | #define PP_LL r15:14 |
| 38 | #define PP_LL_H r15 |
| 39 | #define PP_LL_L r14 |
| 40 | |
| 41 | #define TMP r28 |
| 42 | |
| 43 | #define MANTBITS 52 |
| 44 | #define HI_MANTBITS 20 |
| 45 | #define EXPBITS 11 |
| 46 | #define BIAS 1024 |
| 47 | #define MANTISSA_TO_INT_BIAS 52 |
| 48 | |
| 49 | // Some constant to adjust normalization amount in error code |
| 50 | // Amount to right shift the partial product to get to a denorm |
| 51 | #define FUDGE 5 |
| 52 | |
| 53 | #define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG |
| 54 | #define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG |
| 55 | #define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG |
| 56 | #define END(TAG) .size TAG,.-TAG |
| 57 | |
| 58 | #define SR_ROUND_OFF 22 |
| 59 | .text |
| 60 | .global __hexagon_muldf3 |
| 61 | .type __hexagon_muldf3,@function |
| 62 | Q6_ALIAS(muldf3) |
| 63 | FAST_ALIAS(muldf3) |
| 64 | FAST2_ALIAS(muldf3) |
| 65 | .p2align 5 |
| 66 | __hexagon_muldf3: |
| 67 | { |
| 68 | p0 = dfclass(A,#2) |
| 69 | p0 = dfclass(B,#2) |
| 70 | ATMP = combine(##0x40000000,#0) |
| 71 | } |
| 72 | { |
| 73 | ATMP = insert(A,#MANTBITS,#EXPBITS-1) |
| 74 | BTMP = asl(B,#EXPBITS-1) |
| 75 | TMP = #-BIAS |
| 76 | ONE = #1 |
| 77 | } |
| 78 | { |
| 79 | PP_ODD = mpyu(BTMPL,ATMPH) |
| 80 | BTMP = insert(ONE,#2,#62) |
| 81 | } |
| 82 | // since we know that the MSB of the H registers is zero, we should never carry |
| 83 | // H <= 2^31-1. L <= 2^32-1. Therefore, HL <= 2^63-2^32-2^31+1 |
| 84 | // Adding 2 HLs, we get 2^64-3*2^32+2 maximum. |
| 85 | // Therefore, we can add 3 2^32-1 values safely without carry. We only need one. |
| 86 | { |
| 87 | PP_LL = mpyu(ATMPL,BTMPL) |
| 88 | PP_ODD += mpyu(ATMPL,BTMPH) |
| 89 | } |
| 90 | { |
| 91 | PP_ODD += lsr(PP_LL,#32) |
| 92 | PP_HH = mpyu(ATMPH,BTMPH) |
| 93 | BTMP = combine(##BIAS+BIAS-4,#0) |
| 94 | } |
| 95 | { |
| 96 | PP_HH += lsr(PP_ODD,#32) |
| 97 | if (!p0) jump .Lmul_abnormal |
| 98 | p1 = cmp.eq(PP_LL_L,#0) // 64 lsb's 0? |
| 99 | p1 = cmp.eq(PP_ODD_L,#0) // 64 lsb's 0? |
| 100 | } |
| 101 | |
| 102 | // PP_HH can have a maximum of 0x3FFF_FFFF_FFFF_FFFF or thereabouts |
| 103 | // PP_HH can have a minimum of 0x1000_0000_0000_0000 or so |
| 104 | |
| 105 | #undef PP_ODD |
| 106 | #undef PP_ODD_H |
| 107 | #undef PP_ODD_L |
| 108 | #define EXP10 r7:6 |
| 109 | #define EXP1 r7 |
| 110 | #define EXP0 r6 |
| 111 | { |
| 112 | if (!p1) PP_HH_L = or(PP_HH_L,S_ONE) |
| 113 | EXP0 = extractu(AH,#EXPBITS,#HI_MANTBITS) |
| 114 | EXP1 = extractu(BH,#EXPBITS,#HI_MANTBITS) |
| 115 | } |
| 116 | { |
| 117 | PP_LL = neg(PP_HH) |
| 118 | EXP0 += add(TMP,EXP1) |
| 119 | TMP = xor(AH,BH) |
| 120 | } |
| 121 | { |
| 122 | if (!p2.new) PP_HH = PP_LL |
| 123 | p2 = cmp.gt(TMP,#-1) |
| 124 | p0 = !cmp.gt(EXP0,BTMPH) |
| 125 | p0 = cmp.gt(EXP0,BTMPL) |
| 126 | if (!p0.new) jump:nt .Lmul_ovf_unf |
| 127 | } |
| 128 | { |
| 129 | A = convert_d2df(PP_HH) |
| 130 | EXP0 = add(EXP0,#-BIAS-58) |
| 131 | } |
| 132 | { |
| 133 | AH += asl(EXP0,#HI_MANTBITS) |
| 134 | jumpr r31 |
| 135 | } |
| 136 | |
| 137 | .falign |
| 138 | .Lpossible_unf: |
| 139 | // We end up with a positive exponent |
| 140 | // But we may have rounded up to an exponent of 1. |
| 141 | // If the exponent is 1, if we rounded up to it |
| 142 | // we need to also raise underflow |
| 143 | // Fortunately, this is pretty easy to detect, we must have +/- 0x0010_0000_0000_0000 |
| 144 | // And the PP should also have more than one bit set |
| 145 | // |
| 146 | // Note: ATMP should have abs(PP_HH) |
| 147 | // Note: BTMPL should have 0x7FEFFFFF |
| 148 | { |
| 149 | p0 = cmp.eq(AL,#0) |
| 150 | p0 = bitsclr(AH,BTMPL) |
| 151 | if (!p0.new) jumpr:t r31 |
| 152 | BTMPH = #0x7fff |
| 153 | } |
| 154 | { |
| 155 | p0 = bitsset(ATMPH,BTMPH) |
| 156 | BTMPL = USR |
| 157 | BTMPH = #0x030 |
| 158 | } |
| 159 | { |
| 160 | if (p0) BTMPL = or(BTMPL,BTMPH) |
| 161 | } |
| 162 | { |
| 163 | USR = BTMPL |
| 164 | } |
| 165 | { |
| 166 | p0 = dfcmp.eq(A,A) |
| 167 | jumpr r31 |
| 168 | } |
| 169 | .falign |
| 170 | .Lmul_ovf_unf: |
| 171 | { |
| 172 | A = convert_d2df(PP_HH) |
| 173 | ATMP = abs(PP_HH) // take absolute value |
| 174 | EXP1 = add(EXP0,#-BIAS-58) |
| 175 | } |
| 176 | { |
| 177 | AH += asl(EXP1,#HI_MANTBITS) |
| 178 | EXP1 = extractu(AH,#EXPBITS,#HI_MANTBITS) |
| 179 | BTMPL = ##0x7FEFFFFF |
| 180 | } |
| 181 | { |
| 182 | EXP1 += add(EXP0,##-BIAS-58) |
| 183 | //BTMPH = add(clb(ATMP),#-2) |
| 184 | BTMPH = #0 |
| 185 | } |
| 186 | { |
| 187 | p0 = cmp.gt(EXP1,##BIAS+BIAS-2) // overflow |
| 188 | if (p0.new) jump:nt .Lmul_ovf |
| 189 | } |
| 190 | { |
| 191 | p0 = cmp.gt(EXP1,#0) |
| 192 | if (p0.new) jump:nt .Lpossible_unf |
| 193 | BTMPH = sub(EXP0,BTMPH) |
| 194 | TMP = #63 // max amount to shift |
| 195 | } |
| 196 | // Underflow |
| 197 | // |
| 198 | // PP_HH has the partial product with sticky LSB. |
| 199 | // PP_HH can have a maximum of 0x3FFF_FFFF_FFFF_FFFF or thereabouts |
| 200 | // PP_HH can have a minimum of 0x1000_0000_0000_0000 or so |
| 201 | // The exponent of PP_HH is in EXP1, which is non-positive (0 or negative) |
| 202 | // That's the exponent that happens after the normalization |
| 203 | // |
| 204 | // EXP0 has the exponent that, when added to the normalized value, is out of range. |
| 205 | // |
| 206 | // Strategy: |
| 207 | // |
| 208 | // * Shift down bits, with sticky bit, such that the bits are aligned according |
| 209 | // to the LZ count and appropriate exponent, but not all the way to mantissa |
| 210 | // field, keep around the last few bits. |
| 211 | // * Put a 1 near the MSB |
| 212 | // * Check the LSBs for inexact; if inexact also set underflow |
| 213 | // * Convert [u]d2df -- will correctly round according to rounding mode |
| 214 | // * Replace exponent field with zero |
| 215 | |
| 216 | { |
| 217 | BTMPL = #0 // offset for extract |
| 218 | BTMPH = sub(#FUDGE,BTMPH) // amount to right shift |
| 219 | } |
| 220 | { |
| 221 | p3 = cmp.gt(PP_HH_H,#-1) // is it positive? |
| 222 | BTMPH = min(BTMPH,TMP) // Don't shift more than 63 |
| 223 | PP_HH = ATMP |
| 224 | } |
| 225 | { |
| 226 | TMP = USR |
| 227 | PP_LL = extractu(PP_HH,BTMP) |
| 228 | } |
| 229 | { |
| 230 | PP_HH = asr(PP_HH,BTMPH) |
| 231 | BTMPL = #0x0030 // underflow flag |
| 232 | AH = insert(S_ZERO,#EXPBITS,#HI_MANTBITS) |
| 233 | } |
| 234 | { |
| 235 | p0 = cmp.gtu(ONE,PP_LL) // Did we extract all zeros? |
| 236 | if (!p0.new) PP_HH_L = or(PP_HH_L,S_ONE) // add sticky bit |
| 237 | PP_HH_H = setbit(PP_HH_H,#HI_MANTBITS+3) // Add back in a bit so we can use convert instruction |
| 238 | } |
| 239 | { |
| 240 | PP_LL = neg(PP_HH) |
| 241 | p1 = bitsclr(PP_HH_L,#0x7) // Are the LSB's clear? |
| 242 | if (!p1.new) TMP = or(BTMPL,TMP) // If not, Inexact+Underflow |
| 243 | } |
| 244 | { |
| 245 | if (!p3) PP_HH = PP_LL |
| 246 | USR = TMP |
| 247 | } |
| 248 | { |
| 249 | A = convert_d2df(PP_HH) // Do rounding |
| 250 | p0 = dfcmp.eq(A,A) // realize exception |
| 251 | } |
| 252 | { |
| 253 | AH = insert(S_ZERO,#EXPBITS-1,#HI_MANTBITS+1) // Insert correct exponent |
| 254 | jumpr r31 |
| 255 | } |
| 256 | .falign |
| 257 | .Lmul_ovf: |
| 258 | // We get either max finite value or infinity. Either way, overflow+inexact |
| 259 | { |
| 260 | TMP = USR |
| 261 | ATMP = combine(##0x7fefffff,#-1) // positive max finite |
| 262 | A = PP_HH |
| 263 | } |
| 264 | { |
| 265 | PP_LL_L = extractu(TMP,#2,#SR_ROUND_OFF) // rounding bits |
| 266 | TMP = or(TMP,#0x28) // inexact + overflow |
| 267 | BTMP = combine(##0x7ff00000,#0) // positive infinity |
| 268 | } |
| 269 | { |
| 270 | USR = TMP |
| 271 | PP_LL_L ^= lsr(AH,#31) // Does sign match rounding? |
| 272 | TMP = PP_LL_L // unmodified rounding mode |
| 273 | } |
| 274 | { |
| 275 | p0 = !cmp.eq(TMP,#1) // If not round-to-zero and |
| 276 | p0 = !cmp.eq(PP_LL_L,#2) // Not rounding the other way, |
| 277 | if (p0.new) ATMP = BTMP // we should get infinity |
| 278 | p0 = dfcmp.eq(A,A) // Realize FP exception if enabled |
| 279 | } |
| 280 | { |
| 281 | A = insert(ATMP,#63,#0) // insert inf/maxfinite, leave sign |
| 282 | jumpr r31 |
| 283 | } |
| 284 | |
| 285 | .Lmul_abnormal: |
| 286 | { |
| 287 | ATMP = extractu(A,#63,#0) // strip off sign |
| 288 | BTMP = extractu(B,#63,#0) // strip off sign |
| 289 | } |
| 290 | { |
| 291 | p3 = cmp.gtu(ATMP,BTMP) |
| 292 | if (!p3.new) A = B // sort values |
| 293 | if (!p3.new) B = A // sort values |
| 294 | } |
| 295 | { |
| 296 | // Any NaN --> NaN, possibly raise invalid if sNaN |
| 297 | p0 = dfclass(A,#0x0f) // A not NaN? |
| 298 | if (!p0.new) jump:nt .Linvalid_nan |
| 299 | if (!p3) ATMP = BTMP |
| 300 | if (!p3) BTMP = ATMP |
| 301 | } |
| 302 | { |
| 303 | // Infinity * nonzero number is infinity |
| 304 | p1 = dfclass(A,#0x08) // A is infinity |
| 305 | p1 = dfclass(B,#0x0e) // B is nonzero |
| 306 | } |
| 307 | { |
| 308 | // Infinity * zero --> NaN, raise invalid |
| 309 | // Other zeros return zero |
| 310 | p0 = dfclass(A,#0x08) // A is infinity |
| 311 | p0 = dfclass(B,#0x01) // B is zero |
| 312 | } |
| 313 | { |
| 314 | if (p1) jump .Ltrue_inf |
| 315 | p2 = dfclass(B,#0x01) |
| 316 | } |
| 317 | { |
| 318 | if (p0) jump .Linvalid_zeroinf |
| 319 | if (p2) jump .Ltrue_zero // so return zero |
| 320 | TMP = ##0x7c000000 |
| 321 | } |
| 322 | // We are left with a normal or subnormal times a subnormal. A > B |
| 323 | // If A and B are both very small (exp(a) < BIAS-MANTBITS), |
| 324 | // we go to a single sticky bit, which we can round easily. |
| 325 | // If A and B might multiply to something bigger, decrease A exponent and increase |
| 326 | // B exponent and try again |
| 327 | { |
| 328 | p0 = bitsclr(AH,TMP) |
| 329 | if (p0.new) jump:nt .Lmul_tiny |
| 330 | } |
| 331 | { |
| 332 | TMP = cl0(BTMP) |
| 333 | } |
| 334 | { |
| 335 | TMP = add(TMP,#-EXPBITS) |
| 336 | } |
| 337 | { |
| 338 | BTMP = asl(BTMP,TMP) |
| 339 | } |
| 340 | { |
| 341 | B = insert(BTMP,#63,#0) |
| 342 | AH -= asl(TMP,#HI_MANTBITS) |
| 343 | } |
| 344 | jump __hexagon_muldf3 |
| 345 | .Lmul_tiny: |
| 346 | { |
| 347 | TMP = USR |
| 348 | A = xor(A,B) // get sign bit |
| 349 | } |
| 350 | { |
| 351 | TMP = or(TMP,#0x30) // Inexact + Underflow |
| 352 | A = insert(ONE,#63,#0) // put in rounded up value |
| 353 | BTMPH = extractu(TMP,#2,#SR_ROUND_OFF) // get rounding mode |
| 354 | } |
| 355 | { |
| 356 | USR = TMP |
| 357 | p0 = cmp.gt(BTMPH,#1) // Round towards pos/neg inf? |
| 358 | if (!p0.new) AL = #0 // If not, zero |
| 359 | BTMPH ^= lsr(AH,#31) // rounding my way --> set LSB |
| 360 | } |
| 361 | { |
| 362 | p0 = cmp.eq(BTMPH,#3) // if rounding towards right inf |
| 363 | if (!p0.new) AL = #0 // don't go to zero |
| 364 | jumpr r31 |
| 365 | } |
| 366 | .Linvalid_zeroinf: |
| 367 | { |
| 368 | TMP = USR |
| 369 | } |
| 370 | { |
| 371 | A = #-1 |
| 372 | TMP = or(TMP,#2) |
| 373 | } |
| 374 | { |
| 375 | USR = TMP |
| 376 | } |
| 377 | { |
| 378 | p0 = dfcmp.uo(A,A) // force exception if enabled |
| 379 | jumpr r31 |
| 380 | } |
| 381 | .Linvalid_nan: |
| 382 | { |
| 383 | p0 = dfclass(B,#0x0f) // if B is not NaN |
| 384 | TMP = convert_df2sf(A) // will generate invalid if sNaN |
| 385 | if (p0.new) B = A // make it whatever A is |
| 386 | } |
| 387 | { |
| 388 | BL = convert_df2sf(B) // will generate invalid if sNaN |
| 389 | A = #-1 |
| 390 | jumpr r31 |
| 391 | } |
| 392 | .falign |
| 393 | .Ltrue_zero: |
| 394 | { |
| 395 | A = B |
| 396 | B = A |
| 397 | } |
| 398 | .Ltrue_inf: |
| 399 | { |
| 400 | BH = extract(BH,#1,#31) |
| 401 | } |
| 402 | { |
| 403 | AH ^= asl(BH,#31) |
| 404 | jumpr r31 |
| 405 | } |
| 406 | END(__hexagon_muldf3) |
| 407 | |
| 408 | #undef ATMP |
| 409 | #undef ATMPL |
| 410 | #undef ATMPH |
| 411 | #undef BTMP |
| 412 | #undef BTMPL |
| 413 | #undef BTMPH |
| 414 | |