1 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
2 | // See https://llvm.org/LICENSE.txt for license information. |
3 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
4 | |
5 | #include "../assembly.h" |
6 | |
7 | // di_int __moddi3(di_int a, di_int b); |
8 | |
9 | // result = remainder of a / b. |
10 | // both inputs and the output are 64-bit signed integers. |
11 | // This will do whatever the underlying hardware is set to do on division by zero. |
12 | // No other exceptions are generated, as the divide cannot overflow. |
13 | // |
14 | // This is targeted at 32-bit x86 *only*, as this can be done directly in hardware |
15 | // on x86_64. The performance goal is ~40 cycles per divide, which is faster than |
16 | // currently possible via simulation of integer divides on the x87 unit. |
17 | // |
18 | |
19 | // Stephen Canon, December 2008 |
20 | |
21 | #ifdef __i386__ |
22 | |
23 | .text |
24 | .balign 4 |
25 | DEFINE_COMPILERRT_FUNCTION(__moddi3) |
26 | |
27 | // This is currently implemented by wrapping the unsigned modulus up in an absolute |
28 | // value. This could certainly be improved upon. |
29 | |
30 | pushl %esi |
31 | movl 20(%esp), %edx // high word of b |
32 | movl 16(%esp), %eax // low word of b |
33 | movl %edx, %ecx |
34 | sarl $31, %ecx // (b < 0) ? -1 : 0 |
35 | xorl %ecx, %eax |
36 | xorl %ecx, %edx // EDX:EAX = (b < 0) ? not(b) : b |
37 | subl %ecx, %eax |
38 | sbbl %ecx, %edx // EDX:EAX = abs(b) |
39 | movl %edx, 20(%esp) |
40 | movl %eax, 16(%esp) // store abs(b) back to stack |
41 | |
42 | movl 12(%esp), %edx // high word of b |
43 | movl 8(%esp), %eax // low word of b |
44 | movl %edx, %ecx |
45 | sarl $31, %ecx // (a < 0) ? -1 : 0 |
46 | xorl %ecx, %eax |
47 | xorl %ecx, %edx // EDX:EAX = (a < 0) ? not(a) : a |
48 | subl %ecx, %eax |
49 | sbbl %ecx, %edx // EDX:EAX = abs(a) |
50 | movl %edx, 12(%esp) |
51 | movl %eax, 8(%esp) // store abs(a) back to stack |
52 | movl %ecx, %esi // set aside sign of a |
53 | |
54 | pushl %ebx |
55 | movl 24(%esp), %ebx // Find the index i of the leading bit in b. |
56 | bsrl %ebx, %ecx // If the high word of b is zero, jump to |
57 | jz 9f // the code to handle that special case [9]. |
58 | |
59 | // High word of b is known to be non-zero on this branch |
60 | |
61 | movl 20(%esp), %eax // Construct bhi, containing bits [1+i:32+i] of b |
62 | |
63 | shrl %cl, %eax // Practically, this means that bhi is given by: |
64 | shrl %eax // |
65 | notl %ecx // bhi = (high word of b) << (31 - i) | |
66 | shll %cl, %ebx // (low word of b) >> (1 + i) |
67 | orl %eax, %ebx // |
68 | movl 16(%esp), %edx // Load the high and low words of a, and jump |
69 | movl 12(%esp), %eax // to [2] if the high word is larger than bhi |
70 | cmpl %ebx, %edx // to avoid overflowing the upcoming divide. |
71 | jae 2f |
72 | |
73 | // High word of a is greater than or equal to (b >> (1 + i)) on this branch |
74 | |
75 | divl %ebx // eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r |
76 | |
77 | pushl %edi |
78 | notl %ecx |
79 | shrl %eax |
80 | shrl %cl, %eax // q = qs >> (1 + i) |
81 | movl %eax, %edi |
82 | mull 24(%esp) // q*blo |
83 | movl 16(%esp), %ebx |
84 | movl 20(%esp), %ecx // ECX:EBX = a |
85 | subl %eax, %ebx |
86 | sbbl %edx, %ecx // ECX:EBX = a - q*blo |
87 | movl 28(%esp), %eax |
88 | imull %edi, %eax // q*bhi |
89 | subl %eax, %ecx // ECX:EBX = a - q*b |
90 | |
91 | jnc 1f // if positive, this is the result. |
92 | addl 24(%esp), %ebx // otherwise |
93 | adcl 28(%esp), %ecx // ECX:EBX = a - (q-1)*b = result |
94 | 1: movl %ebx, %eax |
95 | movl %ecx, %edx |
96 | |
97 | addl %esi, %eax // Restore correct sign to result |
98 | adcl %esi, %edx |
99 | xorl %esi, %eax |
100 | xorl %esi, %edx |
101 | popl %edi // Restore callee-save registers |
102 | popl %ebx |
103 | popl %esi |
104 | retl // Return |
105 | |
106 | 2: // High word of a is greater than or equal to (b >> (1 + i)) on this branch |
107 | |
108 | subl %ebx, %edx // subtract bhi from ahi so that divide will not |
109 | divl %ebx // overflow, and find q and r such that |
110 | // |
111 | // ahi:alo = (1:q)*bhi + r |
112 | // |
113 | // Note that q is a number in (31-i).(1+i) |
114 | // fix point. |
115 | |
116 | pushl %edi |
117 | notl %ecx |
118 | shrl %eax |
119 | orl $0x80000000, %eax |
120 | shrl %cl, %eax // q = (1:qs) >> (1 + i) |
121 | movl %eax, %edi |
122 | mull 24(%esp) // q*blo |
123 | movl 16(%esp), %ebx |
124 | movl 20(%esp), %ecx // ECX:EBX = a |
125 | subl %eax, %ebx |
126 | sbbl %edx, %ecx // ECX:EBX = a - q*blo |
127 | movl 28(%esp), %eax |
128 | imull %edi, %eax // q*bhi |
129 | subl %eax, %ecx // ECX:EBX = a - q*b |
130 | |
131 | jnc 3f // if positive, this is the result. |
132 | addl 24(%esp), %ebx // otherwise |
133 | adcl 28(%esp), %ecx // ECX:EBX = a - (q-1)*b = result |
134 | 3: movl %ebx, %eax |
135 | movl %ecx, %edx |
136 | |
137 | addl %esi, %eax // Restore correct sign to result |
138 | adcl %esi, %edx |
139 | xorl %esi, %eax |
140 | xorl %esi, %edx |
141 | popl %edi // Restore callee-save registers |
142 | popl %ebx |
143 | popl %esi |
144 | retl // Return |
145 | |
146 | 9: // High word of b is zero on this branch |
147 | |
148 | movl 16(%esp), %eax // Find qhi and rhi such that |
149 | movl 20(%esp), %ecx // |
150 | xorl %edx, %edx // ahi = qhi*b + rhi with 0 ≤ rhi < b |
151 | divl %ecx // |
152 | movl %eax, %ebx // |
153 | movl 12(%esp), %eax // Find rlo such that |
154 | divl %ecx // |
155 | movl %edx, %eax // rhi:alo = qlo*b + rlo with 0 ≤ rlo < b |
156 | popl %ebx // |
157 | xorl %edx, %edx // and return 0:rlo |
158 | |
159 | addl %esi, %eax // Restore correct sign to result |
160 | adcl %esi, %edx |
161 | xorl %esi, %eax |
162 | xorl %esi, %edx |
163 | popl %esi |
164 | retl // Return |
165 | END_COMPILERRT_FUNCTION(__moddi3) |
166 | |
167 | #endif // __i386__ |
168 | |
169 | NO_EXEC_STACK_DIRECTIVE |
170 | |
171 | |