| 1 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 2 | // See https://llvm.org/LICENSE.txt for license information. |
| 3 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 4 | |
| 5 | #include "../assembly.h" |
| 6 | |
| 7 | // du_int __udivdi3(du_int a, du_int b); |
| 8 | |
| 9 | // result = a / b. |
| 10 | // both inputs and the output are 64-bit unsigned integers. |
| 11 | // This will do whatever the underlying hardware is set to do on division by zero. |
| 12 | // No other exceptions are generated, as the divide cannot overflow. |
| 13 | // |
| 14 | // This is targeted at 32-bit x86 *only*, as this can be done directly in hardware |
| 15 | // on x86_64. The performance goal is ~40 cycles per divide, which is faster than |
| 16 | // currently possible via simulation of integer divides on the x87 unit. |
| 17 | // |
| 18 | // Stephen Canon, December 2008 |
| 19 | |
| 20 | #ifdef __i386__ |
| 21 | |
| 22 | .text |
| 23 | .balign 4 |
| 24 | DEFINE_COMPILERRT_FUNCTION(__udivdi3) |
| 25 | |
| 26 | pushl %ebx |
| 27 | movl 20(%esp), %ebx // Find the index i of the leading bit in b. |
| 28 | bsrl %ebx, %ecx // If the high word of b is zero, jump to |
| 29 | jz 9f // the code to handle that special case [9]. |
| 30 | |
| 31 | // High word of b is known to be non-zero on this branch |
| 32 | |
| 33 | movl 16(%esp), %eax // Construct bhi, containing bits [1+i:32+i] of b |
| 34 | |
| 35 | shrl %cl, %eax // Practically, this means that bhi is given by: |
| 36 | shrl %eax // |
| 37 | notl %ecx // bhi = (high word of b) << (31 - i) | |
| 38 | shll %cl, %ebx // (low word of b) >> (1 + i) |
| 39 | orl %eax, %ebx // |
| 40 | movl 12(%esp), %edx // Load the high and low words of a, and jump |
| 41 | movl 8(%esp), %eax // to [1] if the high word is larger than bhi |
| 42 | cmpl %ebx, %edx // to avoid overflowing the upcoming divide. |
| 43 | jae 1f |
| 44 | |
| 45 | // High word of a is greater than or equal to (b >> (1 + i)) on this branch |
| 46 | |
| 47 | divl %ebx // eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r |
| 48 | |
| 49 | pushl %edi |
| 50 | notl %ecx |
| 51 | shrl %eax |
| 52 | shrl %cl, %eax // q = qs >> (1 + i) |
| 53 | movl %eax, %edi |
| 54 | mull 20(%esp) // q*blo |
| 55 | movl 12(%esp), %ebx |
| 56 | movl 16(%esp), %ecx // ECX:EBX = a |
| 57 | subl %eax, %ebx |
| 58 | sbbl %edx, %ecx // ECX:EBX = a - q*blo |
| 59 | movl 24(%esp), %eax |
| 60 | imull %edi, %eax // q*bhi |
| 61 | subl %eax, %ecx // ECX:EBX = a - q*b |
| 62 | sbbl $0, %edi // decrement q if remainder is negative |
| 63 | xorl %edx, %edx |
| 64 | movl %edi, %eax |
| 65 | popl %edi |
| 66 | popl %ebx |
| 67 | retl |
| 68 | |
| 69 | |
| 70 | 1: // High word of a is greater than or equal to (b >> (1 + i)) on this branch |
| 71 | |
| 72 | subl %ebx, %edx // subtract bhi from ahi so that divide will not |
| 73 | divl %ebx // overflow, and find q and r such that |
| 74 | // |
| 75 | // ahi:alo = (1:q)*bhi + r |
| 76 | // |
| 77 | // Note that q is a number in (31-i).(1+i) |
| 78 | // fix point. |
| 79 | |
| 80 | pushl %edi |
| 81 | notl %ecx |
| 82 | shrl %eax |
| 83 | orl $0x80000000, %eax |
| 84 | shrl %cl, %eax // q = (1:qs) >> (1 + i) |
| 85 | movl %eax, %edi |
| 86 | mull 20(%esp) // q*blo |
| 87 | movl 12(%esp), %ebx |
| 88 | movl 16(%esp), %ecx // ECX:EBX = a |
| 89 | subl %eax, %ebx |
| 90 | sbbl %edx, %ecx // ECX:EBX = a - q*blo |
| 91 | movl 24(%esp), %eax |
| 92 | imull %edi, %eax // q*bhi |
| 93 | subl %eax, %ecx // ECX:EBX = a - q*b |
| 94 | sbbl $0, %edi // decrement q if remainder is negative |
| 95 | xorl %edx, %edx |
| 96 | movl %edi, %eax |
| 97 | popl %edi |
| 98 | popl %ebx |
| 99 | retl |
| 100 | |
| 101 | |
| 102 | 9: // High word of b is zero on this branch |
| 103 | |
| 104 | movl 12(%esp), %eax // Find qhi and rhi such that |
| 105 | movl 16(%esp), %ecx // |
| 106 | xorl %edx, %edx // ahi = qhi*b + rhi with 0 ≤ rhi < b |
| 107 | divl %ecx // |
| 108 | movl %eax, %ebx // |
| 109 | movl 8(%esp), %eax // Find qlo such that |
| 110 | divl %ecx // |
| 111 | movl %ebx, %edx // rhi:alo = qlo*b + rlo with 0 ≤ rlo < b |
| 112 | popl %ebx // |
| 113 | retl // and return qhi:qlo |
| 114 | END_COMPILERRT_FUNCTION(__udivdi3) |
| 115 | |
| 116 | #endif // __i386__ |
| 117 | |
| 118 | NO_EXEC_STACK_DIRECTIVE |
| 119 | |
| 120 | |