1 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
---|---|
2 | // See https://llvm.org/LICENSE.txt for license information. |
3 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
4 | |
5 | // int64_t __fixunstfdi(long double x); |
6 | // This file implements the PowerPC 128-bit double-double -> int64_t conversion |
7 | |
8 | #include "../int_math.h" |
9 | #include "DD.h" |
10 | |
11 | uint64_t __fixtfdi(long double input) { |
12 | const DD x = {.ld = input}; |
13 | const doublebits hibits = {.d = x.s.hi}; |
14 | |
15 | const uint32_t absHighWord = |
16 | (uint32_t)(hibits.x >> 32) & UINT32_C(0x7fffffff); |
17 | const uint32_t absHighWordMinusOne = absHighWord - UINT32_C(0x3ff00000); |
18 | |
19 | // If (1.0 - tiny) <= input < 0x1.0p63: |
20 | if (UINT32_C(0x03f00000) > absHighWordMinusOne) { |
21 | // Do an unsigned conversion of the absolute value, then restore the sign. |
22 | const int unbiasedHeadExponent = absHighWordMinusOne >> 20; |
23 | |
24 | int64_t result = hibits.x & INT64_C(0x000fffffffffffff); // mantissa(hi) |
25 | result |= INT64_C(0x0010000000000000); // matissa(hi) with implicit bit |
26 | result <<= 10; // mantissa(hi) with one zero preceding bit. |
27 | |
28 | const int64_t hiNegationMask = ((int64_t)(hibits.x)) >> 63; |
29 | |
30 | // If the tail is non-zero, we need to patch in the tail bits. |
31 | if (0.0 != x.s.lo) { |
32 | const doublebits lobits = {.d = x.s.lo}; |
33 | int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff); |
34 | tailMantissa |= INT64_C(0x0010000000000000); |
35 | |
36 | // At this point we have the mantissa of |tail| |
37 | // We need to negate it if head and tail have different signs. |
38 | const int64_t loNegationMask = ((int64_t)(lobits.x)) >> 63; |
39 | const int64_t negationMask = loNegationMask ^ hiNegationMask; |
40 | tailMantissa = (tailMantissa ^ negationMask) - negationMask; |
41 | |
42 | // Now we have the mantissa of tail as a signed 2s-complement integer |
43 | |
44 | const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff; |
45 | |
46 | // Shift the tail mantissa into the right position, accounting for the |
47 | // bias of 10 that we shifted the head mantissa by. |
48 | tailMantissa >>= |
49 | (unbiasedHeadExponent - (biasedTailExponent - (1023 - 10))); |
50 | |
51 | result += tailMantissa; |
52 | } |
53 | |
54 | result >>= (62 - unbiasedHeadExponent); |
55 | |
56 | // Restore the sign of the result and return |
57 | result = (result ^ hiNegationMask) - hiNegationMask; |
58 | return result; |
59 | } |
60 | |
61 | // Edge cases handled here: |
62 | |
63 | // |x| < 1, result is zero. |
64 | if (1.0 > crt_fabs(x.s.hi)) |
65 | return INT64_C(0); |
66 | |
67 | // x very close to INT64_MIN, care must be taken to see which side we are on. |
68 | if (x.s.hi == -0x1.0p63) { |
69 | |
70 | int64_t result = INT64_MIN; |
71 | |
72 | if (0.0 < x.s.lo) { |
73 | // If the tail is positive, the correct result is something other than |
74 | // INT64_MIN. we'll need to figure out what it is. |
75 | |
76 | const doublebits lobits = {.d = x.s.lo}; |
77 | int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff); |
78 | tailMantissa |= INT64_C(0x0010000000000000); |
79 | |
80 | // Now we negate the tailMantissa |
81 | tailMantissa = (tailMantissa ^ INT64_C(-1)) + INT64_C(1); |
82 | |
83 | // And shift it by the appropriate amount |
84 | const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff; |
85 | tailMantissa >>= 1075 - biasedTailExponent; |
86 | |
87 | result -= tailMantissa; |
88 | } |
89 | |
90 | return result; |
91 | } |
92 | |
93 | // Signed overflows, infinities, and NaNs |
94 | if (x.s.hi > 0.0) |
95 | return INT64_MAX; |
96 | else |
97 | return INT64_MIN; |
98 | } |
99 |