| 1 | #include "../RootAutoDetector.h" |
| 2 | #include "sanitizer_common/sanitizer_array_ref.h" |
| 3 | #include "gmock/gmock.h" |
| 4 | #include "gtest/gtest.h" |
| 5 | |
| 6 | using namespace __ctx_profile; |
| 7 | using ::testing::IsEmpty; |
| 8 | using ::testing::Not; |
| 9 | using ::testing::SizeIs; |
| 10 | |
| 11 | // Utility for describing a preorder traversal. By default it captures the |
| 12 | // address and count at a callsite node. Implicitly nodes are expected to have 1 |
| 13 | // child. If they have none, we place a Marker::term and if they have more than |
| 14 | // one, we place a Marker::split(nr_of_children) For example, using a list |
| 15 | // notation, and letters to denote a pair of address and count: |
| 16 | // (A (B C) (D (E F))) is a list of markers: A, split(2), B, term, C, |
| 17 | // term, D, split(2), E, term, F, term |
| 18 | class Marker { |
| 19 | enum class Kind { End, Value, Split }; |
| 20 | const uptr Value; |
| 21 | const uptr Count; |
| 22 | const Kind K; |
| 23 | Marker(uptr V, uptr C, Kind S) : Value(V), Count(C), K(S) {} |
| 24 | |
| 25 | public: |
| 26 | Marker(uptr V, uptr C) : Marker(V, C, Kind::Value) {} |
| 27 | |
| 28 | static Marker split(uptr V) { return Marker(V, 0, Kind::Split); } |
| 29 | static Marker term() { return Marker(0, 0, Kind::End); } |
| 30 | |
| 31 | bool isSplit() const { return K == Kind::Split; } |
| 32 | bool isTerm() const { return K == Kind::End; } |
| 33 | bool isVal() const { return K == Kind::Value; } |
| 34 | |
| 35 | bool operator==(const Marker &M) const { |
| 36 | return Value == M.Value && Count == M.Count && K == M.K; |
| 37 | } |
| 38 | }; |
| 39 | |
| 40 | class MockCallsiteTrie final : public PerThreadCallsiteTrie { |
| 41 | // Return the first multiple of 100. |
| 42 | uptr getFctStartAddr(uptr CallsiteAddress) const override { |
| 43 | return (CallsiteAddress / 100) * 100; |
| 44 | } |
| 45 | |
| 46 | static void popAndCheck(ArrayRef<Marker> &Preorder, Marker M) { |
| 47 | ASSERT_THAT(Preorder, Not(IsEmpty())); |
| 48 | ASSERT_EQ(Preorder[0], M); |
| 49 | Preorder = Preorder.drop_front(); |
| 50 | } |
| 51 | |
| 52 | static void checkSameImpl(const Trie &T, ArrayRef<Marker> &Preorder) { |
| 53 | popAndCheck(Preorder, M: {T.CallsiteAddress, T.Count}); |
| 54 | |
| 55 | if (T.Children.empty()) { |
| 56 | popAndCheck(Preorder, M: Marker::term()); |
| 57 | return; |
| 58 | } |
| 59 | |
| 60 | if (T.Children.size() > 1) |
| 61 | popAndCheck(Preorder, M: Marker::split(V: T.Children.size())); |
| 62 | |
| 63 | T.Children.forEach(fn: [&](const auto &KVP) { |
| 64 | checkSameImpl(T: KVP.second, Preorder); |
| 65 | return true; |
| 66 | }); |
| 67 | } |
| 68 | |
| 69 | public: |
| 70 | void checkSame(ArrayRef<Marker> Preorder) const { |
| 71 | checkSameImpl(T: TheTrie, Preorder); |
| 72 | ASSERT_THAT(Preorder, IsEmpty()); |
| 73 | } |
| 74 | }; |
| 75 | |
| 76 | TEST(PerThreadCallsiteTrieTest, Insert) { |
| 77 | MockCallsiteTrie R; |
| 78 | uptr Stack1[]{4, 3, 2, 1}; |
| 79 | R.insertStack(ST: StackTrace(Stack1, 4)); |
| 80 | R.checkSame(Preorder: ArrayRef<Marker>( |
| 81 | {{0, 1}, {1, 1}, {2, 1}, {3, 1}, {4, 1}, Marker::term()})); |
| 82 | |
| 83 | uptr Stack2[]{5, 4, 3, 2, 1}; |
| 84 | R.insertStack(ST: StackTrace(Stack2, 5)); |
| 85 | R.checkSame(Preorder: ArrayRef<Marker>( |
| 86 | {{0, 2}, {1, 2}, {2, 2}, {3, 2}, {4, 2}, {5, 1}, Marker::term()})); |
| 87 | |
| 88 | uptr Stack3[]{6, 3, 2, 1}; |
| 89 | R.insertStack(ST: StackTrace(Stack3, 4)); |
| 90 | R.checkSame(Preorder: ArrayRef<Marker>({{0, 3}, |
| 91 | {1, 3}, |
| 92 | {2, 3}, |
| 93 | {3, 3}, |
| 94 | Marker::split(V: 2), |
| 95 | {4, 2}, |
| 96 | {5, 1}, |
| 97 | Marker::term(), |
| 98 | {6, 1}, |
| 99 | Marker::term()})); |
| 100 | uptr Stack4[]{7, 2, 1}; |
| 101 | R.insertStack(ST: StackTrace(Stack4, 3)); |
| 102 | R.checkSame(Preorder: ArrayRef<Marker>({{0, 4}, |
| 103 | {1, 4}, |
| 104 | {2, 4}, |
| 105 | Marker::split(V: 2), |
| 106 | {7, 1}, |
| 107 | Marker::term(), |
| 108 | {3, 3}, |
| 109 | Marker::split(V: 2), |
| 110 | {4, 2}, |
| 111 | {5, 1}, |
| 112 | Marker::term(), |
| 113 | {6, 1}, |
| 114 | Marker::term()})); |
| 115 | } |
| 116 | |
| 117 | TEST(PerThreadCallsiteTrieTest, DetectRoots) { |
| 118 | MockCallsiteTrie T; |
| 119 | |
| 120 | uptr Stack1[]{501, 302, 202, 102}; |
| 121 | uptr Stack2[]{601, 402, 203, 102}; |
| 122 | T.insertStack(ST: {Stack1, 4}); |
| 123 | T.insertStack(ST: {Stack2, 4}); |
| 124 | |
| 125 | auto R = T.determineRoots(); |
| 126 | EXPECT_THAT(R, SizeIs(2U)); |
| 127 | EXPECT_TRUE(R.contains(Key: 300)); |
| 128 | EXPECT_TRUE(R.contains(Key: 400)); |
| 129 | } |
| 130 | |
| 131 | TEST(PerThreadCallsiteTrieTest, DetectRootsNoBranches) { |
| 132 | MockCallsiteTrie T; |
| 133 | |
| 134 | uptr Stack1[]{501, 302, 202, 102}; |
| 135 | T.insertStack(ST: {Stack1, 4}); |
| 136 | |
| 137 | auto R = T.determineRoots(); |
| 138 | EXPECT_THAT(R, IsEmpty()); |
| 139 | } |
| 140 | |
| 141 | TEST(PerThreadCallsiteTrieTest, DetectRootsUnknownFct) { |
| 142 | MockCallsiteTrie T; |
| 143 | |
| 144 | uptr Stack1[]{501, 302, 202, 102}; |
| 145 | // The MockCallsiteTree address resolver resolves addresses over 100, so 40 |
| 146 | // will be mapped to 0. |
| 147 | uptr Stack2[]{601, 40, 203, 102}; |
| 148 | T.insertStack(ST: {Stack1, 4}); |
| 149 | T.insertStack(ST: {Stack2, 4}); |
| 150 | |
| 151 | auto R = T.determineRoots(); |
| 152 | ASSERT_THAT(R, SizeIs(2U)); |
| 153 | EXPECT_TRUE(R.contains(Key: 300)); |
| 154 | EXPECT_TRUE(R.contains(Key: 0)); |
| 155 | } |
| 156 | |