1 | //===-- dfsan.cpp ---------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of DataFlowSanitizer. |
10 | // |
11 | // DataFlowSanitizer runtime. This file defines the public interface to |
12 | // DataFlowSanitizer as well as the definition of certain runtime functions |
13 | // called automatically by the compiler (specifically the instrumentation pass |
14 | // in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp). |
15 | // |
16 | // The public interface is defined in include/sanitizer/dfsan_interface.h whose |
17 | // functions are prefixed dfsan_ while the compiler interface functions are |
18 | // prefixed __dfsan_. |
19 | //===----------------------------------------------------------------------===// |
20 | |
21 | #include "dfsan/dfsan.h" |
22 | |
23 | #include "dfsan/dfsan_chained_origin_depot.h" |
24 | #include "dfsan/dfsan_flags.h" |
25 | #include "dfsan/dfsan_origin.h" |
26 | #include "dfsan/dfsan_thread.h" |
27 | #include "sanitizer_common/sanitizer_atomic.h" |
28 | #include "sanitizer_common/sanitizer_common.h" |
29 | #include "sanitizer_common/sanitizer_file.h" |
30 | #include "sanitizer_common/sanitizer_flag_parser.h" |
31 | #include "sanitizer_common/sanitizer_flags.h" |
32 | #include "sanitizer_common/sanitizer_internal_defs.h" |
33 | #include "sanitizer_common/sanitizer_libc.h" |
34 | #include "sanitizer_common/sanitizer_report_decorator.h" |
35 | #include "sanitizer_common/sanitizer_stacktrace.h" |
36 | #if SANITIZER_LINUX |
37 | # include <sys/personality.h> |
38 | #endif |
39 | |
40 | using namespace __dfsan; |
41 | |
42 | Flags __dfsan::flags_data; |
43 | |
44 | // The size of TLS variables. These constants must be kept in sync with the ones |
45 | // in DataFlowSanitizer.cpp. |
46 | static const int kDFsanArgTlsSize = 800; |
47 | static const int kDFsanRetvalTlsSize = 800; |
48 | static const int kDFsanArgOriginTlsSize = 800; |
49 | |
50 | SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u64 |
51 | __dfsan_retval_tls[kDFsanRetvalTlsSize / sizeof(u64)]; |
52 | SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u32 __dfsan_retval_origin_tls; |
53 | SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u64 |
54 | __dfsan_arg_tls[kDFsanArgTlsSize / sizeof(u64)]; |
55 | SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u32 |
56 | __dfsan_arg_origin_tls[kDFsanArgOriginTlsSize / sizeof(u32)]; |
57 | |
58 | // Instrumented code may set this value in terms of -dfsan-track-origins. |
59 | // * undefined or 0: do not track origins. |
60 | // * 1: track origins at memory store operations. |
61 | // * 2: track origins at memory load and store operations. |
62 | // TODO: track callsites. |
63 | extern "C" SANITIZER_WEAK_ATTRIBUTE const int __dfsan_track_origins; |
64 | |
65 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE int dfsan_get_track_origins() { |
66 | return &__dfsan_track_origins ? __dfsan_track_origins : 0; |
67 | } |
68 | |
69 | // On Linux/x86_64, memory is laid out as follows: |
70 | // |
71 | // +--------------------+ 0x800000000000 (top of memory) |
72 | // | application 3 | |
73 | // +--------------------+ 0x700000000000 |
74 | // | invalid | |
75 | // +--------------------+ 0x610000000000 |
76 | // | origin 1 | |
77 | // +--------------------+ 0x600000000000 |
78 | // | application 2 | |
79 | // +--------------------+ 0x510000000000 |
80 | // | shadow 1 | |
81 | // +--------------------+ 0x500000000000 |
82 | // | invalid | |
83 | // +--------------------+ 0x400000000000 |
84 | // | origin 3 | |
85 | // +--------------------+ 0x300000000000 |
86 | // | shadow 3 | |
87 | // +--------------------+ 0x200000000000 |
88 | // | origin 2 | |
89 | // +--------------------+ 0x110000000000 |
90 | // | invalid | |
91 | // +--------------------+ 0x100000000000 |
92 | // | shadow 2 | |
93 | // +--------------------+ 0x010000000000 |
94 | // | application 1 | |
95 | // +--------------------+ 0x000000000000 |
96 | // |
97 | // MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 |
98 | // SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 |
99 | |
100 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
101 | dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) { |
102 | dfsan_label label = ls[0]; |
103 | for (uptr i = 1; i != n; ++i) |
104 | label |= ls[i]; |
105 | return label; |
106 | } |
107 | |
108 | // Return the union of all the n labels from addr at the high 32 bit, and the |
109 | // origin of the first taint byte at the low 32 bit. |
110 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE u64 |
111 | __dfsan_load_label_and_origin(const void *addr, uptr n) { |
112 | dfsan_label label = 0; |
113 | u64 ret = 0; |
114 | uptr p = (uptr)addr; |
115 | dfsan_label *s = shadow_for(ptr: (void *)p); |
116 | for (uptr i = 0; i < n; ++i) { |
117 | dfsan_label l = s[i]; |
118 | if (!l) |
119 | continue; |
120 | label |= l; |
121 | if (!ret) |
122 | ret = *(dfsan_origin *)origin_for(ptr: (void *)(p + i)); |
123 | } |
124 | return ret | (u64)label << 32; |
125 | } |
126 | |
127 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
128 | void __dfsan_unimplemented(char *fname) { |
129 | if (flags().warn_unimplemented) |
130 | Report(format: "WARNING: DataFlowSanitizer: call to uninstrumented function %s\n" , |
131 | fname); |
132 | } |
133 | |
134 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_wrapper_extern_weak_null( |
135 | const void *addr, char *fname) { |
136 | if (!addr) |
137 | Report( |
138 | format: "ERROR: DataFlowSanitizer: dfsan generated wrapper calling null " |
139 | "extern_weak function %s\nIf this only happens with dfsan, the " |
140 | "dfsan instrumentation pass may be accidentally optimizing out a " |
141 | "null check\n" , |
142 | fname); |
143 | } |
144 | |
145 | // Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function |
146 | // to try to figure out where labels are being introduced in a nominally |
147 | // label-free program. |
148 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() { |
149 | if (flags().warn_nonzero_labels) |
150 | Report(format: "WARNING: DataFlowSanitizer: saw nonzero label\n" ); |
151 | } |
152 | |
153 | // Indirect call to an uninstrumented vararg function. We don't have a way of |
154 | // handling these at the moment. |
155 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
156 | __dfsan_vararg_wrapper(const char *fname) { |
157 | Report(format: "FATAL: DataFlowSanitizer: unsupported indirect call to vararg " |
158 | "function %s\n" , fname); |
159 | Die(); |
160 | } |
161 | |
162 | // Resolves the union of two labels. |
163 | SANITIZER_INTERFACE_ATTRIBUTE dfsan_label |
164 | dfsan_union(dfsan_label l1, dfsan_label l2) { |
165 | return l1 | l2; |
166 | } |
167 | |
168 | static const uptr kOriginAlign = sizeof(dfsan_origin); |
169 | static const uptr kOriginAlignMask = ~(kOriginAlign - 1UL); |
170 | |
171 | static uptr OriginAlignUp(uptr u) { |
172 | return (u + kOriginAlign - 1) & kOriginAlignMask; |
173 | } |
174 | |
175 | static uptr OriginAlignDown(uptr u) { return u & kOriginAlignMask; } |
176 | |
177 | // Return the origin of the first taint byte in the size bytes from the address |
178 | // addr. |
179 | static dfsan_origin GetOriginIfTainted(uptr addr, uptr size) { |
180 | for (uptr i = 0; i < size; ++i, ++addr) { |
181 | dfsan_label *s = shadow_for(ptr: (void *)addr); |
182 | |
183 | if (*s) { |
184 | // Validate address region. |
185 | CHECK(MEM_IS_SHADOW(s)); |
186 | return *(dfsan_origin *)origin_for(ptr: (void *)addr); |
187 | } |
188 | } |
189 | return 0; |
190 | } |
191 | |
192 | // For platforms which support slow unwinder only, we need to restrict the store |
193 | // context size to 1, basically only storing the current pc, because the slow |
194 | // unwinder which is based on libunwind is not async signal safe and causes |
195 | // random freezes in forking applications as well as in signal handlers. |
196 | // DFSan supports only Linux. So we do not restrict the store context size. |
197 | #define GET_STORE_STACK_TRACE_PC_BP(pc, bp) \ |
198 | BufferedStackTrace stack; \ |
199 | stack.Unwind(pc, bp, nullptr, true, flags().store_context_size); |
200 | |
201 | #define PRINT_CALLER_STACK_TRACE \ |
202 | { \ |
203 | GET_CALLER_PC_BP; \ |
204 | GET_STORE_STACK_TRACE_PC_BP(pc, bp) \ |
205 | stack.Print(); \ |
206 | } |
207 | |
208 | // Return a chain with the previous ID id and the current stack. |
209 | // from_init = true if this is the first chain of an origin tracking path. |
210 | static u32 ChainOrigin(u32 id, StackTrace *stack, bool from_init = false) { |
211 | // StackDepot is not async signal safe. Do not create new chains in a signal |
212 | // handler. |
213 | DFsanThread *t = GetCurrentThread(); |
214 | if (t && t->InSignalHandler()) |
215 | return id; |
216 | |
217 | // As an optimization the origin of an application byte is updated only when |
218 | // its shadow is non-zero. Because we are only interested in the origins of |
219 | // taint labels, it does not matter what origin a zero label has. This reduces |
220 | // memory write cost. MSan does similar optimization. The following invariant |
221 | // may not hold because of some bugs. We check the invariant to help debug. |
222 | if (!from_init && id == 0 && flags().check_origin_invariant) { |
223 | Printf(format: " DFSan found invalid origin invariant\n" ); |
224 | PRINT_CALLER_STACK_TRACE |
225 | } |
226 | |
227 | Origin o = Origin::FromRawId(id); |
228 | stack->tag = StackTrace::TAG_UNKNOWN; |
229 | Origin chained = Origin::CreateChainedOrigin(prev: o, stack); |
230 | return chained.raw_id(); |
231 | } |
232 | |
233 | static void ChainAndWriteOriginIfTainted(uptr src, uptr size, uptr dst, |
234 | StackTrace *stack) { |
235 | dfsan_origin o = GetOriginIfTainted(addr: src, size); |
236 | if (o) { |
237 | o = ChainOrigin(id: o, stack); |
238 | *(dfsan_origin *)origin_for(ptr: (void *)dst) = o; |
239 | } |
240 | } |
241 | |
242 | // Copy the origins of the size bytes from src to dst. The source and target |
243 | // memory ranges cannot be overlapped. This is used by memcpy. stack records the |
244 | // stack trace of the memcpy. When dst and src are not 4-byte aligned properly, |
245 | // origins at the unaligned address boundaries may be overwritten because four |
246 | // contiguous bytes share the same origin. |
247 | static void CopyOrigin(const void *dst, const void *src, uptr size, |
248 | StackTrace *stack) { |
249 | uptr d = (uptr)dst; |
250 | uptr beg = OriginAlignDown(u: d); |
251 | // Copy left unaligned origin if that memory is tainted. |
252 | if (beg < d) { |
253 | ChainAndWriteOriginIfTainted(src: (uptr)src, size: beg + kOriginAlign - d, dst: beg, stack); |
254 | beg += kOriginAlign; |
255 | } |
256 | |
257 | uptr end = OriginAlignDown(u: d + size); |
258 | // If both ends fall into the same 4-byte slot, we are done. |
259 | if (end < beg) |
260 | return; |
261 | |
262 | // Copy right unaligned origin if that memory is tainted. |
263 | if (end < d + size) |
264 | ChainAndWriteOriginIfTainted(src: (uptr)src + (end - d), size: (d + size) - end, dst: end, |
265 | stack); |
266 | |
267 | if (beg >= end) |
268 | return; |
269 | |
270 | // Align src up. |
271 | uptr src_a = OriginAlignUp(u: (uptr)src); |
272 | dfsan_origin *src_o = origin_for(ptr: (void *)src_a); |
273 | u32 *src_s = (u32 *)shadow_for(ptr: (void *)src_a); |
274 | dfsan_origin *src_end = origin_for(ptr: (void *)(src_a + (end - beg))); |
275 | dfsan_origin *dst_o = origin_for(ptr: (void *)beg); |
276 | dfsan_origin last_src_o = 0; |
277 | dfsan_origin last_dst_o = 0; |
278 | for (; src_o < src_end; ++src_o, ++src_s, ++dst_o) { |
279 | if (!*src_s) |
280 | continue; |
281 | if (*src_o != last_src_o) { |
282 | last_src_o = *src_o; |
283 | last_dst_o = ChainOrigin(id: last_src_o, stack); |
284 | } |
285 | *dst_o = last_dst_o; |
286 | } |
287 | } |
288 | |
289 | // Copy the origins of the size bytes from src to dst. The source and target |
290 | // memory ranges may be overlapped. So the copy is done in a reverse order. |
291 | // This is used by memmove. stack records the stack trace of the memmove. |
292 | static void ReverseCopyOrigin(const void *dst, const void *src, uptr size, |
293 | StackTrace *stack) { |
294 | uptr d = (uptr)dst; |
295 | uptr end = OriginAlignDown(u: d + size); |
296 | |
297 | // Copy right unaligned origin if that memory is tainted. |
298 | if (end < d + size) |
299 | ChainAndWriteOriginIfTainted(src: (uptr)src + (end - d), size: (d + size) - end, dst: end, |
300 | stack); |
301 | |
302 | uptr beg = OriginAlignDown(u: d); |
303 | |
304 | if (beg + kOriginAlign < end) { |
305 | // Align src up. |
306 | uptr src_a = OriginAlignUp(u: (uptr)src); |
307 | void *src_end = (void *)(src_a + end - beg - kOriginAlign); |
308 | dfsan_origin *src_end_o = origin_for(ptr: src_end); |
309 | u32 *src_end_s = (u32 *)shadow_for(ptr: src_end); |
310 | dfsan_origin *src_begin_o = origin_for(ptr: (void *)src_a); |
311 | dfsan_origin *dst = origin_for(ptr: (void *)(end - kOriginAlign)); |
312 | dfsan_origin last_src_o = 0; |
313 | dfsan_origin last_dst_o = 0; |
314 | for (; src_end_o >= src_begin_o; --src_end_o, --src_end_s, --dst) { |
315 | if (!*src_end_s) |
316 | continue; |
317 | if (*src_end_o != last_src_o) { |
318 | last_src_o = *src_end_o; |
319 | last_dst_o = ChainOrigin(id: last_src_o, stack); |
320 | } |
321 | *dst = last_dst_o; |
322 | } |
323 | } |
324 | |
325 | // Copy left unaligned origin if that memory is tainted. |
326 | if (beg < d) |
327 | ChainAndWriteOriginIfTainted(src: (uptr)src, size: beg + kOriginAlign - d, dst: beg, stack); |
328 | } |
329 | |
330 | // Copy or move the origins of the len bytes from src to dst. The source and |
331 | // target memory ranges may or may not be overlapped. This is used by memory |
332 | // transfer operations. stack records the stack trace of the memory transfer |
333 | // operation. |
334 | static void MoveOrigin(const void *dst, const void *src, uptr size, |
335 | StackTrace *stack) { |
336 | // Validate address regions. |
337 | if (!MEM_IS_SHADOW(shadow_for(dst)) || |
338 | !MEM_IS_SHADOW(shadow_for((void *)((uptr)dst + size))) || |
339 | !MEM_IS_SHADOW(shadow_for(src)) || |
340 | !MEM_IS_SHADOW(shadow_for((void *)((uptr)src + size)))) { |
341 | CHECK(false); |
342 | return; |
343 | } |
344 | // If destination origin range overlaps with source origin range, move |
345 | // origins by copying origins in a reverse order; otherwise, copy origins in |
346 | // a normal order. The orders of origin transfer are consistent with the |
347 | // orders of how memcpy and memmove transfer user data. |
348 | uptr src_aligned_beg = OriginAlignDown(u: (uptr)src); |
349 | uptr src_aligned_end = OriginAlignDown(u: (uptr)src + size); |
350 | uptr dst_aligned_beg = OriginAlignDown(u: (uptr)dst); |
351 | if (dst_aligned_beg < src_aligned_end && dst_aligned_beg >= src_aligned_beg) |
352 | return ReverseCopyOrigin(dst, src, size, stack); |
353 | return CopyOrigin(dst, src, size, stack); |
354 | } |
355 | |
356 | // Set the size bytes from the addres dst to be the origin value. |
357 | static void SetOrigin(const void *dst, uptr size, u32 origin) { |
358 | if (size == 0) |
359 | return; |
360 | |
361 | // Origin mapping is 4 bytes per 4 bytes of application memory. |
362 | // Here we extend the range such that its left and right bounds are both |
363 | // 4 byte aligned. |
364 | uptr x = unaligned_origin_for(ptr: (uptr)dst); |
365 | uptr beg = OriginAlignDown(u: x); |
366 | uptr end = OriginAlignUp(u: x + size); // align up. |
367 | u64 origin64 = ((u64)origin << 32) | origin; |
368 | // This is like memset, but the value is 32-bit. We unroll by 2 to write |
369 | // 64 bits at once. May want to unroll further to get 128-bit stores. |
370 | if (beg & 7ULL) { |
371 | if (*(u32 *)beg != origin) |
372 | *(u32 *)beg = origin; |
373 | beg += 4; |
374 | } |
375 | for (uptr addr = beg; addr < (end & ~7UL); addr += 8) { |
376 | if (*(u64 *)addr == origin64) |
377 | continue; |
378 | *(u64 *)addr = origin64; |
379 | } |
380 | if (end & 7ULL) |
381 | if (*(u32 *)(end - kOriginAlign) != origin) |
382 | *(u32 *)(end - kOriginAlign) = origin; |
383 | } |
384 | |
385 | #define RET_CHAIN_ORIGIN(id) \ |
386 | GET_CALLER_PC_BP; \ |
387 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); \ |
388 | return ChainOrigin(id, &stack); |
389 | |
390 | // Return a new origin chain with the previous ID id and the current stack |
391 | // trace. |
392 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin |
393 | __dfsan_chain_origin(dfsan_origin id) { |
394 | RET_CHAIN_ORIGIN(id) |
395 | } |
396 | |
397 | // Return a new origin chain with the previous ID id and the current stack |
398 | // trace if the label is tainted. |
399 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin |
400 | __dfsan_chain_origin_if_tainted(dfsan_label label, dfsan_origin id) { |
401 | if (!label) |
402 | return id; |
403 | RET_CHAIN_ORIGIN(id) |
404 | } |
405 | |
406 | // Copy or move the origins of the len bytes from src to dst. |
407 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_mem_origin_transfer( |
408 | const void *dst, const void *src, uptr len) { |
409 | if (src == dst) |
410 | return; |
411 | GET_CALLER_PC_BP; |
412 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); |
413 | MoveOrigin(dst, src, size: len, stack: &stack); |
414 | } |
415 | |
416 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_mem_origin_transfer( |
417 | const void *dst, const void *src, uptr len) { |
418 | __dfsan_mem_origin_transfer(dst, src, len); |
419 | } |
420 | |
421 | static void CopyShadow(void *dst, const void *src, uptr len) { |
422 | internal_memcpy(dest: (void *)__dfsan::shadow_for(ptr: dst), |
423 | src: (const void *)__dfsan::shadow_for(ptr: src), |
424 | n: len * sizeof(dfsan_label)); |
425 | } |
426 | |
427 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_mem_shadow_transfer( |
428 | void *dst, const void *src, uptr len) { |
429 | CopyShadow(dst, src, len); |
430 | } |
431 | |
432 | // Copy shadow and origins of the len bytes from src to dst. |
433 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
434 | __dfsan_mem_shadow_origin_transfer(void *dst, const void *src, uptr size) { |
435 | if (src == dst) |
436 | return; |
437 | CopyShadow(dst, src, len: size); |
438 | if (dfsan_get_track_origins()) { |
439 | // Duplicating code instead of calling __dfsan_mem_origin_transfer |
440 | // so that the getting the caller stack frame works correctly. |
441 | GET_CALLER_PC_BP; |
442 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); |
443 | MoveOrigin(dst, src, size, stack: &stack); |
444 | } |
445 | } |
446 | |
447 | // Copy shadow and origins as per __atomic_compare_exchange. |
448 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
449 | __dfsan_mem_shadow_origin_conditional_exchange(u8 condition, void *target, |
450 | void *expected, |
451 | const void *desired, uptr size) { |
452 | void *dst; |
453 | const void *src; |
454 | // condition is result of native call to __atomic_compare_exchange |
455 | if (condition) { |
456 | // Copy desired into target |
457 | dst = target; |
458 | src = desired; |
459 | } else { |
460 | // Copy target into expected |
461 | dst = expected; |
462 | src = target; |
463 | } |
464 | if (src == dst) |
465 | return; |
466 | CopyShadow(dst, src, len: size); |
467 | if (dfsan_get_track_origins()) { |
468 | // Duplicating code instead of calling __dfsan_mem_origin_transfer |
469 | // so that the getting the caller stack frame works correctly. |
470 | GET_CALLER_PC_BP; |
471 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); |
472 | MoveOrigin(dst, src, size, stack: &stack); |
473 | } |
474 | } |
475 | |
476 | namespace __dfsan { |
477 | |
478 | bool dfsan_inited = false; |
479 | bool dfsan_init_is_running = false; |
480 | |
481 | void dfsan_copy_memory(void *dst, const void *src, uptr size) { |
482 | internal_memcpy(dest: dst, src, n: size); |
483 | dfsan_mem_shadow_transfer(dst, src, len: size); |
484 | if (dfsan_get_track_origins()) |
485 | dfsan_mem_origin_transfer(dst, src, len: size); |
486 | } |
487 | |
488 | // Releases the pages within the origin address range. |
489 | static void ReleaseOrigins(void *addr, uptr size) { |
490 | const uptr beg_origin_addr = (uptr)__dfsan::origin_for(ptr: addr); |
491 | const void *end_addr = (void *)((uptr)addr + size); |
492 | const uptr end_origin_addr = (uptr)__dfsan::origin_for(ptr: end_addr); |
493 | |
494 | if (end_origin_addr - beg_origin_addr < |
495 | common_flags()->clear_shadow_mmap_threshold) |
496 | return; |
497 | |
498 | const uptr page_size = GetPageSizeCached(); |
499 | const uptr beg_aligned = RoundUpTo(size: beg_origin_addr, boundary: page_size); |
500 | const uptr end_aligned = RoundDownTo(x: end_origin_addr, boundary: page_size); |
501 | |
502 | if (!MmapFixedSuperNoReserve(fixed_addr: beg_aligned, size: end_aligned - beg_aligned)) |
503 | Die(); |
504 | } |
505 | |
506 | static void WriteZeroShadowInRange(uptr beg, uptr end) { |
507 | // Don't write the label if it is already the value we need it to be. |
508 | // In a program where most addresses are not labeled, it is common that |
509 | // a page of shadow memory is entirely zeroed. The Linux copy-on-write |
510 | // implementation will share all of the zeroed pages, making a copy of a |
511 | // page when any value is written. The un-sharing will happen even if |
512 | // the value written does not change the value in memory. Avoiding the |
513 | // write when both |label| and |*labelp| are zero dramatically reduces |
514 | // the amount of real memory used by large programs. |
515 | if (!mem_is_zero(mem: (const char *)beg, size: end - beg)) |
516 | internal_memset(s: (void *)beg, c: 0, n: end - beg); |
517 | } |
518 | |
519 | // Releases the pages within the shadow address range, and sets |
520 | // the shadow addresses not on the pages to be 0. |
521 | static void ReleaseOrClearShadows(void *addr, uptr size) { |
522 | const uptr beg_shadow_addr = (uptr)__dfsan::shadow_for(ptr: addr); |
523 | const void *end_addr = (void *)((uptr)addr + size); |
524 | const uptr end_shadow_addr = (uptr)__dfsan::shadow_for(ptr: end_addr); |
525 | |
526 | if (end_shadow_addr - beg_shadow_addr < |
527 | common_flags()->clear_shadow_mmap_threshold) { |
528 | WriteZeroShadowInRange(beg: beg_shadow_addr, end: end_shadow_addr); |
529 | return; |
530 | } |
531 | |
532 | const uptr page_size = GetPageSizeCached(); |
533 | const uptr beg_aligned = RoundUpTo(size: beg_shadow_addr, boundary: page_size); |
534 | const uptr end_aligned = RoundDownTo(x: end_shadow_addr, boundary: page_size); |
535 | |
536 | if (beg_aligned >= end_aligned) { |
537 | WriteZeroShadowInRange(beg: beg_shadow_addr, end: end_shadow_addr); |
538 | } else { |
539 | if (beg_aligned != beg_shadow_addr) |
540 | WriteZeroShadowInRange(beg: beg_shadow_addr, end: beg_aligned); |
541 | if (end_aligned != end_shadow_addr) |
542 | WriteZeroShadowInRange(beg: end_aligned, end: end_shadow_addr); |
543 | if (!MmapFixedSuperNoReserve(fixed_addr: beg_aligned, size: end_aligned - beg_aligned)) |
544 | Die(); |
545 | } |
546 | } |
547 | |
548 | void SetShadow(dfsan_label label, void *addr, uptr size, dfsan_origin origin) { |
549 | if (0 != label) { |
550 | const uptr beg_shadow_addr = (uptr)__dfsan::shadow_for(ptr: addr); |
551 | internal_memset(s: (void *)beg_shadow_addr, c: label, n: size); |
552 | if (dfsan_get_track_origins()) |
553 | SetOrigin(dst: addr, size, origin); |
554 | return; |
555 | } |
556 | |
557 | if (dfsan_get_track_origins()) |
558 | ReleaseOrigins(addr, size); |
559 | |
560 | ReleaseOrClearShadows(addr, size); |
561 | } |
562 | |
563 | } // namespace __dfsan |
564 | |
565 | // If the label s is tainted, set the size bytes from the address p to be a new |
566 | // origin chain with the previous ID o and the current stack trace. This is |
567 | // used by instrumentation to reduce code size when too much code is inserted. |
568 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_maybe_store_origin( |
569 | dfsan_label s, void *p, uptr size, dfsan_origin o) { |
570 | if (UNLIKELY(s)) { |
571 | GET_CALLER_PC_BP; |
572 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); |
573 | SetOrigin(dst: p, size, origin: ChainOrigin(id: o, stack: &stack)); |
574 | } |
575 | } |
576 | |
577 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_set_label( |
578 | dfsan_label label, dfsan_origin origin, void *addr, uptr size) { |
579 | __dfsan::SetShadow(label, addr, size, origin); |
580 | } |
581 | |
582 | SANITIZER_INTERFACE_ATTRIBUTE |
583 | void dfsan_set_label(dfsan_label label, void *addr, uptr size) { |
584 | dfsan_origin init_origin = 0; |
585 | if (label && dfsan_get_track_origins()) { |
586 | GET_CALLER_PC_BP; |
587 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); |
588 | init_origin = ChainOrigin(id: 0, stack: &stack, from_init: true); |
589 | } |
590 | __dfsan::SetShadow(label, addr, size, origin: init_origin); |
591 | } |
592 | |
593 | SANITIZER_INTERFACE_ATTRIBUTE |
594 | void dfsan_add_label(dfsan_label label, void *addr, uptr size) { |
595 | if (0 == label) |
596 | return; |
597 | |
598 | if (dfsan_get_track_origins()) { |
599 | GET_CALLER_PC_BP; |
600 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); |
601 | dfsan_origin init_origin = ChainOrigin(id: 0, stack: &stack, from_init: true); |
602 | SetOrigin(dst: addr, size, origin: init_origin); |
603 | } |
604 | |
605 | for (dfsan_label *labelp = shadow_for(ptr: addr); size != 0; --size, ++labelp) |
606 | *labelp |= label; |
607 | } |
608 | |
609 | // Unlike the other dfsan interface functions the behavior of this function |
610 | // depends on the label of one of its arguments. Hence it is implemented as a |
611 | // custom function. |
612 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label |
613 | __dfsw_dfsan_get_label(long data, dfsan_label data_label, |
614 | dfsan_label *ret_label) { |
615 | *ret_label = 0; |
616 | return data_label; |
617 | } |
618 | |
619 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label __dfso_dfsan_get_label( |
620 | long data, dfsan_label data_label, dfsan_label *ret_label, |
621 | dfsan_origin data_origin, dfsan_origin *ret_origin) { |
622 | *ret_label = 0; |
623 | *ret_origin = 0; |
624 | return data_label; |
625 | } |
626 | |
627 | // This function is used if dfsan_get_origin is called when origin tracking is |
628 | // off. |
629 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin __dfsw_dfsan_get_origin( |
630 | long data, dfsan_label data_label, dfsan_label *ret_label) { |
631 | *ret_label = 0; |
632 | return 0; |
633 | } |
634 | |
635 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin __dfso_dfsan_get_origin( |
636 | long data, dfsan_label data_label, dfsan_label *ret_label, |
637 | dfsan_origin data_origin, dfsan_origin *ret_origin) { |
638 | *ret_label = 0; |
639 | *ret_origin = 0; |
640 | return data_origin; |
641 | } |
642 | |
643 | SANITIZER_INTERFACE_ATTRIBUTE dfsan_label |
644 | dfsan_read_label(const void *addr, uptr size) { |
645 | if (size == 0) |
646 | return 0; |
647 | return __dfsan_union_load(ls: shadow_for(ptr: addr), n: size); |
648 | } |
649 | |
650 | SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin |
651 | dfsan_read_origin_of_first_taint(const void *addr, uptr size) { |
652 | return GetOriginIfTainted(addr: (uptr)addr, size); |
653 | } |
654 | |
655 | SANITIZER_INTERFACE_ATTRIBUTE void dfsan_set_label_origin(dfsan_label label, |
656 | dfsan_origin origin, |
657 | void *addr, |
658 | uptr size) { |
659 | __dfsan_set_label(label, origin, addr, size); |
660 | } |
661 | |
662 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE int |
663 | dfsan_has_label(dfsan_label label, dfsan_label elem) { |
664 | return (label & elem) == elem; |
665 | } |
666 | |
667 | namespace __dfsan { |
668 | |
669 | typedef void (*dfsan_conditional_callback_t)(dfsan_label label, |
670 | dfsan_origin origin); |
671 | static dfsan_conditional_callback_t conditional_callback = nullptr; |
672 | static dfsan_label labels_in_signal_conditional = 0; |
673 | |
674 | static void ConditionalCallback(dfsan_label label, dfsan_origin origin) { |
675 | // Programs have many branches. For efficiency the conditional sink callback |
676 | // handler needs to ignore as many as possible as early as possible. |
677 | if (label == 0) { |
678 | return; |
679 | } |
680 | if (conditional_callback == nullptr) { |
681 | return; |
682 | } |
683 | |
684 | // This initial ConditionalCallback handler needs to be in here in dfsan |
685 | // runtime (rather than being an entirely user implemented hook) so that it |
686 | // has access to dfsan thread information. |
687 | DFsanThread *t = GetCurrentThread(); |
688 | // A callback operation which does useful work (like record the flow) will |
689 | // likely be too long executed in a signal handler. |
690 | if (t && t->InSignalHandler()) { |
691 | // Record set of labels used in signal handler for completeness. |
692 | labels_in_signal_conditional |= label; |
693 | return; |
694 | } |
695 | |
696 | conditional_callback(label, origin); |
697 | } |
698 | |
699 | } // namespace __dfsan |
700 | |
701 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
702 | __dfsan_conditional_callback_origin(dfsan_label label, dfsan_origin origin) { |
703 | __dfsan::ConditionalCallback(label, origin); |
704 | } |
705 | |
706 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_conditional_callback( |
707 | dfsan_label label) { |
708 | __dfsan::ConditionalCallback(label, origin: 0); |
709 | } |
710 | |
711 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_set_conditional_callback( |
712 | __dfsan::dfsan_conditional_callback_t callback) { |
713 | __dfsan::conditional_callback = callback; |
714 | } |
715 | |
716 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label |
717 | dfsan_get_labels_in_signal_conditional() { |
718 | return __dfsan::labels_in_signal_conditional; |
719 | } |
720 | |
721 | namespace __dfsan { |
722 | |
723 | typedef void (*dfsan_reaches_function_callback_t)(dfsan_label label, |
724 | dfsan_origin origin, |
725 | const char *file, |
726 | unsigned int line, |
727 | const char *function); |
728 | static dfsan_reaches_function_callback_t reaches_function_callback = nullptr; |
729 | static dfsan_label labels_in_signal_reaches_function = 0; |
730 | |
731 | static void ReachesFunctionCallback(dfsan_label label, dfsan_origin origin, |
732 | const char *file, unsigned int line, |
733 | const char *function) { |
734 | if (label == 0) { |
735 | return; |
736 | } |
737 | if (reaches_function_callback == nullptr) { |
738 | return; |
739 | } |
740 | |
741 | // This initial ReachesFunctionCallback handler needs to be in here in dfsan |
742 | // runtime (rather than being an entirely user implemented hook) so that it |
743 | // has access to dfsan thread information. |
744 | DFsanThread *t = GetCurrentThread(); |
745 | // A callback operation which does useful work (like record the flow) will |
746 | // likely be too long executed in a signal handler. |
747 | if (t && t->InSignalHandler()) { |
748 | // Record set of labels used in signal handler for completeness. |
749 | labels_in_signal_reaches_function |= label; |
750 | return; |
751 | } |
752 | |
753 | reaches_function_callback(label, origin, file, line, function); |
754 | } |
755 | |
756 | } // namespace __dfsan |
757 | |
758 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
759 | __dfsan_reaches_function_callback_origin(dfsan_label label, dfsan_origin origin, |
760 | const char *file, unsigned int line, |
761 | const char *function) { |
762 | __dfsan::ReachesFunctionCallback(label, origin, file, line, function); |
763 | } |
764 | |
765 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
766 | __dfsan_reaches_function_callback(dfsan_label label, const char *file, |
767 | unsigned int line, const char *function) { |
768 | __dfsan::ReachesFunctionCallback(label, origin: 0, file, line, function); |
769 | } |
770 | |
771 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void |
772 | dfsan_set_reaches_function_callback( |
773 | __dfsan::dfsan_reaches_function_callback_t callback) { |
774 | __dfsan::reaches_function_callback = callback; |
775 | } |
776 | |
777 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label |
778 | dfsan_get_labels_in_signal_reaches_function() { |
779 | return __dfsan::labels_in_signal_reaches_function; |
780 | } |
781 | |
782 | class Decorator : public __sanitizer::SanitizerCommonDecorator { |
783 | public: |
784 | Decorator() : SanitizerCommonDecorator() {} |
785 | const char *Origin() const { return Magenta(); } |
786 | }; |
787 | |
788 | namespace { |
789 | |
790 | void PrintNoOriginTrackingWarning() { |
791 | Decorator d; |
792 | Printf( |
793 | format: " %sDFSan: origin tracking is not enabled. Did you specify the " |
794 | "-dfsan-track-origins=1 option?%s\n" , |
795 | d.Warning(), d.Default()); |
796 | } |
797 | |
798 | void PrintNoTaintWarning(const void *address) { |
799 | Decorator d; |
800 | Printf(format: " %sDFSan: no tainted value at %x%s\n" , d.Warning(), address, |
801 | d.Default()); |
802 | } |
803 | |
804 | void PrintInvalidOriginWarning(dfsan_label label, const void *address) { |
805 | Decorator d; |
806 | Printf( |
807 | format: " %sTaint value 0x%x (at %p) has invalid origin tracking. This can " |
808 | "be a DFSan bug.%s\n" , |
809 | d.Warning(), label, address, d.Default()); |
810 | } |
811 | |
812 | void PrintInvalidOriginIdWarning(dfsan_origin origin) { |
813 | Decorator d; |
814 | Printf( |
815 | format: " %sOrigin Id %d has invalid origin tracking. This can " |
816 | "be a DFSan bug.%s\n" , |
817 | d.Warning(), origin, d.Default()); |
818 | } |
819 | |
820 | bool PrintOriginTraceFramesToStr(Origin o, InternalScopedString *out) { |
821 | Decorator d; |
822 | bool found = false; |
823 | |
824 | while (o.isChainedOrigin()) { |
825 | StackTrace stack; |
826 | dfsan_origin origin_id = o.raw_id(); |
827 | o = o.getNextChainedOrigin(stack: &stack); |
828 | if (o.isChainedOrigin()) |
829 | out->AppendF( |
830 | format: " %sOrigin value: 0x%x, Taint value was stored to memory at%s\n" , |
831 | d.Origin(), origin_id, d.Default()); |
832 | else |
833 | out->AppendF(format: " %sOrigin value: 0x%x, Taint value was created at%s\n" , |
834 | d.Origin(), origin_id, d.Default()); |
835 | |
836 | // Includes a trailing newline, so no need to add it again. |
837 | stack.PrintTo(output: out); |
838 | found = true; |
839 | } |
840 | |
841 | return found; |
842 | } |
843 | |
844 | bool PrintOriginTraceToStr(const void *addr, const char *description, |
845 | InternalScopedString *out) { |
846 | CHECK(out); |
847 | CHECK(dfsan_get_track_origins()); |
848 | Decorator d; |
849 | |
850 | const dfsan_label label = *__dfsan::shadow_for(ptr: addr); |
851 | CHECK(label); |
852 | |
853 | const dfsan_origin origin = *__dfsan::origin_for(ptr: addr); |
854 | |
855 | out->AppendF(format: " %sTaint value 0x%x (at %p) origin tracking (%s)%s\n" , |
856 | d.Origin(), label, addr, description ? description : "" , |
857 | d.Default()); |
858 | |
859 | Origin o = Origin::FromRawId(id: origin); |
860 | return PrintOriginTraceFramesToStr(o, out); |
861 | } |
862 | |
863 | } // namespace |
864 | |
865 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_print_origin_trace( |
866 | const void *addr, const char *description) { |
867 | if (!dfsan_get_track_origins()) { |
868 | PrintNoOriginTrackingWarning(); |
869 | return; |
870 | } |
871 | |
872 | const dfsan_label label = *__dfsan::shadow_for(ptr: addr); |
873 | if (!label) { |
874 | PrintNoTaintWarning(address: addr); |
875 | return; |
876 | } |
877 | |
878 | InternalScopedString trace; |
879 | bool success = PrintOriginTraceToStr(addr, description, out: &trace); |
880 | |
881 | if (trace.length()) |
882 | Printf(format: "%s" , trace.data()); |
883 | |
884 | if (!success) |
885 | PrintInvalidOriginWarning(label, address: addr); |
886 | } |
887 | |
888 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr |
889 | dfsan_sprint_origin_trace(const void *addr, const char *description, |
890 | char *out_buf, uptr out_buf_size) { |
891 | CHECK(out_buf); |
892 | |
893 | if (!dfsan_get_track_origins()) { |
894 | PrintNoOriginTrackingWarning(); |
895 | return 0; |
896 | } |
897 | |
898 | const dfsan_label label = *__dfsan::shadow_for(ptr: addr); |
899 | if (!label) { |
900 | PrintNoTaintWarning(address: addr); |
901 | return 0; |
902 | } |
903 | |
904 | InternalScopedString trace; |
905 | bool success = PrintOriginTraceToStr(addr, description, out: &trace); |
906 | |
907 | if (!success) { |
908 | PrintInvalidOriginWarning(label, address: addr); |
909 | return 0; |
910 | } |
911 | |
912 | if (out_buf_size) { |
913 | internal_strncpy(dst: out_buf, src: trace.data(), n: out_buf_size - 1); |
914 | out_buf[out_buf_size - 1] = '\0'; |
915 | } |
916 | |
917 | return trace.length(); |
918 | } |
919 | |
920 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_print_origin_id_trace( |
921 | dfsan_origin origin) { |
922 | if (!dfsan_get_track_origins()) { |
923 | PrintNoOriginTrackingWarning(); |
924 | return; |
925 | } |
926 | Origin o = Origin::FromRawId(id: origin); |
927 | |
928 | InternalScopedString trace; |
929 | bool success = PrintOriginTraceFramesToStr(o, out: &trace); |
930 | |
931 | if (trace.length()) |
932 | Printf(format: "%s" , trace.data()); |
933 | |
934 | if (!success) |
935 | PrintInvalidOriginIdWarning(origin); |
936 | } |
937 | |
938 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr dfsan_sprint_origin_id_trace( |
939 | dfsan_origin origin, char *out_buf, uptr out_buf_size) { |
940 | CHECK(out_buf); |
941 | |
942 | if (!dfsan_get_track_origins()) { |
943 | PrintNoOriginTrackingWarning(); |
944 | return 0; |
945 | } |
946 | Origin o = Origin::FromRawId(id: origin); |
947 | |
948 | InternalScopedString trace; |
949 | bool success = PrintOriginTraceFramesToStr(o, out: &trace); |
950 | |
951 | if (!success) { |
952 | PrintInvalidOriginIdWarning(origin); |
953 | return 0; |
954 | } |
955 | |
956 | if (out_buf_size) { |
957 | internal_strncpy(dst: out_buf, src: trace.data(), n: out_buf_size - 1); |
958 | out_buf[out_buf_size - 1] = '\0'; |
959 | } |
960 | |
961 | return trace.length(); |
962 | } |
963 | |
964 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin |
965 | dfsan_get_init_origin(const void *addr) { |
966 | if (!dfsan_get_track_origins()) |
967 | return 0; |
968 | |
969 | const dfsan_label label = *__dfsan::shadow_for(ptr: addr); |
970 | if (!label) |
971 | return 0; |
972 | |
973 | const dfsan_origin origin = *__dfsan::origin_for(ptr: addr); |
974 | |
975 | Origin o = Origin::FromRawId(id: origin); |
976 | dfsan_origin origin_id = o.raw_id(); |
977 | while (o.isChainedOrigin()) { |
978 | StackTrace stack; |
979 | origin_id = o.raw_id(); |
980 | o = o.getNextChainedOrigin(stack: &stack); |
981 | } |
982 | return origin_id; |
983 | } |
984 | |
985 | void __sanitizer::BufferedStackTrace::UnwindImpl(uptr pc, uptr bp, |
986 | void *context, |
987 | bool request_fast, |
988 | u32 max_depth) { |
989 | using namespace __dfsan; |
990 | DFsanThread *t = GetCurrentThread(); |
991 | if (!t || !StackTrace::WillUseFastUnwind(request_fast_unwind: request_fast)) { |
992 | return Unwind(max_depth, pc, bp, context, stack_top: 0, stack_bottom: 0, request_fast_unwind: false); |
993 | } |
994 | Unwind(max_depth, pc, bp, context: nullptr, stack_top: t->stack_top(), stack_bottom: t->stack_bottom(), request_fast_unwind: true); |
995 | } |
996 | |
997 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_print_stack_trace() { |
998 | GET_CALLER_PC_BP; |
999 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); |
1000 | stack.Print(); |
1001 | } |
1002 | |
1003 | extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr |
1004 | dfsan_sprint_stack_trace(char *out_buf, uptr out_buf_size) { |
1005 | CHECK(out_buf); |
1006 | GET_CALLER_PC_BP; |
1007 | GET_STORE_STACK_TRACE_PC_BP(pc, bp); |
1008 | return stack.PrintTo(out_buf, out_buf_size); |
1009 | } |
1010 | |
1011 | void Flags::SetDefaults() { |
1012 | #define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue; |
1013 | #include "dfsan_flags.inc" |
1014 | #undef DFSAN_FLAG |
1015 | } |
1016 | |
1017 | static void RegisterDfsanFlags(FlagParser *parser, Flags *f) { |
1018 | #define DFSAN_FLAG(Type, Name, DefaultValue, Description) \ |
1019 | RegisterFlag(parser, #Name, Description, &f->Name); |
1020 | #include "dfsan_flags.inc" |
1021 | #undef DFSAN_FLAG |
1022 | } |
1023 | |
1024 | static void InitializeFlags() { |
1025 | SetCommonFlagsDefaults(); |
1026 | { |
1027 | CommonFlags cf; |
1028 | cf.CopyFrom(other: *common_flags()); |
1029 | cf.intercept_tls_get_addr = true; |
1030 | OverrideCommonFlags(cf); |
1031 | } |
1032 | flags().SetDefaults(); |
1033 | |
1034 | FlagParser parser; |
1035 | RegisterCommonFlags(parser: &parser); |
1036 | RegisterDfsanFlags(parser: &parser, f: &flags()); |
1037 | parser.ParseStringFromEnv(env_name: "DFSAN_OPTIONS" ); |
1038 | InitializeCommonFlags(); |
1039 | if (Verbosity()) ReportUnrecognizedFlags(); |
1040 | if (common_flags()->help) parser.PrintFlagDescriptions(); |
1041 | } |
1042 | |
1043 | SANITIZER_INTERFACE_ATTRIBUTE |
1044 | void dfsan_clear_arg_tls(uptr offset, uptr size) { |
1045 | internal_memset(s: (void *)((uptr)__dfsan_arg_tls + offset), c: 0, n: size); |
1046 | } |
1047 | |
1048 | SANITIZER_INTERFACE_ATTRIBUTE |
1049 | void dfsan_clear_thread_local_state() { |
1050 | internal_memset(s: __dfsan_arg_tls, c: 0, n: sizeof(__dfsan_arg_tls)); |
1051 | internal_memset(s: __dfsan_retval_tls, c: 0, n: sizeof(__dfsan_retval_tls)); |
1052 | |
1053 | if (dfsan_get_track_origins()) { |
1054 | internal_memset(s: __dfsan_arg_origin_tls, c: 0, n: sizeof(__dfsan_arg_origin_tls)); |
1055 | internal_memset(s: &__dfsan_retval_origin_tls, c: 0, |
1056 | n: sizeof(__dfsan_retval_origin_tls)); |
1057 | } |
1058 | } |
1059 | |
1060 | SANITIZER_INTERFACE_ATTRIBUTE |
1061 | void dfsan_set_arg_tls(uptr offset, dfsan_label label) { |
1062 | // 2x to match ShadowTLSAlignment. |
1063 | // ShadowTLSAlignment should probably be changed. |
1064 | // TODO: Consider reducing ShadowTLSAlignment to 1. |
1065 | // Aligning to 2 bytes is probably a remnant of fast16 mode. |
1066 | ((dfsan_label *)__dfsan_arg_tls)[offset * 2] = label; |
1067 | } |
1068 | |
1069 | SANITIZER_INTERFACE_ATTRIBUTE |
1070 | void dfsan_set_arg_origin_tls(uptr offset, dfsan_origin o) { |
1071 | __dfsan_arg_origin_tls[offset] = o; |
1072 | } |
1073 | |
1074 | extern "C" void dfsan_flush() { |
1075 | const uptr maxVirtualAddress = GetMaxUserVirtualAddress(); |
1076 | for (unsigned i = 0; i < kMemoryLayoutSize; ++i) { |
1077 | uptr start = kMemoryLayout[i].start; |
1078 | uptr end = kMemoryLayout[i].end; |
1079 | uptr size = end - start; |
1080 | MappingDesc::Type type = kMemoryLayout[i].type; |
1081 | |
1082 | if (type != MappingDesc::SHADOW && type != MappingDesc::ORIGIN) |
1083 | continue; |
1084 | |
1085 | // Check if the segment should be mapped based on platform constraints. |
1086 | if (start >= maxVirtualAddress) |
1087 | continue; |
1088 | |
1089 | if (!MmapFixedSuperNoReserve(fixed_addr: start, size, name: kMemoryLayout[i].name)) { |
1090 | Printf(format: "FATAL: DataFlowSanitizer: failed to clear memory region\n" ); |
1091 | Die(); |
1092 | } |
1093 | } |
1094 | __dfsan::labels_in_signal_conditional = 0; |
1095 | __dfsan::labels_in_signal_reaches_function = 0; |
1096 | } |
1097 | |
1098 | // TODO: CheckMemoryLayoutSanity is based on msan. |
1099 | // Consider refactoring these into a shared implementation. |
1100 | static void CheckMemoryLayoutSanity() { |
1101 | uptr prev_end = 0; |
1102 | for (unsigned i = 0; i < kMemoryLayoutSize; ++i) { |
1103 | uptr start = kMemoryLayout[i].start; |
1104 | uptr end = kMemoryLayout[i].end; |
1105 | MappingDesc::Type type = kMemoryLayout[i].type; |
1106 | CHECK_LT(start, end); |
1107 | CHECK_EQ(prev_end, start); |
1108 | CHECK(addr_is_type(start, type)); |
1109 | CHECK(addr_is_type((start + end) / 2, type)); |
1110 | CHECK(addr_is_type(end - 1, type)); |
1111 | if (type == MappingDesc::APP) { |
1112 | uptr addr = start; |
1113 | CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr))); |
1114 | CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr))); |
1115 | CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr))); |
1116 | |
1117 | addr = (start + end) / 2; |
1118 | CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr))); |
1119 | CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr))); |
1120 | CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr))); |
1121 | |
1122 | addr = end - 1; |
1123 | CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr))); |
1124 | CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr))); |
1125 | CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr))); |
1126 | } |
1127 | prev_end = end; |
1128 | } |
1129 | } |
1130 | |
1131 | // TODO: CheckMemoryRangeAvailability is based on msan. |
1132 | // Consider refactoring these into a shared implementation. |
1133 | static bool CheckMemoryRangeAvailability(uptr beg, uptr size, bool verbose) { |
1134 | if (size > 0) { |
1135 | uptr end = beg + size - 1; |
1136 | if (!MemoryRangeIsAvailable(range_start: beg, range_end: end)) { |
1137 | if (verbose) |
1138 | Printf(format: "FATAL: Memory range %p - %p is not available.\n" , beg, end); |
1139 | return false; |
1140 | } |
1141 | } |
1142 | return true; |
1143 | } |
1144 | |
1145 | // TODO: ProtectMemoryRange is based on msan. |
1146 | // Consider refactoring these into a shared implementation. |
1147 | static bool ProtectMemoryRange(uptr beg, uptr size, const char *name) { |
1148 | if (size > 0) { |
1149 | void *addr = MmapFixedNoAccess(fixed_addr: beg, size, name); |
1150 | if (beg == 0 && addr) { |
1151 | // Depending on the kernel configuration, we may not be able to protect |
1152 | // the page at address zero. |
1153 | uptr gap = 16 * GetPageSizeCached(); |
1154 | beg += gap; |
1155 | size -= gap; |
1156 | addr = MmapFixedNoAccess(fixed_addr: beg, size, name); |
1157 | } |
1158 | if ((uptr)addr != beg) { |
1159 | uptr end = beg + size - 1; |
1160 | Printf(format: "FATAL: Cannot protect memory range %p - %p (%s).\n" , beg, end, |
1161 | name); |
1162 | return false; |
1163 | } |
1164 | } |
1165 | return true; |
1166 | } |
1167 | |
1168 | // TODO: InitShadow is based on msan. |
1169 | // Consider refactoring these into a shared implementation. |
1170 | bool InitShadow(bool init_origins, bool dry_run) { |
1171 | // Let user know mapping parameters first. |
1172 | VPrintf(1, "dfsan_init %p\n" , (void *)&__dfsan::dfsan_init); |
1173 | for (unsigned i = 0; i < kMemoryLayoutSize; ++i) |
1174 | VPrintf(1, "%s: %zx - %zx\n" , kMemoryLayout[i].name, kMemoryLayout[i].start, |
1175 | kMemoryLayout[i].end - 1); |
1176 | |
1177 | CheckMemoryLayoutSanity(); |
1178 | |
1179 | if (!MEM_IS_APP(&__dfsan::dfsan_init)) { |
1180 | if (!dry_run) |
1181 | Printf(format: "FATAL: Code %p is out of application range. Non-PIE build?\n" , |
1182 | (uptr)&__dfsan::dfsan_init); |
1183 | return false; |
1184 | } |
1185 | |
1186 | const uptr maxVirtualAddress = GetMaxUserVirtualAddress(); |
1187 | |
1188 | for (unsigned i = 0; i < kMemoryLayoutSize; ++i) { |
1189 | uptr start = kMemoryLayout[i].start; |
1190 | uptr end = kMemoryLayout[i].end; |
1191 | uptr size = end - start; |
1192 | MappingDesc::Type type = kMemoryLayout[i].type; |
1193 | |
1194 | // Check if the segment should be mapped based on platform constraints. |
1195 | if (start >= maxVirtualAddress) |
1196 | continue; |
1197 | |
1198 | bool map = type == MappingDesc::SHADOW || |
1199 | (init_origins && type == MappingDesc::ORIGIN); |
1200 | bool protect = type == MappingDesc::INVALID || |
1201 | (!init_origins && type == MappingDesc::ORIGIN); |
1202 | CHECK(!(map && protect)); |
1203 | if (!map && !protect) { |
1204 | CHECK(type == MappingDesc::APP || type == MappingDesc::ALLOCATOR); |
1205 | |
1206 | if (dry_run && type == MappingDesc::ALLOCATOR && |
1207 | !CheckMemoryRangeAvailability(beg: start, size, verbose: !dry_run)) |
1208 | return false; |
1209 | } |
1210 | if (map) { |
1211 | if (dry_run && !CheckMemoryRangeAvailability(beg: start, size, verbose: !dry_run)) |
1212 | return false; |
1213 | if (!dry_run && |
1214 | !MmapFixedSuperNoReserve(fixed_addr: start, size, name: kMemoryLayout[i].name)) |
1215 | return false; |
1216 | if (!dry_run && common_flags()->use_madv_dontdump) |
1217 | DontDumpShadowMemory(addr: start, length: size); |
1218 | } |
1219 | if (protect) { |
1220 | if (dry_run && !CheckMemoryRangeAvailability(beg: start, size, verbose: !dry_run)) |
1221 | return false; |
1222 | if (!dry_run && !ProtectMemoryRange(beg: start, size, name: kMemoryLayout[i].name)) |
1223 | return false; |
1224 | } |
1225 | } |
1226 | |
1227 | return true; |
1228 | } |
1229 | |
1230 | bool InitShadowWithReExec(bool init_origins) { |
1231 | // Start with dry run: check layout is ok, but don't print warnings because |
1232 | // warning messages will cause tests to fail (even if we successfully re-exec |
1233 | // after the warning). |
1234 | bool success = InitShadow(init_origins, dry_run: true); |
1235 | if (!success) { |
1236 | #if SANITIZER_LINUX |
1237 | // Perhaps ASLR entropy is too high. If ASLR is enabled, re-exec without it. |
1238 | int old_personality = personality(persona: 0xffffffff); |
1239 | bool aslr_on = |
1240 | (old_personality != -1) && ((old_personality & ADDR_NO_RANDOMIZE) == 0); |
1241 | |
1242 | if (aslr_on) { |
1243 | VReport(1, |
1244 | "WARNING: DataflowSanitizer: memory layout is incompatible, " |
1245 | "possibly due to high-entropy ASLR.\n" |
1246 | "Re-execing with fixed virtual address space.\n" |
1247 | "N.B. reducing ASLR entropy is preferable.\n" ); |
1248 | CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1); |
1249 | ReExec(); |
1250 | } |
1251 | #endif |
1252 | } |
1253 | |
1254 | // The earlier dry run didn't actually map or protect anything. Run again in |
1255 | // non-dry run mode. |
1256 | return success && InitShadow(init_origins, dry_run: false); |
1257 | } |
1258 | |
1259 | static void DFsanInit(int argc, char **argv, char **envp) { |
1260 | CHECK(!dfsan_init_is_running); |
1261 | if (dfsan_inited) |
1262 | return; |
1263 | dfsan_init_is_running = true; |
1264 | SanitizerToolName = "DataflowSanitizer" ; |
1265 | |
1266 | AvoidCVE_2016_2143(); |
1267 | |
1268 | InitializeFlags(); |
1269 | |
1270 | CheckASLR(); |
1271 | |
1272 | if (!InitShadowWithReExec(init_origins: dfsan_get_track_origins())) { |
1273 | Printf(format: "FATAL: DataflowSanitizer can not mmap the shadow memory.\n" ); |
1274 | DumpProcessMap(); |
1275 | Die(); |
1276 | } |
1277 | |
1278 | initialize_interceptors(); |
1279 | |
1280 | // Set up threads |
1281 | DFsanTSDInit(destructor: DFsanTSDDtor); |
1282 | |
1283 | dfsan_allocator_init(); |
1284 | |
1285 | DFsanThread *main_thread = DFsanThread::Create(start_routine: nullptr, arg: nullptr); |
1286 | SetCurrentThread(main_thread); |
1287 | main_thread->Init(); |
1288 | |
1289 | dfsan_init_is_running = false; |
1290 | dfsan_inited = true; |
1291 | } |
1292 | |
1293 | namespace __dfsan { |
1294 | |
1295 | void dfsan_init() { DFsanInit(argc: 0, argv: nullptr, envp: nullptr); } |
1296 | |
1297 | } // namespace __dfsan |
1298 | |
1299 | #if SANITIZER_CAN_USE_PREINIT_ARRAY |
1300 | __attribute__((section(".preinit_array" ), |
1301 | used)) static void (*dfsan_init_ptr)(int, char **, |
1302 | char **) = DFsanInit; |
1303 | #endif |
1304 | |