1 | //===-- interception_win.cpp ------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of AddressSanitizer, an address sanity checker. |
10 | // |
11 | // Windows-specific interception methods. |
12 | // |
13 | // This file is implementing several hooking techniques to intercept calls |
14 | // to functions. The hooks are dynamically installed by modifying the assembly |
15 | // code. |
16 | // |
17 | // The hooking techniques are making assumptions on the way the code is |
18 | // generated and are safe under these assumptions. |
19 | // |
20 | // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow |
21 | // arbitrary branching on the whole memory space, the notion of trampoline |
22 | // region is used. A trampoline region is a memory space withing 2G boundary |
23 | // where it is safe to add custom assembly code to build 64-bit jumps. |
24 | // |
25 | // Hooking techniques |
26 | // ================== |
27 | // |
28 | // 1) Detour |
29 | // |
30 | // The Detour hooking technique is assuming the presence of an header with |
31 | // padding and an overridable 2-bytes nop instruction (mov edi, edi). The |
32 | // nop instruction can safely be replaced by a 2-bytes jump without any need |
33 | // to save the instruction. A jump to the target is encoded in the function |
34 | // header and the nop instruction is replaced by a short jump to the header. |
35 | // |
36 | // head: 5 x nop head: jmp <hook> |
37 | // func: mov edi, edi --> func: jmp short <head> |
38 | // [...] real: [...] |
39 | // |
40 | // This technique is only implemented on 32-bit architecture. |
41 | // Most of the time, Windows API are hookable with the detour technique. |
42 | // |
43 | // 2) Redirect Jump |
44 | // |
45 | // The redirect jump is applicable when the first instruction is a direct |
46 | // jump. The instruction is replaced by jump to the hook. |
47 | // |
48 | // func: jmp <label> --> func: jmp <hook> |
49 | // |
50 | // On an 64-bit architecture, a trampoline is inserted. |
51 | // |
52 | // func: jmp <label> --> func: jmp <tramp> |
53 | // [...] |
54 | // |
55 | // [trampoline] |
56 | // tramp: jmp QWORD [addr] |
57 | // addr: .bytes <hook> |
58 | // |
59 | // Note: <real> is equivalent to <label>. |
60 | // |
61 | // 3) HotPatch |
62 | // |
63 | // The HotPatch hooking is assuming the presence of an header with padding |
64 | // and a first instruction with at least 2-bytes. |
65 | // |
66 | // The reason to enforce the 2-bytes limitation is to provide the minimal |
67 | // space to encode a short jump. HotPatch technique is only rewriting one |
68 | // instruction to avoid breaking a sequence of instructions containing a |
69 | // branching target. |
70 | // |
71 | // Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag. |
72 | // see: https://msdn.microsoft.com/en-us/library/ms173507.aspx |
73 | // Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits. |
74 | // |
75 | // head: 5 x nop head: jmp <hook> |
76 | // func: <instr> --> func: jmp short <head> |
77 | // [...] body: [...] |
78 | // |
79 | // [trampoline] |
80 | // real: <instr> |
81 | // jmp <body> |
82 | // |
83 | // On an 64-bit architecture: |
84 | // |
85 | // head: 6 x nop head: jmp QWORD [addr1] |
86 | // func: <instr> --> func: jmp short <head> |
87 | // [...] body: [...] |
88 | // |
89 | // [trampoline] |
90 | // addr1: .bytes <hook> |
91 | // real: <instr> |
92 | // jmp QWORD [addr2] |
93 | // addr2: .bytes <body> |
94 | // |
95 | // 4) Trampoline |
96 | // |
97 | // The Trampoline hooking technique is the most aggressive one. It is |
98 | // assuming that there is a sequence of instructions that can be safely |
99 | // replaced by a jump (enough room and no incoming branches). |
100 | // |
101 | // Unfortunately, these assumptions can't be safely presumed and code may |
102 | // be broken after hooking. |
103 | // |
104 | // func: <instr> --> func: jmp <hook> |
105 | // <instr> |
106 | // [...] body: [...] |
107 | // |
108 | // [trampoline] |
109 | // real: <instr> |
110 | // <instr> |
111 | // jmp <body> |
112 | // |
113 | // On an 64-bit architecture: |
114 | // |
115 | // func: <instr> --> func: jmp QWORD [addr1] |
116 | // <instr> |
117 | // [...] body: [...] |
118 | // |
119 | // [trampoline] |
120 | // addr1: .bytes <hook> |
121 | // real: <instr> |
122 | // <instr> |
123 | // jmp QWORD [addr2] |
124 | // addr2: .bytes <body> |
125 | //===----------------------------------------------------------------------===// |
126 | |
127 | #include "interception.h" |
128 | |
129 | #if SANITIZER_WINDOWS |
130 | #include "sanitizer_common/sanitizer_platform.h" |
131 | #define WIN32_LEAN_AND_MEAN |
132 | #include <windows.h> |
133 | |
134 | namespace __interception { |
135 | |
136 | static const int kAddressLength = FIRST_32_SECOND_64(4, 8); |
137 | static const int kJumpInstructionLength = 5; |
138 | static const int kShortJumpInstructionLength = 2; |
139 | UNUSED static const int kIndirectJumpInstructionLength = 6; |
140 | static const int kBranchLength = |
141 | FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength); |
142 | static const int kDirectBranchLength = kBranchLength + kAddressLength; |
143 | |
144 | # if defined(_MSC_VER) |
145 | # define INTERCEPTION_FORMAT(f, a) |
146 | # else |
147 | # define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a))) |
148 | # endif |
149 | |
150 | static void (*ErrorReportCallback)(const char *format, ...) |
151 | INTERCEPTION_FORMAT(1, 2); |
152 | |
153 | void SetErrorReportCallback(void (*callback)(const char *format, ...)) { |
154 | ErrorReportCallback = callback; |
155 | } |
156 | |
157 | # define ReportError(...) \ |
158 | do { \ |
159 | if (ErrorReportCallback) \ |
160 | ErrorReportCallback(__VA_ARGS__); \ |
161 | } while (0) |
162 | |
163 | static void InterceptionFailed() { |
164 | ReportError("interception_win: failed due to an unrecoverable error.\n" ); |
165 | // This acts like an abort when no debugger is attached. According to an old |
166 | // comment, calling abort() leads to an infinite recursion in CheckFailed. |
167 | __debugbreak(); |
168 | } |
169 | |
170 | static bool DistanceIsWithin2Gig(uptr from, uptr target) { |
171 | #if SANITIZER_WINDOWS64 |
172 | if (from < target) |
173 | return target - from <= (uptr)0x7FFFFFFFU; |
174 | else |
175 | return from - target <= (uptr)0x80000000U; |
176 | #else |
177 | // In a 32-bit address space, the address calculation will wrap, so this check |
178 | // is unnecessary. |
179 | return true; |
180 | #endif |
181 | } |
182 | |
183 | static uptr GetMmapGranularity() { |
184 | SYSTEM_INFO si; |
185 | GetSystemInfo(&si); |
186 | return si.dwAllocationGranularity; |
187 | } |
188 | |
189 | UNUSED static uptr RoundUpTo(uptr size, uptr boundary) { |
190 | return (size + boundary - 1) & ~(boundary - 1); |
191 | } |
192 | |
193 | // FIXME: internal_str* and internal_mem* functions should be moved from the |
194 | // ASan sources into interception/. |
195 | |
196 | static size_t _strlen(const char *str) { |
197 | const char* p = str; |
198 | while (*p != '\0') ++p; |
199 | return p - str; |
200 | } |
201 | |
202 | static char* _strchr(char* str, char c) { |
203 | while (*str) { |
204 | if (*str == c) |
205 | return str; |
206 | ++str; |
207 | } |
208 | return nullptr; |
209 | } |
210 | |
211 | static void _memset(void *p, int value, size_t sz) { |
212 | for (size_t i = 0; i < sz; ++i) |
213 | ((char*)p)[i] = (char)value; |
214 | } |
215 | |
216 | static void _memcpy(void *dst, void *src, size_t sz) { |
217 | char *dst_c = (char*)dst, |
218 | *src_c = (char*)src; |
219 | for (size_t i = 0; i < sz; ++i) |
220 | dst_c[i] = src_c[i]; |
221 | } |
222 | |
223 | static bool ChangeMemoryProtection( |
224 | uptr address, uptr size, DWORD *old_protection) { |
225 | return ::VirtualProtect((void*)address, size, |
226 | PAGE_EXECUTE_READWRITE, |
227 | old_protection) != FALSE; |
228 | } |
229 | |
230 | static bool RestoreMemoryProtection( |
231 | uptr address, uptr size, DWORD old_protection) { |
232 | DWORD unused; |
233 | return ::VirtualProtect((void*)address, size, |
234 | old_protection, |
235 | &unused) != FALSE; |
236 | } |
237 | |
238 | static bool IsMemoryPadding(uptr address, uptr size) { |
239 | u8* function = (u8*)address; |
240 | for (size_t i = 0; i < size; ++i) |
241 | if (function[i] != 0x90 && function[i] != 0xCC) |
242 | return false; |
243 | return true; |
244 | } |
245 | |
246 | static const u8 kHintNop8Bytes[] = { |
247 | 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 |
248 | }; |
249 | |
250 | template<class T> |
251 | static bool FunctionHasPrefix(uptr address, const T &pattern) { |
252 | u8* function = (u8*)address - sizeof(pattern); |
253 | for (size_t i = 0; i < sizeof(pattern); ++i) |
254 | if (function[i] != pattern[i]) |
255 | return false; |
256 | return true; |
257 | } |
258 | |
259 | static bool FunctionHasPadding(uptr address, uptr size) { |
260 | if (IsMemoryPadding(address - size, size)) |
261 | return true; |
262 | if (size <= sizeof(kHintNop8Bytes) && |
263 | FunctionHasPrefix(address, kHintNop8Bytes)) |
264 | return true; |
265 | return false; |
266 | } |
267 | |
268 | static void WritePadding(uptr from, uptr size) { |
269 | _memset((void*)from, 0xCC, (size_t)size); |
270 | } |
271 | |
272 | static void WriteJumpInstruction(uptr from, uptr target) { |
273 | if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) { |
274 | ReportError( |
275 | "interception_win: cannot write jmp further than 2GB away, from %p to " |
276 | "%p.\n" , |
277 | (void *)from, (void *)target); |
278 | InterceptionFailed(); |
279 | } |
280 | ptrdiff_t offset = target - from - kJumpInstructionLength; |
281 | *(u8*)from = 0xE9; |
282 | *(u32*)(from + 1) = offset; |
283 | } |
284 | |
285 | static void WriteShortJumpInstruction(uptr from, uptr target) { |
286 | sptr offset = target - from - kShortJumpInstructionLength; |
287 | if (offset < -128 || offset > 127) |
288 | InterceptionFailed(); |
289 | *(u8*)from = 0xEB; |
290 | *(u8*)(from + 1) = (u8)offset; |
291 | } |
292 | |
293 | #if SANITIZER_WINDOWS64 |
294 | static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) { |
295 | // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative |
296 | // offset. |
297 | // The offset is the distance from then end of the jump instruction to the |
298 | // memory location containing the targeted address. The displacement is still |
299 | // 32-bit in x64, so indirect_target must be located within +/- 2GB range. |
300 | int offset = indirect_target - from - kIndirectJumpInstructionLength; |
301 | if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength, |
302 | indirect_target)) { |
303 | ReportError( |
304 | "interception_win: cannot write indirect jmp with target further than " |
305 | "2GB away, from %p to %p.\n" , |
306 | (void *)from, (void *)indirect_target); |
307 | InterceptionFailed(); |
308 | } |
309 | *(u16*)from = 0x25FF; |
310 | *(u32*)(from + 2) = offset; |
311 | } |
312 | #endif |
313 | |
314 | static void WriteBranch( |
315 | uptr from, uptr indirect_target, uptr target) { |
316 | #if SANITIZER_WINDOWS64 |
317 | WriteIndirectJumpInstruction(from, indirect_target); |
318 | *(u64*)indirect_target = target; |
319 | #else |
320 | (void)indirect_target; |
321 | WriteJumpInstruction(from, target); |
322 | #endif |
323 | } |
324 | |
325 | static void WriteDirectBranch(uptr from, uptr target) { |
326 | #if SANITIZER_WINDOWS64 |
327 | // Emit an indirect jump through immediately following bytes: |
328 | // jmp [rip + kBranchLength] |
329 | // .quad <target> |
330 | WriteBranch(from, from + kBranchLength, target); |
331 | #else |
332 | WriteJumpInstruction(from, target); |
333 | #endif |
334 | } |
335 | |
336 | struct TrampolineMemoryRegion { |
337 | uptr content; |
338 | uptr allocated_size; |
339 | uptr max_size; |
340 | }; |
341 | |
342 | UNUSED static const uptr kTrampolineScanLimitRange = 1ull << 31; // 2 gig |
343 | static const int kMaxTrampolineRegion = 1024; |
344 | static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion]; |
345 | |
346 | static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) { |
347 | #if SANITIZER_WINDOWS64 |
348 | uptr address = image_address; |
349 | uptr scanned = 0; |
350 | while (scanned < kTrampolineScanLimitRange) { |
351 | MEMORY_BASIC_INFORMATION info; |
352 | if (!::VirtualQuery((void*)address, &info, sizeof(info))) |
353 | return nullptr; |
354 | |
355 | // Check whether a region can be allocated at |address|. |
356 | if (info.State == MEM_FREE && info.RegionSize >= granularity) { |
357 | void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity), |
358 | granularity, |
359 | MEM_RESERVE | MEM_COMMIT, |
360 | PAGE_EXECUTE_READWRITE); |
361 | return page; |
362 | } |
363 | |
364 | // Move to the next region. |
365 | address = (uptr)info.BaseAddress + info.RegionSize; |
366 | scanned += info.RegionSize; |
367 | } |
368 | return nullptr; |
369 | #else |
370 | return ::VirtualAlloc(nullptr, |
371 | granularity, |
372 | MEM_RESERVE | MEM_COMMIT, |
373 | PAGE_EXECUTE_READWRITE); |
374 | #endif |
375 | } |
376 | |
377 | // Used by unittests to release mapped memory space. |
378 | void TestOnlyReleaseTrampolineRegions() { |
379 | for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { |
380 | TrampolineMemoryRegion *current = &TrampolineRegions[bucket]; |
381 | if (current->content == 0) |
382 | return; |
383 | ::VirtualFree((void*)current->content, 0, MEM_RELEASE); |
384 | current->content = 0; |
385 | } |
386 | } |
387 | |
388 | static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) { |
389 | // Find a region within 2G with enough space to allocate |size| bytes. |
390 | TrampolineMemoryRegion *region = nullptr; |
391 | for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { |
392 | TrampolineMemoryRegion* current = &TrampolineRegions[bucket]; |
393 | if (current->content == 0) { |
394 | // No valid region found, allocate a new region. |
395 | size_t bucket_size = GetMmapGranularity(); |
396 | void *content = AllocateTrampolineRegion(image_address, bucket_size); |
397 | if (content == nullptr) |
398 | return 0U; |
399 | |
400 | current->content = (uptr)content; |
401 | current->allocated_size = 0; |
402 | current->max_size = bucket_size; |
403 | region = current; |
404 | break; |
405 | } else if (current->max_size - current->allocated_size > size) { |
406 | #if SANITIZER_WINDOWS64 |
407 | // In 64-bits, the memory space must be allocated within 2G boundary. |
408 | uptr next_address = current->content + current->allocated_size; |
409 | if (next_address < image_address || |
410 | next_address - image_address >= 0x7FFF0000) |
411 | continue; |
412 | #endif |
413 | // The space can be allocated in the current region. |
414 | region = current; |
415 | break; |
416 | } |
417 | } |
418 | |
419 | // Failed to find a region. |
420 | if (region == nullptr) |
421 | return 0U; |
422 | |
423 | // Allocate the space in the current region. |
424 | uptr allocated_space = region->content + region->allocated_size; |
425 | region->allocated_size += size; |
426 | WritePadding(allocated_space, size); |
427 | |
428 | return allocated_space; |
429 | } |
430 | |
431 | // The following prologues cannot be patched because of the short jump |
432 | // jumping to the patching region. |
433 | |
434 | // Short jump patterns below are only for x86_64. |
435 | # if SANITIZER_WINDOWS_x64 |
436 | // ntdll!wcslen in Win11 |
437 | // 488bc1 mov rax,rcx |
438 | // 0fb710 movzx edx,word ptr [rax] |
439 | // 4883c002 add rax,2 |
440 | // 6685d2 test dx,dx |
441 | // 75f4 jne -12 |
442 | static const u8 kPrologueWithShortJump1[] = { |
443 | 0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83, |
444 | 0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4, |
445 | }; |
446 | |
447 | // ntdll!strrchr in Win11 |
448 | // 4c8bc1 mov r8,rcx |
449 | // 8a01 mov al,byte ptr [rcx] |
450 | // 48ffc1 inc rcx |
451 | // 84c0 test al,al |
452 | // 75f7 jne -9 |
453 | static const u8 kPrologueWithShortJump2[] = { |
454 | 0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1, |
455 | 0x84, 0xc0, 0x75, 0xf7, |
456 | }; |
457 | #endif |
458 | |
459 | // Returns 0 on error. |
460 | static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) { |
461 | #if SANITIZER_ARM64 |
462 | // An ARM64 instruction is 4 bytes long. |
463 | return 4; |
464 | #endif |
465 | |
466 | # if SANITIZER_WINDOWS_x64 |
467 | if (memcmp((u8*)address, kPrologueWithShortJump1, |
468 | sizeof(kPrologueWithShortJump1)) == 0 || |
469 | memcmp((u8*)address, kPrologueWithShortJump2, |
470 | sizeof(kPrologueWithShortJump2)) == 0) { |
471 | return 0; |
472 | } |
473 | #endif |
474 | |
475 | switch (*(u64*)address) { |
476 | case 0x90909090909006EB: // stub: jmp over 6 x nop. |
477 | return 8; |
478 | } |
479 | |
480 | switch (*(u8*)address) { |
481 | case 0x90: // 90 : nop |
482 | case 0xC3: // C3 : ret (for small/empty function interception |
483 | case 0xCC: // CC : int 3 i.e. registering weak functions) |
484 | return 1; |
485 | |
486 | case 0x50: // push eax / rax |
487 | case 0x51: // push ecx / rcx |
488 | case 0x52: // push edx / rdx |
489 | case 0x53: // push ebx / rbx |
490 | case 0x54: // push esp / rsp |
491 | case 0x55: // push ebp / rbp |
492 | case 0x56: // push esi / rsi |
493 | case 0x57: // push edi / rdi |
494 | case 0x5D: // pop ebp / rbp |
495 | return 1; |
496 | |
497 | case 0x6A: // 6A XX = push XX |
498 | return 2; |
499 | |
500 | case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX |
501 | case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX |
502 | return 5; |
503 | |
504 | // Cannot overwrite control-instruction. Return 0 to indicate failure. |
505 | case 0xE9: // E9 XX XX XX XX : jmp <label> |
506 | case 0xE8: // E8 XX XX XX XX : call <func> |
507 | case 0xEB: // EB XX : jmp XX (short jump) |
508 | case 0x70: // 7Y YY : jy XX (short conditional jump) |
509 | case 0x71: |
510 | case 0x72: |
511 | case 0x73: |
512 | case 0x74: |
513 | case 0x75: |
514 | case 0x76: |
515 | case 0x77: |
516 | case 0x78: |
517 | case 0x79: |
518 | case 0x7A: |
519 | case 0x7B: |
520 | case 0x7C: |
521 | case 0x7D: |
522 | case 0x7E: |
523 | case 0x7F: |
524 | return 0; |
525 | } |
526 | |
527 | switch (*(u16*)(address)) { |
528 | case 0x018A: // 8A 01 : mov al, byte ptr [ecx] |
529 | case 0xFF8B: // 8B FF : mov edi, edi |
530 | case 0xEC8B: // 8B EC : mov ebp, esp |
531 | case 0xc889: // 89 C8 : mov eax, ecx |
532 | case 0xE589: // 89 E5 : mov ebp, esp |
533 | case 0xC18B: // 8B C1 : mov eax, ecx |
534 | case 0xC033: // 33 C0 : xor eax, eax |
535 | case 0xC933: // 33 C9 : xor ecx, ecx |
536 | case 0xD233: // 33 D2 : xor edx, edx |
537 | return 2; |
538 | |
539 | // Cannot overwrite control-instruction. Return 0 to indicate failure. |
540 | case 0x25FF: // FF 25 XX XX XX XX : jmp [XXXXXXXX] |
541 | return 0; |
542 | } |
543 | |
544 | switch (0x00FFFFFF & *(u32*)address) { |
545 | case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX] |
546 | return 7; |
547 | } |
548 | |
549 | switch (0x000000FF & *(u32 *)address) { |
550 | case 0xc2: // C2 XX XX : ret XX (needed for registering weak functions) |
551 | return 3; |
552 | } |
553 | |
554 | # if SANITIZER_WINDOWS_x64 |
555 | switch (*(u8*)address) { |
556 | case 0xA1: // A1 XX XX XX XX XX XX XX XX : |
557 | // movabs eax, dword ptr ds:[XXXXXXXX] |
558 | return 9; |
559 | |
560 | case 0x83: |
561 | const u8 next_byte = *(u8*)(address + 1); |
562 | const u8 mod = next_byte >> 6; |
563 | const u8 rm = next_byte & 7; |
564 | if (mod == 1 && rm == 4) |
565 | return 5; // 83 ModR/M SIB Disp8 Imm8 |
566 | // add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8 |
567 | } |
568 | |
569 | switch (*(u16*)address) { |
570 | case 0x5040: // push rax |
571 | case 0x5140: // push rcx |
572 | case 0x5240: // push rdx |
573 | case 0x5340: // push rbx |
574 | case 0x5440: // push rsp |
575 | case 0x5540: // push rbp |
576 | case 0x5640: // push rsi |
577 | case 0x5740: // push rdi |
578 | case 0x5441: // push r12 |
579 | case 0x5541: // push r13 |
580 | case 0x5641: // push r14 |
581 | case 0x5741: // push r15 |
582 | case 0x9066: // Two-byte NOP |
583 | case 0xc084: // test al, al |
584 | case 0x018a: // mov al, byte ptr [rcx] |
585 | return 2; |
586 | |
587 | case 0x058A: // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX] |
588 | case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX] |
589 | if (rel_offset) |
590 | *rel_offset = 2; |
591 | return 6; |
592 | } |
593 | |
594 | switch (0x00FFFFFF & *(u32*)address) { |
595 | case 0xe58948: // 48 8b c4 : mov rbp, rsp |
596 | case 0xc18b48: // 48 8b c1 : mov rax, rcx |
597 | case 0xc48b48: // 48 8b c4 : mov rax, rsp |
598 | case 0xd9f748: // 48 f7 d9 : neg rcx |
599 | case 0xd12b48: // 48 2b d1 : sub rdx, rcx |
600 | case 0x07c1f6: // f6 c1 07 : test cl, 0x7 |
601 | case 0xc98548: // 48 85 C9 : test rcx, rcx |
602 | case 0xd28548: // 48 85 d2 : test rdx, rdx |
603 | case 0xc0854d: // 4d 85 c0 : test r8, r8 |
604 | case 0xc2b60f: // 0f b6 c2 : movzx eax, dl |
605 | case 0xc03345: // 45 33 c0 : xor r8d, r8d |
606 | case 0xc93345: // 45 33 c9 : xor r9d, r9d |
607 | case 0xdb3345: // 45 33 DB : xor r11d, r11d |
608 | case 0xd98b4c: // 4c 8b d9 : mov r11, rcx |
609 | case 0xd28b4c: // 4c 8b d2 : mov r10, rdx |
610 | case 0xc98b4c: // 4C 8B C9 : mov r9, rcx |
611 | case 0xc18b4c: // 4C 8B C1 : mov r8, rcx |
612 | case 0xd2b60f: // 0f b6 d2 : movzx edx, dl |
613 | case 0xca2b48: // 48 2b ca : sub rcx, rdx |
614 | case 0xca3b48: // 48 3b ca : cmp rcx, rdx |
615 | case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax] |
616 | case 0xc00b4d: // 3d 0b c0 : or r8, r8 |
617 | case 0xc08b41: // 41 8b c0 : mov eax, r8d |
618 | case 0xd18b48: // 48 8b d1 : mov rdx, rcx |
619 | case 0xdc8b4c: // 4c 8b dc : mov r11, rsp |
620 | case 0xd18b4c: // 4c 8b d1 : mov r10, rcx |
621 | case 0xE0E483: // 83 E4 E0 : and esp, 0xFFFFFFE0 |
622 | return 3; |
623 | |
624 | case 0xec8348: // 48 83 ec XX : sub rsp, XX |
625 | case 0xf88349: // 49 83 f8 XX : cmp r8, XX |
626 | case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx |
627 | return 4; |
628 | |
629 | case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX |
630 | return 7; |
631 | |
632 | case 0x058b48: // 48 8b 05 XX XX XX XX : |
633 | // mov rax, QWORD PTR [rip + XXXXXXXX] |
634 | case 0x058d48: // 48 8d 05 XX XX XX XX : |
635 | // lea rax, QWORD PTR [rip + XXXXXXXX] |
636 | case 0x25ff48: // 48 ff 25 XX XX XX XX : |
637 | // rex.W jmp QWORD PTR [rip + XXXXXXXX] |
638 | case 0x158D4C: // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX] |
639 | // Instructions having offset relative to 'rip' need offset adjustment. |
640 | if (rel_offset) |
641 | *rel_offset = 3; |
642 | return 7; |
643 | |
644 | case 0x2444c7: // C7 44 24 XX YY YY YY YY |
645 | // mov dword ptr [rsp + XX], YYYYYYYY |
646 | return 8; |
647 | } |
648 | |
649 | switch (*(u32*)(address)) { |
650 | case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX] |
651 | case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp |
652 | case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx |
653 | case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi |
654 | case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi |
655 | case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx |
656 | case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx |
657 | case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9 |
658 | case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8 |
659 | return 5; |
660 | case 0x24648348: // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY |
661 | return 6; |
662 | } |
663 | |
664 | #else |
665 | |
666 | switch (*(u8*)address) { |
667 | case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX] |
668 | return 5; |
669 | } |
670 | switch (*(u16*)address) { |
671 | case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX] |
672 | case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX] |
673 | case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX] |
674 | case 0xEC83: // 83 EC XX : sub esp, XX |
675 | case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX] |
676 | return 3; |
677 | case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX |
678 | case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX] |
679 | return 6; |
680 | case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX |
681 | return 7; |
682 | case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY |
683 | return 4; |
684 | } |
685 | |
686 | switch (0x00FFFFFF & *(u32*)address) { |
687 | case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX] |
688 | case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX] |
689 | case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX] |
690 | case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX] |
691 | case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX] |
692 | case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX] |
693 | case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX] |
694 | case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX] |
695 | return 4; |
696 | } |
697 | |
698 | switch (*(u32*)address) { |
699 | case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX] |
700 | return 5; |
701 | } |
702 | #endif |
703 | |
704 | // Unknown instruction! This might happen when we add a new interceptor, use |
705 | // a new compiler version, or if Windows changed how some functions are |
706 | // compiled. In either case, we print the address and 8 bytes of instructions |
707 | // to notify the user about the error and to help identify the unknown |
708 | // instruction. Don't treat this as a fatal error, though we can break the |
709 | // debugger if one has been attached. |
710 | u8 *bytes = (u8 *)address; |
711 | ReportError( |
712 | "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x " |
713 | "%02x %02x %02x\n" , |
714 | (void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], |
715 | bytes[5], bytes[6], bytes[7]); |
716 | if (::IsDebuggerPresent()) |
717 | __debugbreak(); |
718 | return 0; |
719 | } |
720 | |
721 | // Returns 0 on error. |
722 | static size_t RoundUpToInstrBoundary(size_t size, uptr address) { |
723 | size_t cursor = 0; |
724 | while (cursor < size) { |
725 | size_t instruction_size = GetInstructionSize(address + cursor); |
726 | if (!instruction_size) |
727 | return 0; |
728 | cursor += instruction_size; |
729 | } |
730 | return cursor; |
731 | } |
732 | |
733 | static bool CopyInstructions(uptr to, uptr from, size_t size) { |
734 | size_t cursor = 0; |
735 | while (cursor != size) { |
736 | size_t rel_offset = 0; |
737 | size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset); |
738 | if (!instruction_size) |
739 | return false; |
740 | _memcpy((void *)(to + cursor), (void *)(from + cursor), |
741 | (size_t)instruction_size); |
742 | if (rel_offset) { |
743 | # if SANITIZER_WINDOWS64 |
744 | // we want to make sure that the new relative offset still fits in 32-bits |
745 | // this will be untrue if relocated_offset \notin [-2**31, 2**31) |
746 | s64 delta = to - from; |
747 | s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta; |
748 | if (-0x8000'0000ll > relocated_offset || relocated_offset > 0x7FFF'FFFFll) |
749 | return false; |
750 | # else |
751 | // on 32-bit, the relative offset will always be correct |
752 | s32 delta = to - from; |
753 | s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta; |
754 | # endif |
755 | *(s32 *)(to + cursor + rel_offset) = relocated_offset; |
756 | } |
757 | cursor += instruction_size; |
758 | } |
759 | return true; |
760 | } |
761 | |
762 | |
763 | #if !SANITIZER_WINDOWS64 |
764 | bool OverrideFunctionWithDetour( |
765 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
766 | const int kDetourHeaderLen = 5; |
767 | const u16 kDetourInstruction = 0xFF8B; |
768 | |
769 | uptr header = (uptr)old_func - kDetourHeaderLen; |
770 | uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength; |
771 | |
772 | // Validate that the function is hookable. |
773 | if (*(u16*)old_func != kDetourInstruction || |
774 | !IsMemoryPadding(header, kDetourHeaderLen)) |
775 | return false; |
776 | |
777 | // Change memory protection to writable. |
778 | DWORD protection = 0; |
779 | if (!ChangeMemoryProtection(header, patch_length, &protection)) |
780 | return false; |
781 | |
782 | // Write a relative jump to the redirected function. |
783 | WriteJumpInstruction(header, new_func); |
784 | |
785 | // Write the short jump to the function prefix. |
786 | WriteShortJumpInstruction(old_func, header); |
787 | |
788 | // Restore previous memory protection. |
789 | if (!RestoreMemoryProtection(header, patch_length, protection)) |
790 | return false; |
791 | |
792 | if (orig_old_func) |
793 | *orig_old_func = old_func + kShortJumpInstructionLength; |
794 | |
795 | return true; |
796 | } |
797 | #endif |
798 | |
799 | bool OverrideFunctionWithRedirectJump( |
800 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
801 | // Check whether the first instruction is a relative jump. |
802 | if (*(u8*)old_func != 0xE9) |
803 | return false; |
804 | |
805 | if (orig_old_func) { |
806 | sptr relative_offset = *(s32 *)(old_func + 1); |
807 | uptr absolute_target = old_func + relative_offset + kJumpInstructionLength; |
808 | *orig_old_func = absolute_target; |
809 | } |
810 | |
811 | #if SANITIZER_WINDOWS64 |
812 | // If needed, get memory space for a trampoline jump. |
813 | uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength); |
814 | if (!trampoline) |
815 | return false; |
816 | WriteDirectBranch(trampoline, new_func); |
817 | #endif |
818 | |
819 | // Change memory protection to writable. |
820 | DWORD protection = 0; |
821 | if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection)) |
822 | return false; |
823 | |
824 | // Write a relative jump to the redirected function. |
825 | WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline)); |
826 | |
827 | // Restore previous memory protection. |
828 | if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection)) |
829 | return false; |
830 | |
831 | return true; |
832 | } |
833 | |
834 | bool OverrideFunctionWithHotPatch( |
835 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
836 | const int kHotPatchHeaderLen = kBranchLength; |
837 | |
838 | uptr header = (uptr)old_func - kHotPatchHeaderLen; |
839 | uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength; |
840 | |
841 | // Validate that the function is hot patchable. |
842 | size_t instruction_size = GetInstructionSize(old_func); |
843 | if (instruction_size < kShortJumpInstructionLength || |
844 | !FunctionHasPadding(old_func, kHotPatchHeaderLen)) |
845 | return false; |
846 | |
847 | if (orig_old_func) { |
848 | // Put the needed instructions into the trampoline bytes. |
849 | uptr trampoline_length = instruction_size + kDirectBranchLength; |
850 | uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); |
851 | if (!trampoline) |
852 | return false; |
853 | if (!CopyInstructions(trampoline, old_func, instruction_size)) |
854 | return false; |
855 | WriteDirectBranch(trampoline + instruction_size, |
856 | old_func + instruction_size); |
857 | *orig_old_func = trampoline; |
858 | } |
859 | |
860 | // If needed, get memory space for indirect address. |
861 | uptr indirect_address = 0; |
862 | #if SANITIZER_WINDOWS64 |
863 | indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); |
864 | if (!indirect_address) |
865 | return false; |
866 | #endif |
867 | |
868 | // Change memory protection to writable. |
869 | DWORD protection = 0; |
870 | if (!ChangeMemoryProtection(header, patch_length, &protection)) |
871 | return false; |
872 | |
873 | // Write jumps to the redirected function. |
874 | WriteBranch(header, indirect_address, new_func); |
875 | WriteShortJumpInstruction(old_func, header); |
876 | |
877 | // Restore previous memory protection. |
878 | if (!RestoreMemoryProtection(header, patch_length, protection)) |
879 | return false; |
880 | |
881 | return true; |
882 | } |
883 | |
884 | bool OverrideFunctionWithTrampoline( |
885 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
886 | |
887 | size_t instructions_length = kBranchLength; |
888 | size_t padding_length = 0; |
889 | uptr indirect_address = 0; |
890 | |
891 | if (orig_old_func) { |
892 | // Find out the number of bytes of the instructions we need to copy |
893 | // to the trampoline. |
894 | instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func); |
895 | if (!instructions_length) |
896 | return false; |
897 | |
898 | // Put the needed instructions into the trampoline bytes. |
899 | uptr trampoline_length = instructions_length + kDirectBranchLength; |
900 | uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); |
901 | if (!trampoline) |
902 | return false; |
903 | if (!CopyInstructions(trampoline, old_func, instructions_length)) |
904 | return false; |
905 | WriteDirectBranch(trampoline + instructions_length, |
906 | old_func + instructions_length); |
907 | *orig_old_func = trampoline; |
908 | } |
909 | |
910 | #if SANITIZER_WINDOWS64 |
911 | // Check if the targeted address can be encoded in the function padding. |
912 | // Otherwise, allocate it in the trampoline region. |
913 | if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) { |
914 | indirect_address = old_func - kAddressLength; |
915 | padding_length = kAddressLength; |
916 | } else { |
917 | indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); |
918 | if (!indirect_address) |
919 | return false; |
920 | } |
921 | #endif |
922 | |
923 | // Change memory protection to writable. |
924 | uptr patch_address = old_func - padding_length; |
925 | uptr patch_length = instructions_length + padding_length; |
926 | DWORD protection = 0; |
927 | if (!ChangeMemoryProtection(patch_address, patch_length, &protection)) |
928 | return false; |
929 | |
930 | // Patch the original function. |
931 | WriteBranch(old_func, indirect_address, new_func); |
932 | |
933 | // Restore previous memory protection. |
934 | if (!RestoreMemoryProtection(patch_address, patch_length, protection)) |
935 | return false; |
936 | |
937 | return true; |
938 | } |
939 | |
940 | bool OverrideFunction( |
941 | uptr old_func, uptr new_func, uptr *orig_old_func) { |
942 | #if !SANITIZER_WINDOWS64 |
943 | if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func)) |
944 | return true; |
945 | #endif |
946 | if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func)) |
947 | return true; |
948 | if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func)) |
949 | return true; |
950 | if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func)) |
951 | return true; |
952 | return false; |
953 | } |
954 | |
955 | static void **InterestingDLLsAvailable() { |
956 | static const char *InterestingDLLs[] = { |
957 | "kernel32.dll" , |
958 | "msvcr100d.dll" , // VS2010 |
959 | "msvcr110d.dll" , // VS2012 |
960 | "msvcr120d.dll" , // VS2013 |
961 | "vcruntime140d.dll" , // VS2015 |
962 | "ucrtbased.dll" , // Universal CRT |
963 | "msvcr100.dll" , // VS2010 |
964 | "msvcr110.dll" , // VS2012 |
965 | "msvcr120.dll" , // VS2013 |
966 | "vcruntime140.dll" , // VS2015 |
967 | "ucrtbase.dll" , // Universal CRT |
968 | # if (defined(__MINGW32__) && defined(__i386__)) |
969 | "libc++.dll" , // libc++ |
970 | "libunwind.dll" , // libunwind |
971 | # endif |
972 | // NTDLL should go last as it exports some functions that we should |
973 | // override in the CRT [presumably only used internally]. |
974 | "ntdll.dll" , |
975 | NULL |
976 | }; |
977 | static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 }; |
978 | if (!result[0]) { |
979 | for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) { |
980 | if (HMODULE h = GetModuleHandleA(InterestingDLLs[i])) |
981 | result[j++] = (void *)h; |
982 | } |
983 | } |
984 | return &result[0]; |
985 | } |
986 | |
987 | namespace { |
988 | // Utility for reading loaded PE images. |
989 | template <typename T> class RVAPtr { |
990 | public: |
991 | RVAPtr(void *module, uptr rva) |
992 | : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {} |
993 | operator T *() { return ptr_; } |
994 | T *operator->() { return ptr_; } |
995 | T *operator++() { return ++ptr_; } |
996 | |
997 | private: |
998 | T *ptr_; |
999 | }; |
1000 | } // namespace |
1001 | |
1002 | // Internal implementation of GetProcAddress. At least since Windows 8, |
1003 | // GetProcAddress appears to initialize DLLs before returning function pointers |
1004 | // into them. This is problematic for the sanitizers, because they typically |
1005 | // want to intercept malloc *before* MSVCRT initializes. Our internal |
1006 | // implementation walks the export list manually without doing initialization. |
1007 | uptr InternalGetProcAddress(void *module, const char *func_name) { |
1008 | // Check that the module header is full and present. |
1009 | RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); |
1010 | RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); |
1011 | if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" |
1012 | headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" |
1013 | headers->FileHeader.SizeOfOptionalHeader < |
1014 | sizeof(IMAGE_OPTIONAL_HEADER)) { |
1015 | return 0; |
1016 | } |
1017 | |
1018 | IMAGE_DATA_DIRECTORY *export_directory = |
1019 | &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]; |
1020 | if (export_directory->Size == 0) |
1021 | return 0; |
1022 | RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module, |
1023 | export_directory->VirtualAddress); |
1024 | RVAPtr<DWORD> functions(module, exports->AddressOfFunctions); |
1025 | RVAPtr<DWORD> names(module, exports->AddressOfNames); |
1026 | RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals); |
1027 | |
1028 | for (DWORD i = 0; i < exports->NumberOfNames; i++) { |
1029 | RVAPtr<char> name(module, names[i]); |
1030 | if (!strcmp(func_name, name)) { |
1031 | DWORD index = ordinals[i]; |
1032 | RVAPtr<char> func(module, functions[index]); |
1033 | |
1034 | // Handle forwarded functions. |
1035 | DWORD offset = functions[index]; |
1036 | if (offset >= export_directory->VirtualAddress && |
1037 | offset < export_directory->VirtualAddress + export_directory->Size) { |
1038 | // An entry for a forwarded function is a string with the following |
1039 | // format: "<module> . <function_name>" that is stored into the |
1040 | // exported directory. |
1041 | char function_name[256]; |
1042 | size_t funtion_name_length = _strlen(func); |
1043 | if (funtion_name_length >= sizeof(function_name) - 1) |
1044 | InterceptionFailed(); |
1045 | |
1046 | _memcpy(function_name, func, funtion_name_length); |
1047 | function_name[funtion_name_length] = '\0'; |
1048 | char* separator = _strchr(function_name, '.'); |
1049 | if (!separator) |
1050 | InterceptionFailed(); |
1051 | *separator = '\0'; |
1052 | |
1053 | void* redirected_module = GetModuleHandleA(function_name); |
1054 | if (!redirected_module) |
1055 | InterceptionFailed(); |
1056 | return InternalGetProcAddress(redirected_module, separator + 1); |
1057 | } |
1058 | |
1059 | return (uptr)(char *)func; |
1060 | } |
1061 | } |
1062 | |
1063 | return 0; |
1064 | } |
1065 | |
1066 | bool OverrideFunction( |
1067 | const char *func_name, uptr new_func, uptr *orig_old_func) { |
1068 | bool hooked = false; |
1069 | void **DLLs = InterestingDLLsAvailable(); |
1070 | for (size_t i = 0; DLLs[i]; ++i) { |
1071 | uptr func_addr = InternalGetProcAddress(DLLs[i], func_name); |
1072 | if (func_addr && |
1073 | OverrideFunction(func_addr, new_func, orig_old_func)) { |
1074 | hooked = true; |
1075 | } |
1076 | } |
1077 | return hooked; |
1078 | } |
1079 | |
1080 | bool OverrideImportedFunction(const char *module_to_patch, |
1081 | const char *imported_module, |
1082 | const char *function_name, uptr new_function, |
1083 | uptr *orig_old_func) { |
1084 | HMODULE module = GetModuleHandleA(module_to_patch); |
1085 | if (!module) |
1086 | return false; |
1087 | |
1088 | // Check that the module header is full and present. |
1089 | RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); |
1090 | RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); |
1091 | if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" |
1092 | headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" |
1093 | headers->FileHeader.SizeOfOptionalHeader < |
1094 | sizeof(IMAGE_OPTIONAL_HEADER)) { |
1095 | return false; |
1096 | } |
1097 | |
1098 | IMAGE_DATA_DIRECTORY *import_directory = |
1099 | &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]; |
1100 | |
1101 | // Iterate the list of imported DLLs. FirstThunk will be null for the last |
1102 | // entry. |
1103 | RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module, |
1104 | import_directory->VirtualAddress); |
1105 | for (; imports->FirstThunk != 0; ++imports) { |
1106 | RVAPtr<const char> modname(module, imports->Name); |
1107 | if (_stricmp(&*modname, imported_module) == 0) |
1108 | break; |
1109 | } |
1110 | if (imports->FirstThunk == 0) |
1111 | return false; |
1112 | |
1113 | // We have two parallel arrays: the import address table (IAT) and the table |
1114 | // of names. They start out containing the same data, but the loader rewrites |
1115 | // the IAT to hold imported addresses and leaves the name table in |
1116 | // OriginalFirstThunk alone. |
1117 | RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk); |
1118 | RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk); |
1119 | for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) { |
1120 | if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) { |
1121 | RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name( |
1122 | module, name_table->u1.ForwarderString); |
1123 | const char *funcname = &import_by_name->Name[0]; |
1124 | if (strcmp(funcname, function_name) == 0) |
1125 | break; |
1126 | } |
1127 | } |
1128 | if (name_table->u1.Ordinal == 0) |
1129 | return false; |
1130 | |
1131 | // Now we have the correct IAT entry. Do the swap. We have to make the page |
1132 | // read/write first. |
1133 | if (orig_old_func) |
1134 | *orig_old_func = iat->u1.AddressOfData; |
1135 | DWORD old_prot, unused_prot; |
1136 | if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE, |
1137 | &old_prot)) |
1138 | return false; |
1139 | iat->u1.AddressOfData = new_function; |
1140 | if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot)) |
1141 | return false; // Not clear if this failure bothers us. |
1142 | return true; |
1143 | } |
1144 | |
1145 | } // namespace __interception |
1146 | |
1147 | #endif // SANITIZER_APPLE |
1148 | |