1 | //===-- safestack.cpp -----------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the runtime support for the safe stack protection |
10 | // mechanism. The runtime manages allocation/deallocation of the unsafe stack |
11 | // for the main thread, as well as all pthreads that are created/destroyed |
12 | // during program execution. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "safestack_platform.h" |
17 | #include "safestack_util.h" |
18 | |
19 | #include <errno.h> |
20 | #include <sys/resource.h> |
21 | |
22 | #include "interception/interception.h" |
23 | |
24 | using namespace safestack; |
25 | |
26 | // TODO: To make accessing the unsafe stack pointer faster, we plan to |
27 | // eventually store it directly in the thread control block data structure on |
28 | // platforms where this structure is pointed to by %fs or %gs. This is exactly |
29 | // the same mechanism as currently being used by the traditional stack |
30 | // protector pass to store the stack guard (see getStackCookieLocation() |
31 | // function above). Doing so requires changing the tcbhead_t struct in glibc |
32 | // on Linux and tcb struct in libc on FreeBSD. |
33 | // |
34 | // For now, store it in a thread-local variable. |
35 | extern "C" { |
36 | __attribute__((visibility( |
37 | "default" ))) __thread void *__safestack_unsafe_stack_ptr = nullptr; |
38 | } |
39 | |
40 | namespace { |
41 | |
42 | // TODO: The runtime library does not currently protect the safe stack beyond |
43 | // relying on the system-enforced ASLR. The protection of the (safe) stack can |
44 | // be provided by three alternative features: |
45 | // |
46 | // 1) Protection via hardware segmentation on x86-32 and some x86-64 |
47 | // architectures: the (safe) stack segment (implicitly accessed via the %ss |
48 | // segment register) can be separated from the data segment (implicitly |
49 | // accessed via the %ds segment register). Dereferencing a pointer to the safe |
50 | // segment would result in a segmentation fault. |
51 | // |
52 | // 2) Protection via software fault isolation: memory writes that are not meant |
53 | // to access the safe stack can be prevented from doing so through runtime |
54 | // instrumentation. One way to do it is to allocate the safe stack(s) in the |
55 | // upper half of the userspace and bitmask the corresponding upper bit of the |
56 | // memory addresses of memory writes that are not meant to access the safe |
57 | // stack. |
58 | // |
59 | // 3) Protection via information hiding on 64 bit architectures: the location |
60 | // of the safe stack(s) can be randomized through secure mechanisms, and the |
61 | // leakage of the stack pointer can be prevented. Currently, libc can leak the |
62 | // stack pointer in several ways (e.g. in longjmp, signal handling, user-level |
63 | // context switching related functions, etc.). These can be fixed in libc and |
64 | // in other low-level libraries, by either eliminating the escaping/dumping of |
65 | // the stack pointer (i.e., %rsp) when that's possible, or by using |
66 | // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret |
67 | // we control and protect better, as is already done for setjmp in glibc.) |
68 | // Furthermore, a static machine code level verifier can be ran after code |
69 | // generation to make sure that the stack pointer is never written to memory, |
70 | // or if it is, its written on the safe stack. |
71 | // |
72 | // Finally, while the Unsafe Stack pointer is currently stored in a thread |
73 | // local variable, with libc support it could be stored in the TCB (thread |
74 | // control block) as well, eliminating another level of indirection and making |
75 | // such accesses faster. Alternatively, dedicating a separate register for |
76 | // storing it would also be possible. |
77 | |
78 | /// Minimum stack alignment for the unsafe stack. |
79 | const unsigned kStackAlign = 16; |
80 | |
81 | /// Default size of the unsafe stack. This value is only used if the stack |
82 | /// size rlimit is set to infinity. |
83 | const unsigned kDefaultUnsafeStackSize = 0x2800000; |
84 | |
85 | // Per-thread unsafe stack information. It's not frequently accessed, so there |
86 | // it can be kept out of the tcb in normal thread-local variables. |
87 | __thread void *unsafe_stack_start = nullptr; |
88 | __thread size_t unsafe_stack_size = 0; |
89 | __thread size_t unsafe_stack_guard = 0; |
90 | |
91 | inline void *unsafe_stack_alloc(size_t size, size_t guard) { |
92 | SFS_CHECK(size + guard >= size); |
93 | void *addr = Mmap(addr: nullptr, length: size + guard, PROT_READ | PROT_WRITE, |
94 | MAP_PRIVATE | MAP_ANON, fd: -1, offset: 0); |
95 | SFS_CHECK(MAP_FAILED != addr); |
96 | Mprotect(addr, length: guard, PROT_NONE); |
97 | return (char *)addr + guard; |
98 | } |
99 | |
100 | inline void unsafe_stack_setup(void *start, size_t size, size_t guard) { |
101 | SFS_CHECK((char *)start + size >= (char *)start); |
102 | SFS_CHECK((char *)start + guard >= (char *)start); |
103 | void *stack_ptr = (char *)start + size; |
104 | SFS_CHECK((((size_t)stack_ptr) & (kStackAlign - 1)) == 0); |
105 | |
106 | __safestack_unsafe_stack_ptr = stack_ptr; |
107 | unsafe_stack_start = start; |
108 | unsafe_stack_size = size; |
109 | unsafe_stack_guard = guard; |
110 | } |
111 | |
112 | /// Thread data for the cleanup handler |
113 | pthread_key_t thread_cleanup_key; |
114 | |
115 | /// Safe stack per-thread information passed to the thread_start function |
116 | struct tinfo { |
117 | void *(*start_routine)(void *); |
118 | void *start_routine_arg; |
119 | |
120 | void *unsafe_stack_start; |
121 | size_t unsafe_stack_size; |
122 | size_t unsafe_stack_guard; |
123 | }; |
124 | |
125 | /// Wrap the thread function in order to deallocate the unsafe stack when the |
126 | /// thread terminates by returning from its main function. |
127 | void *thread_start(void *arg) { |
128 | struct tinfo *tinfo = (struct tinfo *)arg; |
129 | |
130 | void *(*start_routine)(void *) = tinfo->start_routine; |
131 | void *start_routine_arg = tinfo->start_routine_arg; |
132 | |
133 | // Setup the unsafe stack; this will destroy tinfo content |
134 | unsafe_stack_setup(start: tinfo->unsafe_stack_start, size: tinfo->unsafe_stack_size, |
135 | guard: tinfo->unsafe_stack_guard); |
136 | |
137 | // Make sure out thread-specific destructor will be called |
138 | pthread_setspecific(key: thread_cleanup_key, pointer: (void *)1); |
139 | |
140 | return start_routine(start_routine_arg); |
141 | } |
142 | |
143 | /// Linked list used to store exiting threads stack/thread information. |
144 | struct thread_stack_ll { |
145 | struct thread_stack_ll *next; |
146 | void *stack_base; |
147 | size_t size; |
148 | pid_t pid; |
149 | ThreadId tid; |
150 | }; |
151 | |
152 | /// Linked list of unsafe stacks for threads that are exiting. We delay |
153 | /// unmapping them until the thread exits. |
154 | thread_stack_ll *thread_stacks = nullptr; |
155 | pthread_mutex_t thread_stacks_mutex = PTHREAD_MUTEX_INITIALIZER; |
156 | |
157 | /// Thread-specific data destructor. We want to free the unsafe stack only after |
158 | /// this thread is terminated. libc can call functions in safestack-instrumented |
159 | /// code (like free) after thread-specific data destructors have run. |
160 | void thread_cleanup_handler(void *_iter) { |
161 | SFS_CHECK(unsafe_stack_start != nullptr); |
162 | pthread_setspecific(key: thread_cleanup_key, NULL); |
163 | |
164 | pthread_mutex_lock(mutex: &thread_stacks_mutex); |
165 | // Temporary list to hold the previous threads stacks so we don't hold the |
166 | // thread_stacks_mutex for long. |
167 | thread_stack_ll *temp_stacks = thread_stacks; |
168 | thread_stacks = nullptr; |
169 | pthread_mutex_unlock(mutex: &thread_stacks_mutex); |
170 | |
171 | pid_t pid = getpid(); |
172 | ThreadId tid = GetTid(); |
173 | |
174 | // Free stacks for dead threads |
175 | thread_stack_ll **stackp = &temp_stacks; |
176 | while (*stackp) { |
177 | thread_stack_ll *stack = *stackp; |
178 | if (stack->pid != pid || |
179 | (-1 == TgKill(pid: stack->pid, tid: stack->tid, sig: 0) && errno == ESRCH)) { |
180 | Munmap(addr: stack->stack_base, length: stack->size); |
181 | *stackp = stack->next; |
182 | free(ptr: stack); |
183 | } else |
184 | stackp = &stack->next; |
185 | } |
186 | |
187 | thread_stack_ll *cur_stack = |
188 | (thread_stack_ll *)malloc(size: sizeof(thread_stack_ll)); |
189 | cur_stack->stack_base = (char *)unsafe_stack_start - unsafe_stack_guard; |
190 | cur_stack->size = unsafe_stack_size + unsafe_stack_guard; |
191 | cur_stack->pid = pid; |
192 | cur_stack->tid = tid; |
193 | |
194 | pthread_mutex_lock(mutex: &thread_stacks_mutex); |
195 | // Merge thread_stacks with the current thread's stack and any remaining |
196 | // temp_stacks |
197 | *stackp = thread_stacks; |
198 | cur_stack->next = temp_stacks; |
199 | thread_stacks = cur_stack; |
200 | pthread_mutex_unlock(mutex: &thread_stacks_mutex); |
201 | |
202 | unsafe_stack_start = nullptr; |
203 | } |
204 | |
205 | void EnsureInterceptorsInitialized(); |
206 | |
207 | /// Intercept thread creation operation to allocate and setup the unsafe stack |
208 | INTERCEPTOR(int, pthread_create, pthread_t *thread, |
209 | const pthread_attr_t *attr, |
210 | void *(*start_routine)(void*), void *arg) { |
211 | EnsureInterceptorsInitialized(); |
212 | size_t size = 0; |
213 | size_t guard = 0; |
214 | |
215 | if (attr) { |
216 | pthread_attr_getstacksize(attr: attr, stacksize: &size); |
217 | pthread_attr_getguardsize(attr: attr, guardsize: &guard); |
218 | } else { |
219 | // get pthread default stack size |
220 | pthread_attr_t tmpattr; |
221 | pthread_attr_init(attr: &tmpattr); |
222 | pthread_attr_getstacksize(attr: &tmpattr, stacksize: &size); |
223 | pthread_attr_getguardsize(attr: &tmpattr, guardsize: &guard); |
224 | pthread_attr_destroy(attr: &tmpattr); |
225 | } |
226 | |
227 | SFS_CHECK(size); |
228 | size = RoundUpTo(size, boundary: kStackAlign); |
229 | |
230 | void *addr = unsafe_stack_alloc(size, guard); |
231 | // Put tinfo at the end of the buffer. guard may be not page aligned. |
232 | // If that is so then some bytes after addr can be mprotected. |
233 | struct tinfo *tinfo = |
234 | (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo)); |
235 | tinfo->start_routine = start_routine; |
236 | tinfo->start_routine_arg = arg; |
237 | tinfo->unsafe_stack_start = addr; |
238 | tinfo->unsafe_stack_size = size; |
239 | tinfo->unsafe_stack_guard = guard; |
240 | |
241 | return REAL(pthread_create)(thread, attr, thread_start, tinfo); |
242 | } |
243 | |
244 | pthread_mutex_t interceptor_init_mutex = PTHREAD_MUTEX_INITIALIZER; |
245 | bool interceptors_inited = false; |
246 | |
247 | void EnsureInterceptorsInitialized() { |
248 | MutexLock lock(interceptor_init_mutex); |
249 | if (interceptors_inited) |
250 | return; |
251 | |
252 | // Initialize pthread interceptors for thread allocation |
253 | INTERCEPT_FUNCTION(pthread_create); |
254 | |
255 | interceptors_inited = true; |
256 | } |
257 | |
258 | } // namespace |
259 | |
260 | extern "C" __attribute__((visibility("default" ))) |
261 | #if !SANITIZER_CAN_USE_PREINIT_ARRAY |
262 | // On ELF platforms, the constructor is invoked using .preinit_array (see below) |
263 | __attribute__((constructor(0))) |
264 | #endif |
265 | void __safestack_init() { |
266 | // Determine the stack size for the main thread. |
267 | size_t size = kDefaultUnsafeStackSize; |
268 | size_t guard = 4096; |
269 | |
270 | struct rlimit limit; |
271 | if (getrlimit(RLIMIT_STACK, rlimits: &limit) == 0 && limit.rlim_cur != RLIM_INFINITY) |
272 | size = limit.rlim_cur; |
273 | |
274 | // Allocate unsafe stack for main thread |
275 | void *addr = unsafe_stack_alloc(size, guard); |
276 | unsafe_stack_setup(start: addr, size, guard); |
277 | |
278 | // Setup the cleanup handler |
279 | pthread_key_create(key: &thread_cleanup_key, destr_function: thread_cleanup_handler); |
280 | } |
281 | |
282 | #if SANITIZER_CAN_USE_PREINIT_ARRAY |
283 | // On ELF platforms, run safestack initialization before any other constructors. |
284 | // On other platforms we use the constructor attribute to arrange to run our |
285 | // initialization early. |
286 | extern "C" { |
287 | __attribute__((section(".preinit_array" ), |
288 | used)) void (*__safestack_preinit)(void) = __safestack_init; |
289 | } |
290 | #endif |
291 | |
292 | extern "C" |
293 | __attribute__((visibility("default" ))) void *__get_unsafe_stack_bottom() { |
294 | return unsafe_stack_start; |
295 | } |
296 | |
297 | extern "C" |
298 | __attribute__((visibility("default" ))) void *__get_unsafe_stack_top() { |
299 | return (char*)unsafe_stack_start + unsafe_stack_size; |
300 | } |
301 | |
302 | extern "C" |
303 | __attribute__((visibility("default" ))) void *__get_unsafe_stack_start() { |
304 | return unsafe_stack_start; |
305 | } |
306 | |
307 | extern "C" |
308 | __attribute__((visibility("default" ))) void *__get_unsafe_stack_ptr() { |
309 | return __safestack_unsafe_stack_ptr; |
310 | } |
311 | |