1 | //===-- sanitizer_allocator_combined.h --------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Part of the Sanitizer Allocator. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | #ifndef SANITIZER_ALLOCATOR_H |
13 | #error This file must be included inside sanitizer_allocator.h |
14 | #endif |
15 | |
16 | // This class implements a complete memory allocator by using two |
17 | // internal allocators: |
18 | // PrimaryAllocator is efficient, but may not allocate some sizes (alignments). |
19 | // When allocating 2^x bytes it should return 2^x aligned chunk. |
20 | // PrimaryAllocator is used via a local AllocatorCache. |
21 | // SecondaryAllocator can allocate anything, but is not efficient. |
22 | template <class PrimaryAllocator, |
23 | class LargeMmapAllocatorPtrArray = DefaultLargeMmapAllocatorPtrArray> |
24 | class CombinedAllocator { |
25 | public: |
26 | using AllocatorCache = typename PrimaryAllocator::AllocatorCache; |
27 | using SecondaryAllocator = |
28 | LargeMmapAllocator<typename PrimaryAllocator::MapUnmapCallback, |
29 | LargeMmapAllocatorPtrArray, |
30 | typename PrimaryAllocator::AddressSpaceView>; |
31 | |
32 | void InitLinkerInitialized(s32 release_to_os_interval_ms, |
33 | uptr heap_start = 0) { |
34 | primary_.Init(release_to_os_interval_ms, heap_start); |
35 | secondary_.InitLinkerInitialized(); |
36 | } |
37 | |
38 | void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) { |
39 | stats_.Init(); |
40 | primary_.Init(release_to_os_interval_ms, heap_start); |
41 | secondary_.Init(); |
42 | } |
43 | |
44 | void *Allocate(AllocatorCache *cache, uptr size, uptr alignment) { |
45 | // Returning 0 on malloc(0) may break a lot of code. |
46 | if (size == 0) |
47 | size = 1; |
48 | if (size + alignment < size) { |
49 | Report(format: "WARNING: %s: CombinedAllocator allocation overflow: " |
50 | "0x%zx bytes with 0x%zx alignment requested\n" , |
51 | SanitizerToolName, size, alignment); |
52 | return nullptr; |
53 | } |
54 | uptr original_size = size; |
55 | // If alignment requirements are to be fulfilled by the frontend allocator |
56 | // rather than by the primary or secondary, passing an alignment lower than |
57 | // or equal to 8 will prevent any further rounding up, as well as the later |
58 | // alignment check. |
59 | if (alignment > 8) |
60 | size = RoundUpTo(size, boundary: alignment); |
61 | // The primary allocator should return a 2^x aligned allocation when |
62 | // requested 2^x bytes, hence using the rounded up 'size' when being |
63 | // serviced by the primary (this is no longer true when the primary is |
64 | // using a non-fixed base address). The secondary takes care of the |
65 | // alignment without such requirement, and allocating 'size' would use |
66 | // extraneous memory, so we employ 'original_size'. |
67 | void *res; |
68 | if (primary_.CanAllocate(size, alignment)) |
69 | res = cache->Allocate(&primary_, primary_.ClassID(size)); |
70 | else |
71 | res = secondary_.Allocate(&stats_, original_size, alignment); |
72 | if (alignment > 8) |
73 | CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0); |
74 | return res; |
75 | } |
76 | |
77 | s32 ReleaseToOSIntervalMs() const { |
78 | return primary_.ReleaseToOSIntervalMs(); |
79 | } |
80 | |
81 | void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) { |
82 | primary_.SetReleaseToOSIntervalMs(release_to_os_interval_ms); |
83 | } |
84 | |
85 | void ForceReleaseToOS() { |
86 | primary_.ForceReleaseToOS(); |
87 | } |
88 | |
89 | void Deallocate(AllocatorCache *cache, void *p) { |
90 | if (!p) return; |
91 | if (primary_.PointerIsMine(p)) |
92 | cache->Deallocate(&primary_, primary_.GetSizeClass(p), p); |
93 | else |
94 | secondary_.Deallocate(&stats_, p); |
95 | } |
96 | |
97 | void *Reallocate(AllocatorCache *cache, void *p, uptr new_size, |
98 | uptr alignment) { |
99 | if (!p) |
100 | return Allocate(cache, size: new_size, alignment); |
101 | if (!new_size) { |
102 | Deallocate(cache, p); |
103 | return nullptr; |
104 | } |
105 | CHECK(PointerIsMine(p)); |
106 | uptr old_size = GetActuallyAllocatedSize(p); |
107 | uptr memcpy_size = Min(a: new_size, b: old_size); |
108 | void *new_p = Allocate(cache, size: new_size, alignment); |
109 | if (new_p) |
110 | internal_memcpy(dest: new_p, src: p, n: memcpy_size); |
111 | Deallocate(cache, p); |
112 | return new_p; |
113 | } |
114 | |
115 | bool PointerIsMine(const void *p) const { |
116 | if (primary_.PointerIsMine(p)) |
117 | return true; |
118 | return secondary_.PointerIsMine(p); |
119 | } |
120 | |
121 | bool FromPrimary(const void *p) const { return primary_.PointerIsMine(p); } |
122 | |
123 | void *GetMetaData(const void *p) { |
124 | if (primary_.PointerIsMine(p)) |
125 | return primary_.GetMetaData(p); |
126 | return secondary_.GetMetaData(p); |
127 | } |
128 | |
129 | void *GetBlockBegin(const void *p) { |
130 | if (primary_.PointerIsMine(p)) |
131 | return primary_.GetBlockBegin(p); |
132 | return secondary_.GetBlockBegin(p); |
133 | } |
134 | |
135 | // This function does the same as GetBlockBegin, but is much faster. |
136 | // Must be called with the allocator locked. |
137 | void *GetBlockBeginFastLocked(const void *p) { |
138 | if (primary_.PointerIsMine(p)) |
139 | return primary_.GetBlockBegin(p); |
140 | return secondary_.GetBlockBeginFastLocked(p); |
141 | } |
142 | |
143 | uptr GetActuallyAllocatedSize(void *p) { |
144 | if (primary_.PointerIsMine(p)) |
145 | return primary_.GetActuallyAllocatedSize(p); |
146 | return secondary_.GetActuallyAllocatedSize(p); |
147 | } |
148 | |
149 | uptr TotalMemoryUsed() { |
150 | return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed(); |
151 | } |
152 | |
153 | void TestOnlyUnmap() { primary_.TestOnlyUnmap(); } |
154 | |
155 | void InitCache(AllocatorCache *cache) { |
156 | cache->Init(&stats_); |
157 | } |
158 | |
159 | void DestroyCache(AllocatorCache *cache) { |
160 | cache->Destroy(&primary_, &stats_); |
161 | } |
162 | |
163 | void SwallowCache(AllocatorCache *cache) { |
164 | cache->Drain(&primary_); |
165 | } |
166 | |
167 | void GetStats(AllocatorStatCounters s) const { |
168 | stats_.Get(s); |
169 | } |
170 | |
171 | void PrintStats() { |
172 | primary_.PrintStats(); |
173 | secondary_.PrintStats(); |
174 | } |
175 | |
176 | // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone |
177 | // introspection API. |
178 | void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
179 | primary_.ForceLock(); |
180 | secondary_.ForceLock(); |
181 | } |
182 | |
183 | void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
184 | secondary_.ForceUnlock(); |
185 | primary_.ForceUnlock(); |
186 | } |
187 | |
188 | // Iterate over all existing chunks. |
189 | // The allocator must be locked when calling this function. |
190 | void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
191 | primary_.ForEachChunk(callback, arg); |
192 | secondary_.ForEachChunk(callback, arg); |
193 | } |
194 | |
195 | private: |
196 | PrimaryAllocator primary_; |
197 | SecondaryAllocator secondary_; |
198 | AllocatorGlobalStats stats_; |
199 | }; |
200 | |