1 | //===-- sanitizer_coverage_fuchsia.cpp ------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Sanitizer Coverage Controller for Trace PC Guard, Fuchsia-specific version. |
10 | // |
11 | // This Fuchsia-specific implementation uses the same basic scheme and the |
12 | // same simple '.sancov' file format as the generic implementation. The |
13 | // difference is that we just produce a single blob of output for the whole |
14 | // program, not a separate one per DSO. We do not sort the PC table and do |
15 | // not prune the zeros, so the resulting file is always as large as it |
16 | // would be to report 100% coverage. Implicit tracing information about |
17 | // the address ranges of DSOs allows offline tools to split the one big |
18 | // blob into separate files that the 'sancov' tool can understand. |
19 | // |
20 | // Unlike the traditional implementation that uses an atexit hook to write |
21 | // out data files at the end, the results on Fuchsia do not go into a file |
22 | // per se. The 'coverage_dir' option is ignored. Instead, they are stored |
23 | // directly into a shared memory object (a Zircon VMO). At exit, that VMO |
24 | // is handed over to a system service that's responsible for getting the |
25 | // data out to somewhere that it can be fed into the sancov tool (where and |
26 | // how is not our problem). |
27 | |
28 | #include "sanitizer_platform.h" |
29 | #if SANITIZER_FUCHSIA |
30 | #include <zircon/process.h> |
31 | #include <zircon/sanitizer.h> |
32 | #include <zircon/syscalls.h> |
33 | |
34 | #include "sanitizer_atomic.h" |
35 | #include "sanitizer_common.h" |
36 | #include "sanitizer_interface_internal.h" |
37 | #include "sanitizer_internal_defs.h" |
38 | # include "sanitizer_symbolizer_markup_constants.h" |
39 | |
40 | using namespace __sanitizer; |
41 | |
42 | namespace __sancov { |
43 | namespace { |
44 | |
45 | // TODO(mcgrathr): Move the constant into a header shared with other impls. |
46 | constexpr u64 Magic64 = 0xC0BFFFFFFFFFFF64ULL; |
47 | static_assert(SANITIZER_WORDSIZE == 64, "Fuchsia is always LP64" ); |
48 | |
49 | constexpr const char kSancovSinkName[] = "sancov" ; |
50 | |
51 | // Collects trace-pc guard coverage. |
52 | // This class relies on zero-initialization. |
53 | class TracePcGuardController final { |
54 | public: |
55 | constexpr TracePcGuardController() {} |
56 | |
57 | // For each PC location being tracked, there is a u32 reserved in global |
58 | // data called the "guard". At startup, we assign each guard slot a |
59 | // unique index into the big results array. Later during runtime, the |
60 | // first call to TracePcGuard (below) will store the corresponding PC at |
61 | // that index in the array. (Each later call with the same guard slot is |
62 | // presumed to be from the same PC.) Then it clears the guard slot back |
63 | // to zero, which tells the compiler not to bother calling in again. At |
64 | // the end of the run, we have a big array where each element is either |
65 | // zero or is a tracked PC location that was hit in the trace. |
66 | |
67 | // This is called from global constructors. Each translation unit has a |
68 | // contiguous array of guard slots, and a constructor that calls here |
69 | // with the bounds of its array. Those constructors are allowed to call |
70 | // here more than once for the same array. Usually all of these |
71 | // constructors run in the initial thread, but it's possible that a |
72 | // dlopen call on a secondary thread will run constructors that get here. |
73 | void InitTracePcGuard(u32 *start, u32 *end) { |
74 | if (end > start && *start == 0 && common_flags()->coverage) { |
75 | // Complete the setup before filling in any guards with indices. |
76 | // This avoids the possibility of code called from Setup reentering |
77 | // TracePcGuard. |
78 | u32 idx = Setup(end - start); |
79 | for (u32 *p = start; p < end; ++p) { |
80 | *p = idx++; |
81 | } |
82 | } |
83 | } |
84 | |
85 | void TracePcGuard(u32 *guard, uptr pc) { |
86 | atomic_uint32_t *guard_ptr = reinterpret_cast<atomic_uint32_t *>(guard); |
87 | u32 idx = atomic_exchange(guard_ptr, 0, memory_order_relaxed); |
88 | if (idx > 0) |
89 | array_[idx] = pc; |
90 | } |
91 | |
92 | void Dump() { |
93 | Lock locked(&setup_lock_); |
94 | if (array_) { |
95 | CHECK_NE(vmo_, ZX_HANDLE_INVALID); |
96 | |
97 | // Publish the VMO to the system, where it can be collected and |
98 | // analyzed after this process exits. This always consumes the VMO |
99 | // handle. Any failure is just logged and not indicated to us. |
100 | __sanitizer_publish_data(kSancovSinkName, vmo_); |
101 | vmo_ = ZX_HANDLE_INVALID; |
102 | |
103 | // This will route to __sanitizer_log_write, which will ensure that |
104 | // information about shared libraries is written out. This message |
105 | // uses the `dumpfile` symbolizer markup element to highlight the |
106 | // dump. See the explanation for this in: |
107 | // https://fuchsia.googlesource.com/zircon/+/master/docs/symbolizer_markup.md |
108 | Printf("SanitizerCoverage: " FORMAT_DUMPFILE " with up to %u PCs\n" , |
109 | kSancovSinkName, vmo_name_, next_index_ - 1); |
110 | } |
111 | } |
112 | |
113 | private: |
114 | // We map in the largest possible view into the VMO: one word |
115 | // for every possible 32-bit index value. This avoids the need |
116 | // to change the mapping when increasing the size of the VMO. |
117 | // We can always spare the 32G of address space. |
118 | static constexpr size_t MappingSize = sizeof(uptr) << 32; |
119 | |
120 | Mutex setup_lock_; |
121 | uptr *array_ = nullptr; |
122 | u32 next_index_ = 0; |
123 | zx_handle_t vmo_ = {}; |
124 | char vmo_name_[ZX_MAX_NAME_LEN] = {}; |
125 | |
126 | size_t DataSize() const { return next_index_ * sizeof(uintptr_t); } |
127 | |
128 | u32 Setup(u32 num_guards) { |
129 | Lock locked(&setup_lock_); |
130 | DCHECK(common_flags()->coverage); |
131 | |
132 | if (next_index_ == 0) { |
133 | CHECK_EQ(vmo_, ZX_HANDLE_INVALID); |
134 | CHECK_EQ(array_, nullptr); |
135 | |
136 | // The first sample goes at [1] to reserve [0] for the magic number. |
137 | next_index_ = 1 + num_guards; |
138 | |
139 | zx_status_t status = _zx_vmo_create(DataSize(), ZX_VMO_RESIZABLE, &vmo_); |
140 | CHECK_EQ(status, ZX_OK); |
141 | |
142 | // Give the VMO a name including our process KOID so it's easy to spot. |
143 | internal_snprintf(vmo_name_, sizeof(vmo_name_), "%s.%zu" , kSancovSinkName, |
144 | internal_getpid()); |
145 | _zx_object_set_property(vmo_, ZX_PROP_NAME, vmo_name_, |
146 | internal_strlen(vmo_name_)); |
147 | uint64_t size = DataSize(); |
148 | status = _zx_object_set_property(vmo_, ZX_PROP_VMO_CONTENT_SIZE, &size, |
149 | sizeof(size)); |
150 | CHECK_EQ(status, ZX_OK); |
151 | |
152 | // Map the largest possible view we might need into the VMO. Later |
153 | // we might need to increase the VMO's size before we can use larger |
154 | // indices, but we'll never move the mapping address so we don't have |
155 | // any multi-thread synchronization issues with that. |
156 | uintptr_t mapping; |
157 | status = |
158 | _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, |
159 | 0, vmo_, 0, MappingSize, &mapping); |
160 | CHECK_EQ(status, ZX_OK); |
161 | |
162 | // Hereafter other threads are free to start storing into |
163 | // elements [1, next_index_) of the big array. |
164 | array_ = reinterpret_cast<uptr *>(mapping); |
165 | |
166 | // Store the magic number. |
167 | // Hereafter, the VMO serves as the contents of the '.sancov' file. |
168 | array_[0] = Magic64; |
169 | |
170 | return 1; |
171 | } else { |
172 | // The VMO is already mapped in, but it's not big enough to use the |
173 | // new indices. So increase the size to cover the new maximum index. |
174 | |
175 | CHECK_NE(vmo_, ZX_HANDLE_INVALID); |
176 | CHECK_NE(array_, nullptr); |
177 | |
178 | uint32_t first_index = next_index_; |
179 | next_index_ += num_guards; |
180 | |
181 | zx_status_t status = _zx_vmo_set_size(vmo_, DataSize()); |
182 | CHECK_EQ(status, ZX_OK); |
183 | uint64_t size = DataSize(); |
184 | status = _zx_object_set_property(vmo_, ZX_PROP_VMO_CONTENT_SIZE, &size, |
185 | sizeof(size)); |
186 | CHECK_EQ(status, ZX_OK); |
187 | |
188 | return first_index; |
189 | } |
190 | } |
191 | }; |
192 | |
193 | static TracePcGuardController pc_guard_controller; |
194 | |
195 | } // namespace |
196 | } // namespace __sancov |
197 | |
198 | namespace __sanitizer { |
199 | void InitializeCoverage(bool enabled, const char *dir) { |
200 | CHECK_EQ(enabled, common_flags()->coverage); |
201 | CHECK_EQ(dir, common_flags()->coverage_dir); |
202 | |
203 | static bool coverage_enabled = false; |
204 | if (!coverage_enabled) { |
205 | coverage_enabled = enabled; |
206 | Atexit(__sanitizer_cov_dump); |
207 | AddDieCallback(__sanitizer_cov_dump); |
208 | } |
209 | } |
210 | } // namespace __sanitizer |
211 | |
212 | extern "C" { |
213 | SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_coverage(const uptr *pcs, |
214 | uptr len) { |
215 | UNIMPLEMENTED(); |
216 | } |
217 | |
218 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard, u32 *guard) { |
219 | if (!*guard) |
220 | return; |
221 | __sancov::pc_guard_controller.TracePcGuard(guard, GET_CALLER_PC() - 1); |
222 | } |
223 | |
224 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard_init, |
225 | u32 *start, u32 *end) { |
226 | if (start == end || *start) |
227 | return; |
228 | __sancov::pc_guard_controller.InitTracePcGuard(start, end); |
229 | } |
230 | |
231 | SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_trace_pc_guard_coverage() { |
232 | __sancov::pc_guard_controller.Dump(); |
233 | } |
234 | SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() { |
235 | __sanitizer_dump_trace_pc_guard_coverage(); |
236 | } |
237 | // Default empty implementations (weak). Users should redefine them. |
238 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp, void) {} |
239 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp1, void) {} |
240 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp2, void) {} |
241 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp4, void) {} |
242 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp8, void) {} |
243 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp1, void) {} |
244 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp2, void) {} |
245 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp4, void) {} |
246 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp8, void) {} |
247 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_switch, void) {} |
248 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div4, void) {} |
249 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div8, void) {} |
250 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_gep, void) {} |
251 | SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_indir, void) {} |
252 | } // extern "C" |
253 | |
254 | #endif // !SANITIZER_FUCHSIA |
255 | |