1 | //===-- sanitizer_stoptheworld_linux_libcdep.cpp --------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // See sanitizer_stoptheworld.h for details. |
10 | // This implementation was inspired by Markus Gutschke's linuxthreads.cc. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "sanitizer_platform.h" |
15 | |
16 | #if SANITIZER_LINUX && \ |
17 | (defined(__x86_64__) || defined(__mips__) || defined(__aarch64__) || \ |
18 | defined(__powerpc64__) || defined(__s390__) || defined(__i386__) || \ |
19 | defined(__arm__) || SANITIZER_RISCV64) |
20 | |
21 | #include "sanitizer_stoptheworld.h" |
22 | |
23 | #include "sanitizer_platform_limits_posix.h" |
24 | #include "sanitizer_atomic.h" |
25 | |
26 | #include <errno.h> |
27 | #include <sched.h> // for CLONE_* definitions |
28 | #include <stddef.h> |
29 | #include <sys/prctl.h> // for PR_* definitions |
30 | #include <sys/ptrace.h> // for PTRACE_* definitions |
31 | #include <sys/types.h> // for pid_t |
32 | #include <sys/uio.h> // for iovec |
33 | #include <elf.h> // for NT_PRSTATUS |
34 | #if (defined(__aarch64__) || SANITIZER_RISCV64) && !SANITIZER_ANDROID |
35 | // GLIBC 2.20+ sys/user does not include asm/ptrace.h |
36 | # include <asm/ptrace.h> |
37 | #endif |
38 | #include <sys/user.h> // for user_regs_struct |
39 | #if SANITIZER_ANDROID && SANITIZER_MIPS |
40 | # include <asm/reg.h> // for mips SP register in sys/user.h |
41 | #endif |
42 | #include <sys/wait.h> // for signal-related stuff |
43 | |
44 | #ifdef sa_handler |
45 | # undef sa_handler |
46 | #endif |
47 | |
48 | #ifdef sa_sigaction |
49 | # undef sa_sigaction |
50 | #endif |
51 | |
52 | #include "sanitizer_common.h" |
53 | #include "sanitizer_flags.h" |
54 | #include "sanitizer_libc.h" |
55 | #include "sanitizer_linux.h" |
56 | #include "sanitizer_mutex.h" |
57 | #include "sanitizer_placement_new.h" |
58 | |
59 | // Sufficiently old kernel headers don't provide this value, but we can still |
60 | // call prctl with it. If the runtime kernel is new enough, the prctl call will |
61 | // have the desired effect; if the kernel is too old, the call will error and we |
62 | // can ignore said error. |
63 | #ifndef PR_SET_PTRACER |
64 | #define PR_SET_PTRACER 0x59616d61 |
65 | #endif |
66 | |
67 | // This module works by spawning a Linux task which then attaches to every |
68 | // thread in the caller process with ptrace. This suspends the threads, and |
69 | // PTRACE_GETREGS can then be used to obtain their register state. The callback |
70 | // supplied to StopTheWorld() is run in the tracer task while the threads are |
71 | // suspended. |
72 | // The tracer task must be placed in a different thread group for ptrace to |
73 | // work, so it cannot be spawned as a pthread. Instead, we use the low-level |
74 | // clone() interface (we want to share the address space with the caller |
75 | // process, so we prefer clone() over fork()). |
76 | // |
77 | // We don't use any libc functions, relying instead on direct syscalls. There |
78 | // are two reasons for this: |
79 | // 1. calling a library function while threads are suspended could cause a |
80 | // deadlock, if one of the treads happens to be holding a libc lock; |
81 | // 2. it's generally not safe to call libc functions from the tracer task, |
82 | // because clone() does not set up a thread-local storage for it. Any |
83 | // thread-local variables used by libc will be shared between the tracer task |
84 | // and the thread which spawned it. |
85 | |
86 | namespace __sanitizer { |
87 | |
88 | class SuspendedThreadsListLinux final : public SuspendedThreadsList { |
89 | public: |
90 | SuspendedThreadsListLinux() { thread_ids_.reserve(1024); } |
91 | |
92 | tid_t GetThreadID(uptr index) const override; |
93 | uptr ThreadCount() const override; |
94 | bool ContainsTid(tid_t thread_id) const; |
95 | void Append(tid_t tid); |
96 | |
97 | PtraceRegistersStatus GetRegistersAndSP(uptr index, |
98 | InternalMmapVector<uptr> *buffer, |
99 | uptr *sp) const override; |
100 | |
101 | private: |
102 | InternalMmapVector<tid_t> thread_ids_; |
103 | }; |
104 | |
105 | // Structure for passing arguments into the tracer thread. |
106 | struct TracerThreadArgument { |
107 | StopTheWorldCallback callback; |
108 | void *callback_argument; |
109 | // The tracer thread waits on this mutex while the parent finishes its |
110 | // preparations. |
111 | Mutex mutex; |
112 | // Tracer thread signals its completion by setting done. |
113 | atomic_uintptr_t done; |
114 | uptr parent_pid; |
115 | }; |
116 | |
117 | // This class handles thread suspending/unsuspending in the tracer thread. |
118 | class ThreadSuspender { |
119 | public: |
120 | explicit ThreadSuspender(pid_t pid, TracerThreadArgument *arg) |
121 | : arg(arg) |
122 | , pid_(pid) { |
123 | CHECK_GE(pid, 0); |
124 | } |
125 | bool SuspendAllThreads(); |
126 | void ResumeAllThreads(); |
127 | void KillAllThreads(); |
128 | SuspendedThreadsListLinux &suspended_threads_list() { |
129 | return suspended_threads_list_; |
130 | } |
131 | TracerThreadArgument *arg; |
132 | private: |
133 | SuspendedThreadsListLinux suspended_threads_list_; |
134 | pid_t pid_; |
135 | bool SuspendThread(tid_t thread_id); |
136 | }; |
137 | |
138 | bool ThreadSuspender::SuspendThread(tid_t tid) { |
139 | // Are we already attached to this thread? |
140 | // Currently this check takes linear time, however the number of threads is |
141 | // usually small. |
142 | if (suspended_threads_list_.ContainsTid(tid)) return false; |
143 | int pterrno; |
144 | if (internal_iserror(internal_ptrace(PTRACE_ATTACH, tid, nullptr, nullptr), |
145 | &pterrno)) { |
146 | // Either the thread is dead, or something prevented us from attaching. |
147 | // Log this event and move on. |
148 | VReport(1, "Could not attach to thread %zu (errno %d).\n" , (uptr)tid, |
149 | pterrno); |
150 | return false; |
151 | } else { |
152 | VReport(2, "Attached to thread %zu.\n" , (uptr)tid); |
153 | // The thread is not guaranteed to stop before ptrace returns, so we must |
154 | // wait on it. Note: if the thread receives a signal concurrently, |
155 | // we can get notification about the signal before notification about stop. |
156 | // In such case we need to forward the signal to the thread, otherwise |
157 | // the signal will be missed (as we do PTRACE_DETACH with arg=0) and |
158 | // any logic relying on signals will break. After forwarding we need to |
159 | // continue to wait for stopping, because the thread is not stopped yet. |
160 | // We do ignore delivery of SIGSTOP, because we want to make stop-the-world |
161 | // as invisible as possible. |
162 | for (;;) { |
163 | int status; |
164 | uptr waitpid_status; |
165 | HANDLE_EINTR(waitpid_status, internal_waitpid(tid, &status, __WALL)); |
166 | int wperrno; |
167 | if (internal_iserror(waitpid_status, &wperrno)) { |
168 | // Got a ECHILD error. I don't think this situation is possible, but it |
169 | // doesn't hurt to report it. |
170 | VReport(1, "Waiting on thread %zu failed, detaching (errno %d).\n" , |
171 | (uptr)tid, wperrno); |
172 | internal_ptrace(PTRACE_DETACH, tid, nullptr, nullptr); |
173 | return false; |
174 | } |
175 | if (WIFSTOPPED(status) && WSTOPSIG(status) != SIGSTOP) { |
176 | internal_ptrace(PTRACE_CONT, tid, nullptr, |
177 | (void*)(uptr)WSTOPSIG(status)); |
178 | continue; |
179 | } |
180 | break; |
181 | } |
182 | suspended_threads_list_.Append(tid); |
183 | return true; |
184 | } |
185 | } |
186 | |
187 | void ThreadSuspender::ResumeAllThreads() { |
188 | for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++) { |
189 | pid_t tid = suspended_threads_list_.GetThreadID(i); |
190 | int pterrno; |
191 | if (!internal_iserror(internal_ptrace(PTRACE_DETACH, tid, nullptr, nullptr), |
192 | &pterrno)) { |
193 | VReport(2, "Detached from thread %d.\n" , tid); |
194 | } else { |
195 | // Either the thread is dead, or we are already detached. |
196 | // The latter case is possible, for instance, if this function was called |
197 | // from a signal handler. |
198 | VReport(1, "Could not detach from thread %d (errno %d).\n" , tid, pterrno); |
199 | } |
200 | } |
201 | } |
202 | |
203 | void ThreadSuspender::KillAllThreads() { |
204 | for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++) |
205 | internal_ptrace(PTRACE_KILL, suspended_threads_list_.GetThreadID(i), |
206 | nullptr, nullptr); |
207 | } |
208 | |
209 | bool ThreadSuspender::SuspendAllThreads() { |
210 | ThreadLister thread_lister(pid_); |
211 | bool retry = true; |
212 | InternalMmapVector<tid_t> threads; |
213 | threads.reserve(128); |
214 | for (int i = 0; i < 30 && retry; ++i) { |
215 | retry = false; |
216 | switch (thread_lister.ListThreads(&threads)) { |
217 | case ThreadLister::Error: |
218 | ResumeAllThreads(); |
219 | return false; |
220 | case ThreadLister::Incomplete: |
221 | retry = true; |
222 | break; |
223 | case ThreadLister::Ok: |
224 | break; |
225 | } |
226 | for (tid_t tid : threads) { |
227 | if (SuspendThread(tid)) |
228 | retry = true; |
229 | } |
230 | } |
231 | return suspended_threads_list_.ThreadCount(); |
232 | } |
233 | |
234 | // Pointer to the ThreadSuspender instance for use in signal handler. |
235 | static ThreadSuspender *thread_suspender_instance = nullptr; |
236 | |
237 | // Synchronous signals that should not be blocked. |
238 | static const int kSyncSignals[] = { SIGABRT, SIGILL, SIGFPE, SIGSEGV, SIGBUS, |
239 | SIGXCPU, SIGXFSZ }; |
240 | |
241 | static void TracerThreadDieCallback() { |
242 | // Generally a call to Die() in the tracer thread should be fatal to the |
243 | // parent process as well, because they share the address space. |
244 | // This really only works correctly if all the threads are suspended at this |
245 | // point. So we correctly handle calls to Die() from within the callback, but |
246 | // not those that happen before or after the callback. Hopefully there aren't |
247 | // a lot of opportunities for that to happen... |
248 | ThreadSuspender *inst = thread_suspender_instance; |
249 | if (inst && stoptheworld_tracer_pid == internal_getpid()) { |
250 | inst->KillAllThreads(); |
251 | thread_suspender_instance = nullptr; |
252 | } |
253 | } |
254 | |
255 | // Signal handler to wake up suspended threads when the tracer thread dies. |
256 | static void TracerThreadSignalHandler(int signum, __sanitizer_siginfo *siginfo, |
257 | void *uctx) { |
258 | SignalContext ctx(siginfo, uctx); |
259 | Printf("Tracer caught signal %d: addr=0x%zx pc=0x%zx sp=0x%zx\n" , signum, |
260 | ctx.addr, ctx.pc, ctx.sp); |
261 | ThreadSuspender *inst = thread_suspender_instance; |
262 | if (inst) { |
263 | if (signum == SIGABRT) |
264 | inst->KillAllThreads(); |
265 | else |
266 | inst->ResumeAllThreads(); |
267 | RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback)); |
268 | thread_suspender_instance = nullptr; |
269 | atomic_store(&inst->arg->done, 1, memory_order_relaxed); |
270 | } |
271 | internal__exit((signum == SIGABRT) ? 1 : 2); |
272 | } |
273 | |
274 | // Size of alternative stack for signal handlers in the tracer thread. |
275 | static const int kHandlerStackSize = 8192; |
276 | |
277 | // This function will be run as a cloned task. |
278 | static int TracerThread(void* argument) { |
279 | TracerThreadArgument *tracer_thread_argument = |
280 | (TracerThreadArgument *)argument; |
281 | |
282 | internal_prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); |
283 | // Check if parent is already dead. |
284 | if (internal_getppid() != tracer_thread_argument->parent_pid) |
285 | internal__exit(4); |
286 | |
287 | // Wait for the parent thread to finish preparations. |
288 | tracer_thread_argument->mutex.Lock(); |
289 | tracer_thread_argument->mutex.Unlock(); |
290 | |
291 | RAW_CHECK(AddDieCallback(TracerThreadDieCallback)); |
292 | |
293 | ThreadSuspender thread_suspender(internal_getppid(), tracer_thread_argument); |
294 | // Global pointer for the signal handler. |
295 | thread_suspender_instance = &thread_suspender; |
296 | |
297 | // Alternate stack for signal handling. |
298 | InternalMmapVector<char> handler_stack_memory(kHandlerStackSize); |
299 | stack_t handler_stack; |
300 | internal_memset(&handler_stack, 0, sizeof(handler_stack)); |
301 | handler_stack.ss_sp = handler_stack_memory.data(); |
302 | handler_stack.ss_size = kHandlerStackSize; |
303 | internal_sigaltstack(&handler_stack, nullptr); |
304 | |
305 | // Install our handler for synchronous signals. Other signals should be |
306 | // blocked by the mask we inherited from the parent thread. |
307 | for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) { |
308 | __sanitizer_sigaction act; |
309 | internal_memset(&act, 0, sizeof(act)); |
310 | act.sigaction = TracerThreadSignalHandler; |
311 | act.sa_flags = SA_ONSTACK | SA_SIGINFO; |
312 | internal_sigaction_norestorer(kSyncSignals[i], &act, 0); |
313 | } |
314 | |
315 | int exit_code = 0; |
316 | if (!thread_suspender.SuspendAllThreads()) { |
317 | VReport(1, "Failed suspending threads.\n" ); |
318 | exit_code = 3; |
319 | } else { |
320 | tracer_thread_argument->callback(thread_suspender.suspended_threads_list(), |
321 | tracer_thread_argument->callback_argument); |
322 | thread_suspender.ResumeAllThreads(); |
323 | exit_code = 0; |
324 | } |
325 | RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback)); |
326 | thread_suspender_instance = nullptr; |
327 | atomic_store(&tracer_thread_argument->done, 1, memory_order_relaxed); |
328 | return exit_code; |
329 | } |
330 | |
331 | class ScopedStackSpaceWithGuard { |
332 | public: |
333 | explicit ScopedStackSpaceWithGuard(uptr stack_size) { |
334 | stack_size_ = stack_size; |
335 | guard_size_ = GetPageSizeCached(); |
336 | // FIXME: Omitting MAP_STACK here works in current kernels but might break |
337 | // in the future. |
338 | guard_start_ = (uptr)MmapOrDie(stack_size_ + guard_size_, |
339 | "ScopedStackWithGuard" ); |
340 | CHECK(MprotectNoAccess((uptr)guard_start_, guard_size_)); |
341 | } |
342 | ~ScopedStackSpaceWithGuard() { |
343 | UnmapOrDie((void *)guard_start_, stack_size_ + guard_size_); |
344 | } |
345 | void *Bottom() const { |
346 | return (void *)(guard_start_ + stack_size_ + guard_size_); |
347 | } |
348 | |
349 | private: |
350 | uptr stack_size_; |
351 | uptr guard_size_; |
352 | uptr guard_start_; |
353 | }; |
354 | |
355 | // We have a limitation on the stack frame size, so some stuff had to be moved |
356 | // into globals. |
357 | static __sanitizer_sigset_t blocked_sigset; |
358 | static __sanitizer_sigset_t old_sigset; |
359 | |
360 | class StopTheWorldScope { |
361 | public: |
362 | StopTheWorldScope() { |
363 | // Make this process dumpable. Processes that are not dumpable cannot be |
364 | // attached to. |
365 | process_was_dumpable_ = internal_prctl(PR_GET_DUMPABLE, 0, 0, 0, 0); |
366 | if (!process_was_dumpable_) |
367 | internal_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0); |
368 | } |
369 | |
370 | ~StopTheWorldScope() { |
371 | // Restore the dumpable flag. |
372 | if (!process_was_dumpable_) |
373 | internal_prctl(PR_SET_DUMPABLE, 0, 0, 0, 0); |
374 | } |
375 | |
376 | private: |
377 | int process_was_dumpable_; |
378 | }; |
379 | |
380 | // When sanitizer output is being redirected to file (i.e. by using log_path), |
381 | // the tracer should write to the parent's log instead of trying to open a new |
382 | // file. Alert the logging code to the fact that we have a tracer. |
383 | struct ScopedSetTracerPID { |
384 | explicit ScopedSetTracerPID(uptr tracer_pid) { |
385 | stoptheworld_tracer_pid = tracer_pid; |
386 | stoptheworld_tracer_ppid = internal_getpid(); |
387 | } |
388 | ~ScopedSetTracerPID() { |
389 | stoptheworld_tracer_pid = 0; |
390 | stoptheworld_tracer_ppid = 0; |
391 | } |
392 | }; |
393 | |
394 | void StopTheWorld(StopTheWorldCallback callback, void *argument) { |
395 | StopTheWorldScope in_stoptheworld; |
396 | // Prepare the arguments for TracerThread. |
397 | struct TracerThreadArgument tracer_thread_argument; |
398 | tracer_thread_argument.callback = callback; |
399 | tracer_thread_argument.callback_argument = argument; |
400 | tracer_thread_argument.parent_pid = internal_getpid(); |
401 | atomic_store(&tracer_thread_argument.done, 0, memory_order_relaxed); |
402 | const uptr kTracerStackSize = 2 * 1024 * 1024; |
403 | ScopedStackSpaceWithGuard tracer_stack(kTracerStackSize); |
404 | // Block the execution of TracerThread until after we have set ptrace |
405 | // permissions. |
406 | tracer_thread_argument.mutex.Lock(); |
407 | // Signal handling story. |
408 | // We don't want async signals to be delivered to the tracer thread, |
409 | // so we block all async signals before creating the thread. An async signal |
410 | // handler can temporary modify errno, which is shared with this thread. |
411 | // We ought to use pthread_sigmask here, because sigprocmask has undefined |
412 | // behavior in multithreaded programs. However, on linux sigprocmask is |
413 | // equivalent to pthread_sigmask with the exception that pthread_sigmask |
414 | // does not allow to block some signals used internally in pthread |
415 | // implementation. We are fine with blocking them here, we are really not |
416 | // going to pthread_cancel the thread. |
417 | // The tracer thread should not raise any synchronous signals. But in case it |
418 | // does, we setup a special handler for sync signals that properly kills the |
419 | // parent as well. Note: we don't pass CLONE_SIGHAND to clone, so handlers |
420 | // in the tracer thread won't interfere with user program. Double note: if a |
421 | // user does something along the lines of 'kill -11 pid', that can kill the |
422 | // process even if user setup own handler for SEGV. |
423 | // Thing to watch out for: this code should not change behavior of user code |
424 | // in any observable way. In particular it should not override user signal |
425 | // handlers. |
426 | internal_sigfillset(&blocked_sigset); |
427 | for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) |
428 | internal_sigdelset(&blocked_sigset, kSyncSignals[i]); |
429 | int rv = internal_sigprocmask(SIG_BLOCK, &blocked_sigset, &old_sigset); |
430 | CHECK_EQ(rv, 0); |
431 | uptr tracer_pid = internal_clone( |
432 | TracerThread, tracer_stack.Bottom(), |
433 | CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_UNTRACED, |
434 | &tracer_thread_argument, nullptr /* parent_tidptr */, |
435 | nullptr /* newtls */, nullptr /* child_tidptr */); |
436 | internal_sigprocmask(SIG_SETMASK, &old_sigset, 0); |
437 | int local_errno = 0; |
438 | if (internal_iserror(tracer_pid, &local_errno)) { |
439 | VReport(1, "Failed spawning a tracer thread (errno %d).\n" , local_errno); |
440 | tracer_thread_argument.mutex.Unlock(); |
441 | } else { |
442 | ScopedSetTracerPID scoped_set_tracer_pid(tracer_pid); |
443 | // On some systems we have to explicitly declare that we want to be traced |
444 | // by the tracer thread. |
445 | internal_prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0); |
446 | // Allow the tracer thread to start. |
447 | tracer_thread_argument.mutex.Unlock(); |
448 | // NOTE: errno is shared between this thread and the tracer thread. |
449 | // internal_waitpid() may call syscall() which can access/spoil errno, |
450 | // so we can't call it now. Instead we for the tracer thread to finish using |
451 | // the spin loop below. Man page for sched_yield() says "In the Linux |
452 | // implementation, sched_yield() always succeeds", so let's hope it does not |
453 | // spoil errno. Note that this spin loop runs only for brief periods before |
454 | // the tracer thread has suspended us and when it starts unblocking threads. |
455 | while (atomic_load(&tracer_thread_argument.done, memory_order_relaxed) == 0) |
456 | sched_yield(); |
457 | // Now the tracer thread is about to exit and does not touch errno, |
458 | // wait for it. |
459 | for (;;) { |
460 | uptr waitpid_status = internal_waitpid(tracer_pid, nullptr, __WALL); |
461 | if (!internal_iserror(waitpid_status, &local_errno)) |
462 | break; |
463 | if (local_errno == EINTR) |
464 | continue; |
465 | VReport(1, "Waiting on the tracer thread failed (errno %d).\n" , |
466 | local_errno); |
467 | break; |
468 | } |
469 | } |
470 | } |
471 | |
472 | // Platform-specific methods from SuspendedThreadsList. |
473 | #if SANITIZER_ANDROID && defined(__arm__) |
474 | typedef pt_regs regs_struct; |
475 | #define REG_SP ARM_sp |
476 | |
477 | #elif SANITIZER_LINUX && defined(__arm__) |
478 | typedef user_regs regs_struct; |
479 | #define REG_SP uregs[13] |
480 | |
481 | #elif defined(__i386__) || defined(__x86_64__) |
482 | typedef user_regs_struct regs_struct; |
483 | #if defined(__i386__) |
484 | #define REG_SP esp |
485 | #else |
486 | #define REG_SP rsp |
487 | #endif |
488 | #define ARCH_IOVEC_FOR_GETREGSET |
489 | // Support ptrace extensions even when compiled without required kernel support |
490 | #ifndef NT_X86_XSTATE |
491 | #define NT_X86_XSTATE 0x202 |
492 | #endif |
493 | #ifndef PTRACE_GETREGSET |
494 | #define PTRACE_GETREGSET 0x4204 |
495 | #endif |
496 | // Compiler may use FP registers to store pointers. |
497 | static constexpr uptr [] = {NT_X86_XSTATE, NT_FPREGSET}; |
498 | |
499 | #elif defined(__powerpc__) || defined(__powerpc64__) |
500 | typedef pt_regs regs_struct; |
501 | #define REG_SP gpr[PT_R1] |
502 | |
503 | #elif defined(__mips__) |
504 | typedef struct user regs_struct; |
505 | # if SANITIZER_ANDROID |
506 | # define REG_SP regs[EF_R29] |
507 | # else |
508 | # define REG_SP regs[EF_REG29] |
509 | # endif |
510 | |
511 | #elif defined(__aarch64__) |
512 | typedef struct user_pt_regs regs_struct; |
513 | #define REG_SP sp |
514 | static constexpr uptr kExtraRegs[] = {0}; |
515 | #define ARCH_IOVEC_FOR_GETREGSET |
516 | |
517 | #elif SANITIZER_RISCV64 |
518 | typedef struct user_regs_struct regs_struct; |
519 | // sys/ucontext.h already defines REG_SP as 2. Undefine it first. |
520 | #undef REG_SP |
521 | #define REG_SP sp |
522 | static constexpr uptr kExtraRegs[] = {0}; |
523 | #define ARCH_IOVEC_FOR_GETREGSET |
524 | |
525 | #elif defined(__s390__) |
526 | typedef _user_regs_struct regs_struct; |
527 | #define REG_SP gprs[15] |
528 | static constexpr uptr kExtraRegs[] = {0}; |
529 | #define ARCH_IOVEC_FOR_GETREGSET |
530 | |
531 | #else |
532 | #error "Unsupported architecture" |
533 | #endif // SANITIZER_ANDROID && defined(__arm__) |
534 | |
535 | tid_t SuspendedThreadsListLinux::GetThreadID(uptr index) const { |
536 | CHECK_LT(index, thread_ids_.size()); |
537 | return thread_ids_[index]; |
538 | } |
539 | |
540 | uptr SuspendedThreadsListLinux::ThreadCount() const { |
541 | return thread_ids_.size(); |
542 | } |
543 | |
544 | bool SuspendedThreadsListLinux::ContainsTid(tid_t thread_id) const { |
545 | for (uptr i = 0; i < thread_ids_.size(); i++) { |
546 | if (thread_ids_[i] == thread_id) return true; |
547 | } |
548 | return false; |
549 | } |
550 | |
551 | void SuspendedThreadsListLinux::Append(tid_t tid) { |
552 | thread_ids_.push_back(tid); |
553 | } |
554 | |
555 | PtraceRegistersStatus SuspendedThreadsListLinux::GetRegistersAndSP( |
556 | uptr index, InternalMmapVector<uptr> *buffer, uptr *sp) const { |
557 | pid_t tid = GetThreadID(index); |
558 | constexpr uptr uptr_sz = sizeof(uptr); |
559 | int pterrno; |
560 | #ifdef ARCH_IOVEC_FOR_GETREGSET |
561 | auto append = [&](uptr regset) { |
562 | uptr size = buffer->size(); |
563 | // NT_X86_XSTATE requires 64bit alignment. |
564 | uptr size_up = RoundUpTo(size, 8 / uptr_sz); |
565 | buffer->reserve(Max<uptr>(1024, size_up)); |
566 | struct iovec regset_io; |
567 | for (;; buffer->resize(buffer->capacity() * 2)) { |
568 | buffer->resize(buffer->capacity()); |
569 | uptr available_bytes = (buffer->size() - size_up) * uptr_sz; |
570 | regset_io.iov_base = buffer->data() + size_up; |
571 | regset_io.iov_len = available_bytes; |
572 | bool fail = |
573 | internal_iserror(internal_ptrace(PTRACE_GETREGSET, tid, |
574 | (void *)regset, (void *)®set_io), |
575 | &pterrno); |
576 | if (fail) { |
577 | VReport(1, "Could not get regset %p from thread %d (errno %d).\n" , |
578 | (void *)regset, tid, pterrno); |
579 | buffer->resize(size); |
580 | return false; |
581 | } |
582 | |
583 | // Far enough from the buffer size, no need to resize and repeat. |
584 | if (regset_io.iov_len + 64 < available_bytes) |
585 | break; |
586 | } |
587 | buffer->resize(size_up + RoundUpTo(regset_io.iov_len, uptr_sz) / uptr_sz); |
588 | return true; |
589 | }; |
590 | |
591 | buffer->clear(); |
592 | bool fail = !append(NT_PRSTATUS); |
593 | if (!fail) { |
594 | // Accept the first available and do not report errors. |
595 | for (uptr regs : kExtraRegs) |
596 | if (regs && append(regs)) |
597 | break; |
598 | } |
599 | #else |
600 | buffer->resize(RoundUpTo(sizeof(regs_struct), uptr_sz) / uptr_sz); |
601 | bool fail = internal_iserror( |
602 | internal_ptrace(PTRACE_GETREGS, tid, nullptr, buffer->data()), &pterrno); |
603 | if (fail) |
604 | VReport(1, "Could not get registers from thread %d (errno %d).\n" , tid, |
605 | pterrno); |
606 | #endif |
607 | if (fail) { |
608 | // ESRCH means that the given thread is not suspended or already dead. |
609 | // Therefore it's unsafe to inspect its data (e.g. walk through stack) and |
610 | // we should notify caller about this. |
611 | return pterrno == ESRCH ? REGISTERS_UNAVAILABLE_FATAL |
612 | : REGISTERS_UNAVAILABLE; |
613 | } |
614 | |
615 | *sp = reinterpret_cast<regs_struct *>(buffer->data())[0].REG_SP; |
616 | return REGISTERS_AVAILABLE; |
617 | } |
618 | |
619 | } // namespace __sanitizer |
620 | |
621 | #endif // SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__) |
622 | // || defined(__aarch64__) || defined(__powerpc64__) |
623 | // || defined(__s390__) || defined(__i386__) || defined(__arm__) |
624 | |