1//===-- sanitizer_win.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is shared between AddressSanitizer and ThreadSanitizer
10// run-time libraries and implements windows-specific functions from
11// sanitizer_libc.h.
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_platform.h"
15#if SANITIZER_WINDOWS
16
17#define WIN32_LEAN_AND_MEAN
18#define NOGDI
19#include <windows.h>
20#include <io.h>
21#include <psapi.h>
22#include <stdlib.h>
23
24#include "sanitizer_common.h"
25#include "sanitizer_file.h"
26#include "sanitizer_libc.h"
27#include "sanitizer_mutex.h"
28#include "sanitizer_placement_new.h"
29#include "sanitizer_win_defs.h"
30
31#if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32#pragma comment(lib, "psapi")
33#endif
34#if SANITIZER_WIN_TRACE
35#include <traceloggingprovider.h>
36// Windows trace logging provider init
37#pragma comment(lib, "advapi32.lib")
38TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39// GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42 0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43#else
44#define TraceLoggingUnregister(x)
45#endif
46
47// For WaitOnAddress
48# pragma comment(lib, "synchronization.lib")
49
50// A macro to tell the compiler that this part of the code cannot be reached,
51// if the compiler supports this feature. Since we're using this in
52// code that is called when terminating the process, the expansion of the
53// macro should not terminate the process to avoid infinite recursion.
54#if defined(__clang__)
55# define BUILTIN_UNREACHABLE() __builtin_unreachable()
56#elif defined(__GNUC__) && \
57 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
58# define BUILTIN_UNREACHABLE() __builtin_unreachable()
59#elif defined(_MSC_VER)
60# define BUILTIN_UNREACHABLE() __assume(0)
61#else
62# define BUILTIN_UNREACHABLE()
63#endif
64
65namespace __sanitizer {
66
67#include "sanitizer_syscall_generic.inc"
68
69// --------------------- sanitizer_common.h
70uptr GetPageSize() {
71 SYSTEM_INFO si;
72 GetSystemInfo(&si);
73 return si.dwPageSize;
74}
75
76uptr GetMmapGranularity() {
77 SYSTEM_INFO si;
78 GetSystemInfo(&si);
79 return si.dwAllocationGranularity;
80}
81
82uptr GetMaxUserVirtualAddress() {
83 SYSTEM_INFO si;
84 GetSystemInfo(&si);
85 return (uptr)si.lpMaximumApplicationAddress;
86}
87
88uptr GetMaxVirtualAddress() {
89 return GetMaxUserVirtualAddress();
90}
91
92bool FileExists(const char *filename) {
93 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
94}
95
96bool DirExists(const char *path) {
97 auto attr = ::GetFileAttributesA(path);
98 return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
99}
100
101uptr internal_getpid() {
102 return GetProcessId(GetCurrentProcess());
103}
104
105int internal_dlinfo(void *handle, int request, void *p) {
106 UNIMPLEMENTED();
107}
108
109// In contrast to POSIX, on Windows GetCurrentThreadId()
110// returns a system-unique identifier.
111tid_t GetTid() {
112 return GetCurrentThreadId();
113}
114
115uptr GetThreadSelf() {
116 return GetTid();
117}
118
119#if !SANITIZER_GO
120void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
121 uptr *stack_bottom) {
122 CHECK(stack_top);
123 CHECK(stack_bottom);
124 MEMORY_BASIC_INFORMATION mbi;
125 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
126 // FIXME: is it possible for the stack to not be a single allocation?
127 // Are these values what ASan expects to get (reserved, not committed;
128 // including stack guard page) ?
129 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
130 *stack_bottom = (uptr)mbi.AllocationBase;
131}
132#endif // #if !SANITIZER_GO
133
134bool ErrorIsOOM(error_t err) {
135 // TODO: This should check which `err`s correspond to OOM.
136 return false;
137}
138
139void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
140 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
141 if (rv == 0)
142 ReportMmapFailureAndDie(size, mem_type, "allocate",
143 GetLastError(), raw_report);
144 return rv;
145}
146
147void UnmapOrDie(void *addr, uptr size, bool raw_report) {
148 if (!size || !addr)
149 return;
150
151 MEMORY_BASIC_INFORMATION mbi;
152 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
153
154 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
155 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
156 // fails try MEM_DECOMMIT.
157 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
158 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
159 ReportMunmapFailureAndDie(addr, size, GetLastError(), raw_report);
160 }
161 }
162}
163
164static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
165 const char *mmap_type) {
166 error_t last_error = GetLastError();
167
168 // Assumption: VirtualAlloc is the last system call that was invoked before
169 // this method.
170 // VirtualAlloc emits one of 3 error codes when running out of memory
171 // 1. ERROR_NOT_ENOUGH_MEMORY:
172 // There's not enough memory to execute the command
173 // 2. ERROR_INVALID_PARAMETER:
174 // VirtualAlloc will return this if the request would allocate memory at an
175 // address exceeding or being very close to the maximum application address
176 // (the `lpMaximumApplicationAddress` field within the `SystemInfo` struct).
177 // This does not seem to be officially documented, but is corroborated here:
178 // https://stackoverflow.com/questions/45833674/why-does-virtualalloc-fail-for-lpaddress-greater-than-0x6ffffffffff
179 // 3. ERROR_COMMITMENT_LIMIT:
180 // VirtualAlloc will return this if e.g. the pagefile is too small to commit
181 // the requested amount of memory.
182 if (last_error == ERROR_NOT_ENOUGH_MEMORY ||
183 last_error == ERROR_INVALID_PARAMETER ||
184 last_error == ERROR_COMMITMENT_LIMIT)
185 return nullptr;
186 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
187}
188
189void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
190 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
191 if (rv == 0)
192 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
193 return rv;
194}
195
196// We want to map a chunk of address space aligned to 'alignment'.
197void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
198 const char *mem_type) {
199 CHECK(IsPowerOfTwo(size));
200 CHECK(IsPowerOfTwo(alignment));
201
202 // Windows will align our allocations to at least 64K.
203 alignment = Max(alignment, GetMmapGranularity());
204
205 uptr mapped_addr =
206 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
207 if (!mapped_addr)
208 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
209
210 // If we got it right on the first try, return. Otherwise, unmap it and go to
211 // the slow path.
212 if (IsAligned(mapped_addr, alignment))
213 return (void*)mapped_addr;
214 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
215 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
216
217 // If we didn't get an aligned address, overallocate, find an aligned address,
218 // unmap, and try to allocate at that aligned address.
219 int retries = 0;
220 const int kMaxRetries = 10;
221 for (; retries < kMaxRetries &&
222 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
223 retries++) {
224 // Overallocate size + alignment bytes.
225 mapped_addr =
226 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
227 if (!mapped_addr)
228 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
229
230 // Find the aligned address.
231 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
232
233 // Free the overallocation.
234 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
235 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
236
237 // Attempt to allocate exactly the number of bytes we need at the aligned
238 // address. This may fail for a number of reasons, in which case we continue
239 // the loop.
240 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
241 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
242 }
243
244 // Fail if we can't make this work quickly.
245 if (retries == kMaxRetries && mapped_addr == 0)
246 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
247
248 return (void *)mapped_addr;
249}
250
251// ZeroMmapFixedRegion zero's out a region of memory previously returned from a
252// call to one of the MmapFixed* helpers. On non-windows systems this would be
253// done with another mmap, but on windows remapping is not an option.
254// VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
255// memory, but we can't do this atomically, so instead we fall back to using
256// internal_memset.
257bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
258 internal_memset((void*) fixed_addr, 0, size);
259 return true;
260}
261
262bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
263 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
264 // but on Win64 it does.
265 (void)name; // unsupported
266#if !SANITIZER_GO && SANITIZER_WINDOWS64
267 // On asan/Windows64, use MEM_COMMIT would result in error
268 // 1455:ERROR_COMMITMENT_LIMIT.
269 // Asan uses exception handler to commit page on demand.
270 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
271#else
272 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
273 PAGE_READWRITE);
274#endif
275 if (p == 0) {
276 Report("ERROR: %s failed to "
277 "allocate %p (%zd) bytes at %p (error code: %d)\n",
278 SanitizerToolName, size, size, fixed_addr, GetLastError());
279 return false;
280 }
281 return true;
282}
283
284bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
285 // FIXME: Windows support large pages too. Might be worth checking
286 return MmapFixedNoReserve(fixed_addr, size, name);
287}
288
289// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
290// 'MmapFixedNoAccess'.
291void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
292 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
293 MEM_COMMIT, PAGE_READWRITE);
294 if (p == 0) {
295 char mem_type[30];
296 internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
297 (void *)fixed_addr);
298 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
299 }
300 return p;
301}
302
303// Uses fixed_addr for now.
304// Will use offset instead once we've implemented this function for real.
305uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
306 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
307}
308
309uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
310 const char *name) {
311 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
312}
313
314void ReservedAddressRange::Unmap(uptr addr, uptr size) {
315 // Only unmap if it covers the entire range.
316 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
317 // We unmap the whole range, just null out the base.
318 base_ = nullptr;
319 size_ = 0;
320 UnmapOrDie(reinterpret_cast<void*>(addr), size);
321}
322
323void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
324 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
325 MEM_COMMIT, PAGE_READWRITE);
326 if (p == 0) {
327 char mem_type[30];
328 internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
329 (void *)fixed_addr);
330 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
331 }
332 return p;
333}
334
335void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
336 // FIXME: make this really NoReserve?
337 return MmapOrDie(size, mem_type);
338}
339
340uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
341 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
342 size_ = size;
343 name_ = name;
344 (void)os_handle_; // unsupported
345 return reinterpret_cast<uptr>(base_);
346}
347
348
349void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
350 (void)name; // unsupported
351 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
352 MEM_RESERVE, PAGE_NOACCESS);
353 if (res == 0)
354 Report("WARNING: %s failed to "
355 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
356 SanitizerToolName, size, size, fixed_addr, GetLastError());
357 return res;
358}
359
360void *MmapNoAccess(uptr size) {
361 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
362 if (res == 0)
363 Report("WARNING: %s failed to "
364 "mprotect %p (%zd) bytes (error code: %d)\n",
365 SanitizerToolName, size, size, GetLastError());
366 return res;
367}
368
369bool MprotectNoAccess(uptr addr, uptr size) {
370 DWORD old_protection;
371 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
372}
373
374bool MprotectReadOnly(uptr addr, uptr size) {
375 DWORD old_protection;
376 return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
377}
378
379bool MprotectReadWrite(uptr addr, uptr size) {
380 DWORD old_protection;
381 return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection);
382}
383
384void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
385 uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
386 end_aligned = RoundDownTo(end, GetPageSizeCached());
387 CHECK(beg < end); // make sure the region is sane
388 if (beg_aligned == end_aligned) // make sure we're freeing at least 1 page;
389 return;
390 UnmapOrDie((void *)beg, end_aligned - beg_aligned);
391}
392
393void SetShadowRegionHugePageMode(uptr addr, uptr size) {
394 // FIXME: probably similar to ReleaseMemoryToOS.
395}
396
397bool DontDumpShadowMemory(uptr addr, uptr length) {
398 // This is almost useless on 32-bits.
399 // FIXME: add madvise-analog when we move to 64-bits.
400 return true;
401}
402
403uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
404 uptr min_shadow_base_alignment, UNUSED uptr &high_mem_end,
405 uptr granularity) {
406 const uptr alignment =
407 Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
408 const uptr left_padding =
409 Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
410 uptr space_size = shadow_size_bytes + left_padding;
411 uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
412 granularity, nullptr, nullptr);
413 CHECK_NE((uptr)0, shadow_start);
414 CHECK(IsAligned(shadow_start, alignment));
415 return shadow_start;
416}
417
418uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
419 uptr *largest_gap_found,
420 uptr *max_occupied_addr) {
421 uptr address = 0;
422 while (true) {
423 MEMORY_BASIC_INFORMATION info;
424 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
425 return 0;
426
427 if (info.State == MEM_FREE) {
428 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
429 alignment);
430 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
431 return shadow_address;
432 }
433
434 // Move to the next region.
435 address = (uptr)info.BaseAddress + info.RegionSize;
436 }
437 return 0;
438}
439
440uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
441 uptr num_aliases, uptr ring_buffer_size) {
442 CHECK(false && "HWASan aliasing is unimplemented on Windows");
443 return 0;
444}
445
446bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
447 MEMORY_BASIC_INFORMATION mbi;
448 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
449 return mbi.Protect == PAGE_NOACCESS &&
450 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
451}
452
453void *MapFileToMemory(const char *file_name, uptr *buff_size) {
454 UNIMPLEMENTED();
455}
456
457void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
458 UNIMPLEMENTED();
459}
460
461static const int kMaxEnvNameLength = 128;
462static const DWORD kMaxEnvValueLength = 32767;
463
464namespace {
465
466struct EnvVariable {
467 char name[kMaxEnvNameLength];
468 char value[kMaxEnvValueLength];
469};
470
471} // namespace
472
473static const int kEnvVariables = 5;
474static EnvVariable env_vars[kEnvVariables];
475static int num_env_vars;
476
477const char *GetEnv(const char *name) {
478 // Note: this implementation caches the values of the environment variables
479 // and limits their quantity.
480 for (int i = 0; i < num_env_vars; i++) {
481 if (0 == internal_strcmp(name, env_vars[i].name))
482 return env_vars[i].value;
483 }
484 CHECK_LT(num_env_vars, kEnvVariables);
485 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
486 kMaxEnvValueLength);
487 if (rv > 0 && rv < kMaxEnvValueLength) {
488 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
489 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
490 num_env_vars++;
491 return env_vars[num_env_vars - 1].value;
492 }
493 return 0;
494}
495
496const char *GetPwd() {
497 UNIMPLEMENTED();
498}
499
500u32 GetUid() {
501 UNIMPLEMENTED();
502}
503
504namespace {
505struct ModuleInfo {
506 const char *filepath;
507 uptr base_address;
508 uptr end_address;
509};
510
511#if !SANITIZER_GO
512int CompareModulesBase(const void *pl, const void *pr) {
513 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
514 if (l->base_address < r->base_address)
515 return -1;
516 return l->base_address > r->base_address;
517}
518#endif
519} // namespace
520
521#if !SANITIZER_GO
522void DumpProcessMap() {
523 Report("Dumping process modules:\n");
524 ListOfModules modules;
525 modules.init();
526 uptr num_modules = modules.size();
527
528 InternalMmapVector<ModuleInfo> module_infos(num_modules);
529 for (size_t i = 0; i < num_modules; ++i) {
530 module_infos[i].filepath = modules[i].full_name();
531 module_infos[i].base_address = modules[i].ranges().front()->beg;
532 module_infos[i].end_address = modules[i].ranges().back()->end;
533 }
534 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
535 CompareModulesBase);
536
537 for (size_t i = 0; i < num_modules; ++i) {
538 const ModuleInfo &mi = module_infos[i];
539 if (mi.end_address != 0) {
540 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
541 mi.filepath[0] ? mi.filepath : "[no name]");
542 } else if (mi.filepath[0]) {
543 Printf("\t??\?-??? %s\n", mi.filepath);
544 } else {
545 Printf("\t???\n");
546 }
547 }
548}
549#endif
550
551void DisableCoreDumperIfNecessary() {
552 // Do nothing.
553}
554
555void ReExec() {
556 UNIMPLEMENTED();
557}
558
559void PlatformPrepareForSandboxing(void *args) {}
560
561bool StackSizeIsUnlimited() {
562 UNIMPLEMENTED();
563}
564
565void SetStackSizeLimitInBytes(uptr limit) {
566 UNIMPLEMENTED();
567}
568
569bool AddressSpaceIsUnlimited() {
570 UNIMPLEMENTED();
571}
572
573void SetAddressSpaceUnlimited() {
574 UNIMPLEMENTED();
575}
576
577bool IsPathSeparator(const char c) {
578 return c == '\\' || c == '/';
579}
580
581static bool IsAlpha(char c) {
582 c = ToLower(c);
583 return c >= 'a' && c <= 'z';
584}
585
586bool IsAbsolutePath(const char *path) {
587 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
588 IsPathSeparator(path[2]);
589}
590
591void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
592
593u64 NanoTime() {
594 static LARGE_INTEGER frequency = {};
595 LARGE_INTEGER counter;
596 if (UNLIKELY(frequency.QuadPart == 0)) {
597 QueryPerformanceFrequency(&frequency);
598 CHECK_NE(frequency.QuadPart, 0);
599 }
600 QueryPerformanceCounter(&counter);
601 counter.QuadPart *= 1000ULL * 1000000ULL;
602 counter.QuadPart /= frequency.QuadPart;
603 return counter.QuadPart;
604}
605
606u64 MonotonicNanoTime() { return NanoTime(); }
607
608void Abort() {
609 internal__exit(3);
610}
611
612bool CreateDir(const char *pathname) {
613 return CreateDirectoryA(pathname, nullptr) != 0;
614}
615
616#if !SANITIZER_GO
617// Read the file to extract the ImageBase field from the PE header. If ASLR is
618// disabled and this virtual address is available, the loader will typically
619// load the image at this address. Therefore, we call it the preferred base. Any
620// addresses in the DWARF typically assume that the object has been loaded at
621// this address.
622static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
623 fd_t fd = OpenFile(modname, RdOnly, nullptr);
624 if (fd == kInvalidFd)
625 return 0;
626 FileCloser closer(fd);
627
628 // Read just the DOS header.
629 IMAGE_DOS_HEADER dos_header;
630 uptr bytes_read;
631 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
632 bytes_read != sizeof(dos_header))
633 return 0;
634
635 // The file should start with the right signature.
636 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
637 return 0;
638
639 // The layout at e_lfanew is:
640 // "PE\0\0"
641 // IMAGE_FILE_HEADER
642 // IMAGE_OPTIONAL_HEADER
643 // Seek to e_lfanew and read all that data.
644 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
645 INVALID_SET_FILE_POINTER)
646 return 0;
647 if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
648 return 0;
649
650 // Check for "PE\0\0" before the PE header.
651 char *pe_sig = &buf[0];
652 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
653 return 0;
654
655 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
656 IMAGE_OPTIONAL_HEADER *pe_header =
657 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
658
659 // Check for more magic in the PE header.
660 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
661 return 0;
662
663 // Finally, return the ImageBase.
664 return (uptr)pe_header->ImageBase;
665}
666
667void ListOfModules::init() {
668 clearOrInit();
669 HANDLE cur_process = GetCurrentProcess();
670
671 // Query the list of modules. Start by assuming there are no more than 256
672 // modules and retry if that's not sufficient.
673 HMODULE *hmodules = 0;
674 uptr modules_buffer_size = sizeof(HMODULE) * 256;
675 DWORD bytes_required;
676 while (!hmodules) {
677 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
678 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
679 &bytes_required));
680 if (bytes_required > modules_buffer_size) {
681 // Either there turned out to be more than 256 hmodules, or new hmodules
682 // could have loaded since the last try. Retry.
683 UnmapOrDie(hmodules, modules_buffer_size);
684 hmodules = 0;
685 modules_buffer_size = bytes_required;
686 }
687 }
688
689 InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
690 sizeof(IMAGE_OPTIONAL_HEADER));
691 InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
692 InternalMmapVector<char> module_name(kMaxPathLength);
693 // |num_modules| is the number of modules actually present,
694 size_t num_modules = bytes_required / sizeof(HMODULE);
695 for (size_t i = 0; i < num_modules; ++i) {
696 HMODULE handle = hmodules[i];
697 MODULEINFO mi;
698 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
699 continue;
700
701 // Get the UTF-16 path and convert to UTF-8.
702 int modname_utf16_len =
703 GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
704 if (modname_utf16_len == 0)
705 modname_utf16[0] = '\0';
706 int module_name_len = ::WideCharToMultiByte(
707 CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
708 kMaxPathLength, NULL, NULL);
709 module_name[module_name_len] = '\0';
710
711 uptr base_address = (uptr)mi.lpBaseOfDll;
712 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
713
714 // Adjust the base address of the module so that we get a VA instead of an
715 // RVA when computing the module offset. This helps llvm-symbolizer find the
716 // right DWARF CU. In the common case that the image is loaded at it's
717 // preferred address, we will now print normal virtual addresses.
718 uptr preferred_base =
719 GetPreferredBase(&module_name[0], &buf[0], buf.size());
720 uptr adjusted_base = base_address - preferred_base;
721
722 modules_.push_back(LoadedModule());
723 LoadedModule &cur_module = modules_.back();
724 cur_module.set(&module_name[0], adjusted_base);
725 // We add the whole module as one single address range.
726 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
727 /*writable*/ true);
728 }
729 UnmapOrDie(hmodules, modules_buffer_size);
730}
731
732void ListOfModules::fallbackInit() { clear(); }
733
734// We can't use atexit() directly at __asan_init time as the CRT is not fully
735// initialized at this point. Place the functions into a vector and use
736// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
737InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
738
739static int queueAtexit(void (*function)(void)) {
740 atexit_functions.push_back(function);
741 return 0;
742}
743
744// If Atexit() is being called after RunAtexit() has already been run, it needs
745// to be able to call atexit() directly. Here we use a function ponter to
746// switch out its behaviour.
747// An example of where this is needed is the asan_dynamic runtime on MinGW-w64.
748// On this environment, __asan_init is called during global constructor phase,
749// way after calling the .CRT$XID initializer.
750static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit;
751
752int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); }
753
754static int RunAtexit() {
755 TraceLoggingUnregister(g_asan_provider);
756 queueOrCallAtExit = &atexit;
757 int ret = 0;
758 for (uptr i = 0; i < atexit_functions.size(); ++i) {
759 ret |= atexit(atexit_functions[i]);
760 }
761 return ret;
762}
763
764#pragma section(".CRT$XID", long, read)
765__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
766#endif
767
768// ------------------ sanitizer_libc.h
769fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
770 // FIXME: Use the wide variants to handle Unicode filenames.
771 fd_t res;
772 if (mode == RdOnly) {
773 res = CreateFileA(filename, GENERIC_READ,
774 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
775 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
776 } else if (mode == WrOnly) {
777 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
778 FILE_ATTRIBUTE_NORMAL, nullptr);
779 } else {
780 UNIMPLEMENTED();
781 }
782 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
783 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
784 if (res == kInvalidFd && last_error)
785 *last_error = GetLastError();
786 return res;
787}
788
789void CloseFile(fd_t fd) {
790 CloseHandle(fd);
791}
792
793bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
794 error_t *error_p) {
795 CHECK(fd != kInvalidFd);
796
797 // bytes_read can't be passed directly to ReadFile:
798 // uptr is unsigned long long on 64-bit Windows.
799 unsigned long num_read_long;
800
801 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
802 if (!success && error_p)
803 *error_p = GetLastError();
804 if (bytes_read)
805 *bytes_read = num_read_long;
806 return success;
807}
808
809bool SupportsColoredOutput(fd_t fd) {
810 // FIXME: support colored output.
811 return false;
812}
813
814bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
815 error_t *error_p) {
816 CHECK(fd != kInvalidFd);
817
818 // Handle null optional parameters.
819 error_t dummy_error;
820 error_p = error_p ? error_p : &dummy_error;
821 uptr dummy_bytes_written;
822 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
823
824 // Initialize output parameters in case we fail.
825 *error_p = 0;
826 *bytes_written = 0;
827
828 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
829 // closed, in which case this will fail.
830 if (fd == kStdoutFd || fd == kStderrFd) {
831 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
832 if (fd == 0) {
833 *error_p = ERROR_INVALID_HANDLE;
834 return false;
835 }
836 }
837
838 DWORD bytes_written_32;
839 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
840 *error_p = GetLastError();
841 return false;
842 } else {
843 *bytes_written = bytes_written_32;
844 return true;
845 }
846}
847
848uptr internal_sched_yield() {
849 Sleep(0);
850 return 0;
851}
852
853void internal__exit(int exitcode) {
854 TraceLoggingUnregister(g_asan_provider);
855 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
856 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
857 // so add our own breakpoint here.
858 if (::IsDebuggerPresent())
859 __debugbreak();
860 TerminateProcess(GetCurrentProcess(), exitcode);
861 BUILTIN_UNREACHABLE();
862}
863
864uptr internal_ftruncate(fd_t fd, uptr size) {
865 UNIMPLEMENTED();
866}
867
868uptr GetRSS() {
869 PROCESS_MEMORY_COUNTERS counters;
870 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
871 return 0;
872 return counters.WorkingSetSize;
873}
874
875void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
876void internal_join_thread(void *th) { }
877
878void FutexWait(atomic_uint32_t *p, u32 cmp) {
879 WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
880}
881
882void FutexWake(atomic_uint32_t *p, u32 count) {
883 if (count == 1)
884 WakeByAddressSingle(p);
885 else
886 WakeByAddressAll(p);
887}
888
889uptr GetTlsSize() {
890 return 0;
891}
892
893void GetThreadStackAndTls(bool main, uptr *stk_begin, uptr *stk_end,
894 uptr *tls_begin, uptr *tls_end) {
895# if SANITIZER_GO
896 *stk_begin = 0;
897 *stk_end = 0;
898 *tls_begin = 0;
899 *tls_end = 0;
900# else
901 GetThreadStackTopAndBottom(main, stk_end, stk_begin);
902 *tls_begin = 0;
903 *tls_end = 0;
904# endif
905}
906
907void ReportFile::Write(const char *buffer, uptr length) {
908 SpinMutexLock l(mu);
909 ReopenIfNecessary();
910 if (!WriteToFile(fd, buffer, length)) {
911 // stderr may be closed, but we may be able to print to the debugger
912 // instead. This is the case when launching a program from Visual Studio,
913 // and the following routine should write to its console.
914 OutputDebugStringA(buffer);
915 }
916}
917
918void SetAlternateSignalStack() {
919 // FIXME: Decide what to do on Windows.
920}
921
922void UnsetAlternateSignalStack() {
923 // FIXME: Decide what to do on Windows.
924}
925
926void InstallDeadlySignalHandlers(SignalHandlerType handler) {
927 (void)handler;
928 // FIXME: Decide what to do on Windows.
929}
930
931HandleSignalMode GetHandleSignalMode(int signum) {
932 // FIXME: Decide what to do on Windows.
933 return kHandleSignalNo;
934}
935
936// Check based on flags if we should handle this exception.
937bool IsHandledDeadlyException(DWORD exceptionCode) {
938 switch (exceptionCode) {
939 case EXCEPTION_ACCESS_VIOLATION:
940 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
941 case EXCEPTION_STACK_OVERFLOW:
942 case EXCEPTION_DATATYPE_MISALIGNMENT:
943 case EXCEPTION_IN_PAGE_ERROR:
944 return common_flags()->handle_segv;
945 case EXCEPTION_ILLEGAL_INSTRUCTION:
946 case EXCEPTION_PRIV_INSTRUCTION:
947 case EXCEPTION_BREAKPOINT:
948 return common_flags()->handle_sigill;
949 case EXCEPTION_FLT_DENORMAL_OPERAND:
950 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
951 case EXCEPTION_FLT_INEXACT_RESULT:
952 case EXCEPTION_FLT_INVALID_OPERATION:
953 case EXCEPTION_FLT_OVERFLOW:
954 case EXCEPTION_FLT_STACK_CHECK:
955 case EXCEPTION_FLT_UNDERFLOW:
956 case EXCEPTION_INT_DIVIDE_BY_ZERO:
957 case EXCEPTION_INT_OVERFLOW:
958 return common_flags()->handle_sigfpe;
959 }
960 return false;
961}
962
963bool IsAccessibleMemoryRange(uptr beg, uptr size) {
964 SYSTEM_INFO si;
965 GetNativeSystemInfo(&si);
966 uptr page_size = si.dwPageSize;
967 uptr page_mask = ~(page_size - 1);
968
969 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
970 page <= end;) {
971 MEMORY_BASIC_INFORMATION info;
972 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
973 return false;
974
975 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
976 info.Protect == PAGE_EXECUTE)
977 return false;
978
979 if (info.RegionSize == 0)
980 return false;
981
982 page += info.RegionSize;
983 }
984
985 return true;
986}
987
988bool TryMemCpy(void *dest, const void *src, uptr n) {
989 // TODO: implement.
990 return false;
991}
992
993bool SignalContext::IsStackOverflow() const {
994 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
995}
996
997void SignalContext::InitPcSpBp() {
998 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
999 CONTEXT *context_record = (CONTEXT *)context;
1000
1001 pc = (uptr)exception_record->ExceptionAddress;
1002# if SANITIZER_WINDOWS64
1003# if SANITIZER_ARM64
1004 bp = (uptr)context_record->Fp;
1005 sp = (uptr)context_record->Sp;
1006# else
1007 bp = (uptr)context_record->Rbp;
1008 sp = (uptr)context_record->Rsp;
1009# endif
1010# else
1011# if SANITIZER_ARM
1012 bp = (uptr)context_record->R11;
1013 sp = (uptr)context_record->Sp;
1014# else
1015 bp = (uptr)context_record->Ebp;
1016 sp = (uptr)context_record->Esp;
1017# endif
1018# endif
1019}
1020
1021uptr SignalContext::GetAddress() const {
1022 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1023 if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
1024 return exception_record->ExceptionInformation[1];
1025 return (uptr)exception_record->ExceptionAddress;
1026}
1027
1028bool SignalContext::IsMemoryAccess() const {
1029 return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
1030 EXCEPTION_ACCESS_VIOLATION;
1031}
1032
1033bool SignalContext::IsTrueFaultingAddress() const { return true; }
1034
1035SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1036 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1037
1038 // The write flag is only available for access violation exceptions.
1039 if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
1040 return SignalContext::Unknown;
1041
1042 // The contents of this array are documented at
1043 // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
1044 // The first element indicates read as 0, write as 1, or execute as 8. The
1045 // second element is the faulting address.
1046 switch (exception_record->ExceptionInformation[0]) {
1047 case 0:
1048 return SignalContext::Read;
1049 case 1:
1050 return SignalContext::Write;
1051 case 8:
1052 return SignalContext::Unknown;
1053 }
1054 return SignalContext::Unknown;
1055}
1056
1057void SignalContext::DumpAllRegisters(void *context) {
1058 CONTEXT *ctx = (CONTEXT *)context;
1059# if defined(_M_X64)
1060 Report("Register values:\n");
1061 Printf("rax = %llx ", ctx->Rax);
1062 Printf("rbx = %llx ", ctx->Rbx);
1063 Printf("rcx = %llx ", ctx->Rcx);
1064 Printf("rdx = %llx ", ctx->Rdx);
1065 Printf("\n");
1066 Printf("rdi = %llx ", ctx->Rdi);
1067 Printf("rsi = %llx ", ctx->Rsi);
1068 Printf("rbp = %llx ", ctx->Rbp);
1069 Printf("rsp = %llx ", ctx->Rsp);
1070 Printf("\n");
1071 Printf("r8 = %llx ", ctx->R8);
1072 Printf("r9 = %llx ", ctx->R9);
1073 Printf("r10 = %llx ", ctx->R10);
1074 Printf("r11 = %llx ", ctx->R11);
1075 Printf("\n");
1076 Printf("r12 = %llx ", ctx->R12);
1077 Printf("r13 = %llx ", ctx->R13);
1078 Printf("r14 = %llx ", ctx->R14);
1079 Printf("r15 = %llx ", ctx->R15);
1080 Printf("\n");
1081# elif defined(_M_IX86)
1082 Report("Register values:\n");
1083 Printf("eax = %lx ", ctx->Eax);
1084 Printf("ebx = %lx ", ctx->Ebx);
1085 Printf("ecx = %lx ", ctx->Ecx);
1086 Printf("edx = %lx ", ctx->Edx);
1087 Printf("\n");
1088 Printf("edi = %lx ", ctx->Edi);
1089 Printf("esi = %lx ", ctx->Esi);
1090 Printf("ebp = %lx ", ctx->Ebp);
1091 Printf("esp = %lx ", ctx->Esp);
1092 Printf("\n");
1093# elif defined(_M_ARM64)
1094 Report("Register values:\n");
1095 for (int i = 0; i <= 30; i++) {
1096 Printf("x%d%s = %llx", i < 10 ? " " : "", ctx->X[i]);
1097 if (i % 4 == 3)
1098 Printf("\n");
1099 }
1100# else
1101 // TODO
1102 (void)ctx;
1103# endif
1104}
1105
1106int SignalContext::GetType() const {
1107 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1108}
1109
1110const char *SignalContext::Describe() const {
1111 unsigned code = GetType();
1112 // Get the string description of the exception if this is a known deadly
1113 // exception.
1114 switch (code) {
1115 case EXCEPTION_ACCESS_VIOLATION:
1116 return "access-violation";
1117 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1118 return "array-bounds-exceeded";
1119 case EXCEPTION_STACK_OVERFLOW:
1120 return "stack-overflow";
1121 case EXCEPTION_DATATYPE_MISALIGNMENT:
1122 return "datatype-misalignment";
1123 case EXCEPTION_IN_PAGE_ERROR:
1124 return "in-page-error";
1125 case EXCEPTION_ILLEGAL_INSTRUCTION:
1126 return "illegal-instruction";
1127 case EXCEPTION_PRIV_INSTRUCTION:
1128 return "priv-instruction";
1129 case EXCEPTION_BREAKPOINT:
1130 return "breakpoint";
1131 case EXCEPTION_FLT_DENORMAL_OPERAND:
1132 return "flt-denormal-operand";
1133 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1134 return "flt-divide-by-zero";
1135 case EXCEPTION_FLT_INEXACT_RESULT:
1136 return "flt-inexact-result";
1137 case EXCEPTION_FLT_INVALID_OPERATION:
1138 return "flt-invalid-operation";
1139 case EXCEPTION_FLT_OVERFLOW:
1140 return "flt-overflow";
1141 case EXCEPTION_FLT_STACK_CHECK:
1142 return "flt-stack-check";
1143 case EXCEPTION_FLT_UNDERFLOW:
1144 return "flt-underflow";
1145 case EXCEPTION_INT_DIVIDE_BY_ZERO:
1146 return "int-divide-by-zero";
1147 case EXCEPTION_INT_OVERFLOW:
1148 return "int-overflow";
1149 }
1150 return "unknown exception";
1151}
1152
1153uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1154 if (buf_len == 0)
1155 return 0;
1156
1157 // Get the UTF-16 path and convert to UTF-8.
1158 InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1159 int binname_utf16_len =
1160 GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1161 if (binname_utf16_len == 0) {
1162 buf[0] = '\0';
1163 return 0;
1164 }
1165 int binary_name_len =
1166 ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1167 buf, buf_len, NULL, NULL);
1168 if ((unsigned)binary_name_len == buf_len)
1169 --binary_name_len;
1170 buf[binary_name_len] = '\0';
1171 return binary_name_len;
1172}
1173
1174uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1175 return ReadBinaryName(buf, buf_len);
1176}
1177
1178void CheckVMASize() {
1179 // Do nothing.
1180}
1181
1182void InitializePlatformEarly() {
1183 // Do nothing.
1184}
1185
1186void CheckASLR() {
1187 // Do nothing
1188}
1189
1190void CheckMPROTECT() {
1191 // Do nothing
1192}
1193
1194char **GetArgv() {
1195 // FIXME: Actually implement this function.
1196 return 0;
1197}
1198
1199char **GetEnviron() {
1200 // FIXME: Actually implement this function.
1201 return 0;
1202}
1203
1204pid_t StartSubprocess(const char *program, const char *const argv[],
1205 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1206 fd_t stderr_fd) {
1207 // FIXME: implement on this platform
1208 // Should be implemented based on
1209 // SymbolizerProcess::StarAtSymbolizerSubprocess
1210 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1211 return -1;
1212}
1213
1214bool IsProcessRunning(pid_t pid) {
1215 // FIXME: implement on this platform.
1216 return false;
1217}
1218
1219int WaitForProcess(pid_t pid) { return -1; }
1220
1221// FIXME implement on this platform.
1222void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1223
1224void CheckNoDeepBind(const char *filename, int flag) {
1225 // Do nothing.
1226}
1227
1228// FIXME: implement on this platform.
1229bool GetRandom(void *buffer, uptr length, bool blocking) {
1230 UNIMPLEMENTED();
1231}
1232
1233u32 GetNumberOfCPUs() {
1234 SYSTEM_INFO sysinfo = {};
1235 GetNativeSystemInfo(&sysinfo);
1236 return sysinfo.dwNumberOfProcessors;
1237}
1238
1239#if SANITIZER_WIN_TRACE
1240// TODO(mcgov): Rename this project-wide to PlatformLogInit
1241void AndroidLogInit(void) {
1242 HRESULT hr = TraceLoggingRegister(g_asan_provider);
1243 if (!SUCCEEDED(hr))
1244 return;
1245}
1246
1247void SetAbortMessage(const char *) {}
1248
1249void LogFullErrorReport(const char *buffer) {
1250 if (common_flags()->log_to_syslog) {
1251 InternalMmapVector<wchar_t> filename;
1252 DWORD filename_length = 0;
1253 do {
1254 filename.resize(filename.size() + 0x100);
1255 filename_length =
1256 GetModuleFileNameW(NULL, filename.begin(), filename.size());
1257 } while (filename_length >= filename.size());
1258 TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1259 TraceLoggingValue(filename.begin(), "ExecutableName"),
1260 TraceLoggingValue(buffer, "AsanReportContents"));
1261 }
1262}
1263#endif // SANITIZER_WIN_TRACE
1264
1265void InitializePlatformCommonFlags(CommonFlags *cf) {}
1266
1267} // namespace __sanitizer
1268
1269#endif // _WIN32
1270

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of compiler-rt/lib/sanitizer_common/sanitizer_win.cpp