1//===-- sanitizer_win.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is shared between AddressSanitizer and ThreadSanitizer
10// run-time libraries and implements windows-specific functions from
11// sanitizer_libc.h.
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_platform.h"
15#if SANITIZER_WINDOWS
16
17#define WIN32_LEAN_AND_MEAN
18#define NOGDI
19#include <windows.h>
20#include <io.h>
21#include <psapi.h>
22#include <stdlib.h>
23
24#include "sanitizer_common.h"
25#include "sanitizer_file.h"
26#include "sanitizer_libc.h"
27#include "sanitizer_mutex.h"
28#include "sanitizer_placement_new.h"
29#include "sanitizer_win_defs.h"
30
31#if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32#pragma comment(lib, "psapi")
33#endif
34#if SANITIZER_WIN_TRACE
35#include <traceloggingprovider.h>
36// Windows trace logging provider init
37#pragma comment(lib, "advapi32.lib")
38TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39// GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42 0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43#else
44#define TraceLoggingUnregister(x)
45#endif
46
47// For WaitOnAddress
48# pragma comment(lib, "synchronization.lib")
49
50// A macro to tell the compiler that this part of the code cannot be reached,
51// if the compiler supports this feature. Since we're using this in
52// code that is called when terminating the process, the expansion of the
53// macro should not terminate the process to avoid infinite recursion.
54#if defined(__clang__)
55# define BUILTIN_UNREACHABLE() __builtin_unreachable()
56#elif defined(__GNUC__) && \
57 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
58# define BUILTIN_UNREACHABLE() __builtin_unreachable()
59#elif defined(_MSC_VER)
60# define BUILTIN_UNREACHABLE() __assume(0)
61#else
62# define BUILTIN_UNREACHABLE()
63#endif
64
65namespace __sanitizer {
66
67#include "sanitizer_syscall_generic.inc"
68
69// --------------------- sanitizer_common.h
70uptr GetPageSize() {
71 SYSTEM_INFO si;
72 GetSystemInfo(&si);
73 return si.dwPageSize;
74}
75
76uptr GetMmapGranularity() {
77 SYSTEM_INFO si;
78 GetSystemInfo(&si);
79 return si.dwAllocationGranularity;
80}
81
82uptr GetMaxUserVirtualAddress() {
83 SYSTEM_INFO si;
84 GetSystemInfo(&si);
85 return (uptr)si.lpMaximumApplicationAddress;
86}
87
88uptr GetMaxVirtualAddress() {
89 return GetMaxUserVirtualAddress();
90}
91
92bool FileExists(const char *filename) {
93 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
94}
95
96bool DirExists(const char *path) {
97 auto attr = ::GetFileAttributesA(path);
98 return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
99}
100
101uptr internal_getpid() {
102 return GetProcessId(GetCurrentProcess());
103}
104
105int internal_dlinfo(void *handle, int request, void *p) {
106 UNIMPLEMENTED();
107}
108
109// In contrast to POSIX, on Windows GetCurrentThreadId()
110// returns a system-unique identifier.
111tid_t GetTid() {
112 return GetCurrentThreadId();
113}
114
115uptr GetThreadSelf() {
116 return GetTid();
117}
118
119#if !SANITIZER_GO
120void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
121 uptr *stack_bottom) {
122 CHECK(stack_top);
123 CHECK(stack_bottom);
124 MEMORY_BASIC_INFORMATION mbi;
125 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
126 // FIXME: is it possible for the stack to not be a single allocation?
127 // Are these values what ASan expects to get (reserved, not committed;
128 // including stack guard page) ?
129 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
130 *stack_bottom = (uptr)mbi.AllocationBase;
131}
132#endif // #if !SANITIZER_GO
133
134bool ErrorIsOOM(error_t err) {
135 // TODO: This should check which `err`s correspond to OOM.
136 return false;
137}
138
139void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
140 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
141 if (rv == 0)
142 ReportMmapFailureAndDie(size, mem_type, "allocate",
143 GetLastError(), raw_report);
144 return rv;
145}
146
147void UnmapOrDie(void *addr, uptr size, bool raw_report) {
148 if (!size || !addr)
149 return;
150
151 MEMORY_BASIC_INFORMATION mbi;
152 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
153
154 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
155 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
156 // fails try MEM_DECOMMIT.
157 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
158 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
159 ReportMunmapFailureAndDie(addr, size, GetLastError(), raw_report);
160 }
161 }
162}
163
164static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
165 const char *mmap_type) {
166 error_t last_error = GetLastError();
167 if (last_error == ERROR_NOT_ENOUGH_MEMORY)
168 return nullptr;
169 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
170}
171
172void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
173 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
174 if (rv == 0)
175 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
176 return rv;
177}
178
179// We want to map a chunk of address space aligned to 'alignment'.
180void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
181 const char *mem_type) {
182 CHECK(IsPowerOfTwo(size));
183 CHECK(IsPowerOfTwo(alignment));
184
185 // Windows will align our allocations to at least 64K.
186 alignment = Max(alignment, GetMmapGranularity());
187
188 uptr mapped_addr =
189 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
190 if (!mapped_addr)
191 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
192
193 // If we got it right on the first try, return. Otherwise, unmap it and go to
194 // the slow path.
195 if (IsAligned(mapped_addr, alignment))
196 return (void*)mapped_addr;
197 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
198 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
199
200 // If we didn't get an aligned address, overallocate, find an aligned address,
201 // unmap, and try to allocate at that aligned address.
202 int retries = 0;
203 const int kMaxRetries = 10;
204 for (; retries < kMaxRetries &&
205 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
206 retries++) {
207 // Overallocate size + alignment bytes.
208 mapped_addr =
209 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
210 if (!mapped_addr)
211 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
212
213 // Find the aligned address.
214 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
215
216 // Free the overallocation.
217 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
218 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
219
220 // Attempt to allocate exactly the number of bytes we need at the aligned
221 // address. This may fail for a number of reasons, in which case we continue
222 // the loop.
223 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
224 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
225 }
226
227 // Fail if we can't make this work quickly.
228 if (retries == kMaxRetries && mapped_addr == 0)
229 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
230
231 return (void *)mapped_addr;
232}
233
234// ZeroMmapFixedRegion zero's out a region of memory previously returned from a
235// call to one of the MmapFixed* helpers. On non-windows systems this would be
236// done with another mmap, but on windows remapping is not an option.
237// VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
238// memory, but we can't do this atomically, so instead we fall back to using
239// internal_memset.
240bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
241 internal_memset((void*) fixed_addr, 0, size);
242 return true;
243}
244
245bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
246 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
247 // but on Win64 it does.
248 (void)name; // unsupported
249#if !SANITIZER_GO && SANITIZER_WINDOWS64
250 // On asan/Windows64, use MEM_COMMIT would result in error
251 // 1455:ERROR_COMMITMENT_LIMIT.
252 // Asan uses exception handler to commit page on demand.
253 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
254#else
255 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
256 PAGE_READWRITE);
257#endif
258 if (p == 0) {
259 Report("ERROR: %s failed to "
260 "allocate %p (%zd) bytes at %p (error code: %d)\n",
261 SanitizerToolName, size, size, fixed_addr, GetLastError());
262 return false;
263 }
264 return true;
265}
266
267bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
268 // FIXME: Windows support large pages too. Might be worth checking
269 return MmapFixedNoReserve(fixed_addr, size, name);
270}
271
272// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
273// 'MmapFixedNoAccess'.
274void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
275 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
276 MEM_COMMIT, PAGE_READWRITE);
277 if (p == 0) {
278 char mem_type[30];
279 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
280 fixed_addr);
281 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
282 }
283 return p;
284}
285
286// Uses fixed_addr for now.
287// Will use offset instead once we've implemented this function for real.
288uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
289 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
290}
291
292uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
293 const char *name) {
294 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
295}
296
297void ReservedAddressRange::Unmap(uptr addr, uptr size) {
298 // Only unmap if it covers the entire range.
299 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
300 // We unmap the whole range, just null out the base.
301 base_ = nullptr;
302 size_ = 0;
303 UnmapOrDie(reinterpret_cast<void*>(addr), size);
304}
305
306void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
307 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
308 MEM_COMMIT, PAGE_READWRITE);
309 if (p == 0) {
310 char mem_type[30];
311 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
312 fixed_addr);
313 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
314 }
315 return p;
316}
317
318void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
319 // FIXME: make this really NoReserve?
320 return MmapOrDie(size, mem_type);
321}
322
323uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
324 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
325 size_ = size;
326 name_ = name;
327 (void)os_handle_; // unsupported
328 return reinterpret_cast<uptr>(base_);
329}
330
331
332void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
333 (void)name; // unsupported
334 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
335 MEM_RESERVE, PAGE_NOACCESS);
336 if (res == 0)
337 Report("WARNING: %s failed to "
338 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
339 SanitizerToolName, size, size, fixed_addr, GetLastError());
340 return res;
341}
342
343void *MmapNoAccess(uptr size) {
344 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
345 if (res == 0)
346 Report("WARNING: %s failed to "
347 "mprotect %p (%zd) bytes (error code: %d)\n",
348 SanitizerToolName, size, size, GetLastError());
349 return res;
350}
351
352bool MprotectNoAccess(uptr addr, uptr size) {
353 DWORD old_protection;
354 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
355}
356
357bool MprotectReadOnly(uptr addr, uptr size) {
358 DWORD old_protection;
359 return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
360}
361
362bool MprotectReadWrite(uptr addr, uptr size) {
363 DWORD old_protection;
364 return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection);
365}
366
367void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
368 uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
369 end_aligned = RoundDownTo(end, GetPageSizeCached());
370 CHECK(beg < end); // make sure the region is sane
371 if (beg_aligned == end_aligned) // make sure we're freeing at least 1 page;
372 return;
373 UnmapOrDie((void *)beg, end_aligned - beg_aligned);
374}
375
376void SetShadowRegionHugePageMode(uptr addr, uptr size) {
377 // FIXME: probably similar to ReleaseMemoryToOS.
378}
379
380bool DontDumpShadowMemory(uptr addr, uptr length) {
381 // This is almost useless on 32-bits.
382 // FIXME: add madvise-analog when we move to 64-bits.
383 return true;
384}
385
386uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
387 uptr min_shadow_base_alignment,
388 UNUSED uptr &high_mem_end) {
389 const uptr granularity = GetMmapGranularity();
390 const uptr alignment =
391 Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
392 const uptr left_padding =
393 Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
394 uptr space_size = shadow_size_bytes + left_padding;
395 uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
396 granularity, nullptr, nullptr);
397 CHECK_NE((uptr)0, shadow_start);
398 CHECK(IsAligned(shadow_start, alignment));
399 return shadow_start;
400}
401
402uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
403 uptr *largest_gap_found,
404 uptr *max_occupied_addr) {
405 uptr address = 0;
406 while (true) {
407 MEMORY_BASIC_INFORMATION info;
408 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
409 return 0;
410
411 if (info.State == MEM_FREE) {
412 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
413 alignment);
414 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
415 return shadow_address;
416 }
417
418 // Move to the next region.
419 address = (uptr)info.BaseAddress + info.RegionSize;
420 }
421 return 0;
422}
423
424uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
425 uptr num_aliases, uptr ring_buffer_size) {
426 CHECK(false && "HWASan aliasing is unimplemented on Windows");
427 return 0;
428}
429
430bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
431 MEMORY_BASIC_INFORMATION mbi;
432 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
433 return mbi.Protect == PAGE_NOACCESS &&
434 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
435}
436
437void *MapFileToMemory(const char *file_name, uptr *buff_size) {
438 UNIMPLEMENTED();
439}
440
441void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
442 UNIMPLEMENTED();
443}
444
445static const int kMaxEnvNameLength = 128;
446static const DWORD kMaxEnvValueLength = 32767;
447
448namespace {
449
450struct EnvVariable {
451 char name[kMaxEnvNameLength];
452 char value[kMaxEnvValueLength];
453};
454
455} // namespace
456
457static const int kEnvVariables = 5;
458static EnvVariable env_vars[kEnvVariables];
459static int num_env_vars;
460
461const char *GetEnv(const char *name) {
462 // Note: this implementation caches the values of the environment variables
463 // and limits their quantity.
464 for (int i = 0; i < num_env_vars; i++) {
465 if (0 == internal_strcmp(name, env_vars[i].name))
466 return env_vars[i].value;
467 }
468 CHECK_LT(num_env_vars, kEnvVariables);
469 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
470 kMaxEnvValueLength);
471 if (rv > 0 && rv < kMaxEnvValueLength) {
472 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
473 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
474 num_env_vars++;
475 return env_vars[num_env_vars - 1].value;
476 }
477 return 0;
478}
479
480const char *GetPwd() {
481 UNIMPLEMENTED();
482}
483
484u32 GetUid() {
485 UNIMPLEMENTED();
486}
487
488namespace {
489struct ModuleInfo {
490 const char *filepath;
491 uptr base_address;
492 uptr end_address;
493};
494
495#if !SANITIZER_GO
496int CompareModulesBase(const void *pl, const void *pr) {
497 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
498 if (l->base_address < r->base_address)
499 return -1;
500 return l->base_address > r->base_address;
501}
502#endif
503} // namespace
504
505#if !SANITIZER_GO
506void DumpProcessMap() {
507 Report("Dumping process modules:\n");
508 ListOfModules modules;
509 modules.init();
510 uptr num_modules = modules.size();
511
512 InternalMmapVector<ModuleInfo> module_infos(num_modules);
513 for (size_t i = 0; i < num_modules; ++i) {
514 module_infos[i].filepath = modules[i].full_name();
515 module_infos[i].base_address = modules[i].ranges().front()->beg;
516 module_infos[i].end_address = modules[i].ranges().back()->end;
517 }
518 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
519 CompareModulesBase);
520
521 for (size_t i = 0; i < num_modules; ++i) {
522 const ModuleInfo &mi = module_infos[i];
523 if (mi.end_address != 0) {
524 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
525 mi.filepath[0] ? mi.filepath : "[no name]");
526 } else if (mi.filepath[0]) {
527 Printf("\t??\?-??? %s\n", mi.filepath);
528 } else {
529 Printf("\t???\n");
530 }
531 }
532}
533#endif
534
535void DisableCoreDumperIfNecessary() {
536 // Do nothing.
537}
538
539void ReExec() {
540 UNIMPLEMENTED();
541}
542
543void PlatformPrepareForSandboxing(void *args) {}
544
545bool StackSizeIsUnlimited() {
546 UNIMPLEMENTED();
547}
548
549void SetStackSizeLimitInBytes(uptr limit) {
550 UNIMPLEMENTED();
551}
552
553bool AddressSpaceIsUnlimited() {
554 UNIMPLEMENTED();
555}
556
557void SetAddressSpaceUnlimited() {
558 UNIMPLEMENTED();
559}
560
561bool IsPathSeparator(const char c) {
562 return c == '\\' || c == '/';
563}
564
565static bool IsAlpha(char c) {
566 c = ToLower(c);
567 return c >= 'a' && c <= 'z';
568}
569
570bool IsAbsolutePath(const char *path) {
571 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
572 IsPathSeparator(path[2]);
573}
574
575void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
576
577u64 NanoTime() {
578 static LARGE_INTEGER frequency = {};
579 LARGE_INTEGER counter;
580 if (UNLIKELY(frequency.QuadPart == 0)) {
581 QueryPerformanceFrequency(&frequency);
582 CHECK_NE(frequency.QuadPart, 0);
583 }
584 QueryPerformanceCounter(&counter);
585 counter.QuadPart *= 1000ULL * 1000000ULL;
586 counter.QuadPart /= frequency.QuadPart;
587 return counter.QuadPart;
588}
589
590u64 MonotonicNanoTime() { return NanoTime(); }
591
592void Abort() {
593 internal__exit(3);
594}
595
596bool CreateDir(const char *pathname) {
597 return CreateDirectoryA(pathname, nullptr) != 0;
598}
599
600#if !SANITIZER_GO
601// Read the file to extract the ImageBase field from the PE header. If ASLR is
602// disabled and this virtual address is available, the loader will typically
603// load the image at this address. Therefore, we call it the preferred base. Any
604// addresses in the DWARF typically assume that the object has been loaded at
605// this address.
606static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
607 fd_t fd = OpenFile(modname, RdOnly, nullptr);
608 if (fd == kInvalidFd)
609 return 0;
610 FileCloser closer(fd);
611
612 // Read just the DOS header.
613 IMAGE_DOS_HEADER dos_header;
614 uptr bytes_read;
615 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
616 bytes_read != sizeof(dos_header))
617 return 0;
618
619 // The file should start with the right signature.
620 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
621 return 0;
622
623 // The layout at e_lfanew is:
624 // "PE\0\0"
625 // IMAGE_FILE_HEADER
626 // IMAGE_OPTIONAL_HEADER
627 // Seek to e_lfanew and read all that data.
628 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
629 INVALID_SET_FILE_POINTER)
630 return 0;
631 if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
632 return 0;
633
634 // Check for "PE\0\0" before the PE header.
635 char *pe_sig = &buf[0];
636 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
637 return 0;
638
639 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
640 IMAGE_OPTIONAL_HEADER *pe_header =
641 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
642
643 // Check for more magic in the PE header.
644 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
645 return 0;
646
647 // Finally, return the ImageBase.
648 return (uptr)pe_header->ImageBase;
649}
650
651void ListOfModules::init() {
652 clearOrInit();
653 HANDLE cur_process = GetCurrentProcess();
654
655 // Query the list of modules. Start by assuming there are no more than 256
656 // modules and retry if that's not sufficient.
657 HMODULE *hmodules = 0;
658 uptr modules_buffer_size = sizeof(HMODULE) * 256;
659 DWORD bytes_required;
660 while (!hmodules) {
661 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
662 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
663 &bytes_required));
664 if (bytes_required > modules_buffer_size) {
665 // Either there turned out to be more than 256 hmodules, or new hmodules
666 // could have loaded since the last try. Retry.
667 UnmapOrDie(hmodules, modules_buffer_size);
668 hmodules = 0;
669 modules_buffer_size = bytes_required;
670 }
671 }
672
673 InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
674 sizeof(IMAGE_OPTIONAL_HEADER));
675 InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
676 InternalMmapVector<char> module_name(kMaxPathLength);
677 // |num_modules| is the number of modules actually present,
678 size_t num_modules = bytes_required / sizeof(HMODULE);
679 for (size_t i = 0; i < num_modules; ++i) {
680 HMODULE handle = hmodules[i];
681 MODULEINFO mi;
682 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
683 continue;
684
685 // Get the UTF-16 path and convert to UTF-8.
686 int modname_utf16_len =
687 GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
688 if (modname_utf16_len == 0)
689 modname_utf16[0] = '\0';
690 int module_name_len = ::WideCharToMultiByte(
691 CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
692 kMaxPathLength, NULL, NULL);
693 module_name[module_name_len] = '\0';
694
695 uptr base_address = (uptr)mi.lpBaseOfDll;
696 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
697
698 // Adjust the base address of the module so that we get a VA instead of an
699 // RVA when computing the module offset. This helps llvm-symbolizer find the
700 // right DWARF CU. In the common case that the image is loaded at it's
701 // preferred address, we will now print normal virtual addresses.
702 uptr preferred_base =
703 GetPreferredBase(&module_name[0], &buf[0], buf.size());
704 uptr adjusted_base = base_address - preferred_base;
705
706 modules_.push_back(LoadedModule());
707 LoadedModule &cur_module = modules_.back();
708 cur_module.set(&module_name[0], adjusted_base);
709 // We add the whole module as one single address range.
710 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
711 /*writable*/ true);
712 }
713 UnmapOrDie(hmodules, modules_buffer_size);
714}
715
716void ListOfModules::fallbackInit() { clear(); }
717
718// We can't use atexit() directly at __asan_init time as the CRT is not fully
719// initialized at this point. Place the functions into a vector and use
720// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
721InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
722
723static int queueAtexit(void (*function)(void)) {
724 atexit_functions.push_back(function);
725 return 0;
726}
727
728// If Atexit() is being called after RunAtexit() has already been run, it needs
729// to be able to call atexit() directly. Here we use a function ponter to
730// switch out its behaviour.
731// An example of where this is needed is the asan_dynamic runtime on MinGW-w64.
732// On this environment, __asan_init is called during global constructor phase,
733// way after calling the .CRT$XID initializer.
734static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit;
735
736int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); }
737
738static int RunAtexit() {
739 TraceLoggingUnregister(g_asan_provider);
740 queueOrCallAtExit = &atexit;
741 int ret = 0;
742 for (uptr i = 0; i < atexit_functions.size(); ++i) {
743 ret |= atexit(atexit_functions[i]);
744 }
745 return ret;
746}
747
748#pragma section(".CRT$XID", long, read)
749__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
750#endif
751
752// ------------------ sanitizer_libc.h
753fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
754 // FIXME: Use the wide variants to handle Unicode filenames.
755 fd_t res;
756 if (mode == RdOnly) {
757 res = CreateFileA(filename, GENERIC_READ,
758 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
759 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
760 } else if (mode == WrOnly) {
761 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
762 FILE_ATTRIBUTE_NORMAL, nullptr);
763 } else {
764 UNIMPLEMENTED();
765 }
766 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
767 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
768 if (res == kInvalidFd && last_error)
769 *last_error = GetLastError();
770 return res;
771}
772
773void CloseFile(fd_t fd) {
774 CloseHandle(fd);
775}
776
777bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
778 error_t *error_p) {
779 CHECK(fd != kInvalidFd);
780
781 // bytes_read can't be passed directly to ReadFile:
782 // uptr is unsigned long long on 64-bit Windows.
783 unsigned long num_read_long;
784
785 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
786 if (!success && error_p)
787 *error_p = GetLastError();
788 if (bytes_read)
789 *bytes_read = num_read_long;
790 return success;
791}
792
793bool SupportsColoredOutput(fd_t fd) {
794 // FIXME: support colored output.
795 return false;
796}
797
798bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
799 error_t *error_p) {
800 CHECK(fd != kInvalidFd);
801
802 // Handle null optional parameters.
803 error_t dummy_error;
804 error_p = error_p ? error_p : &dummy_error;
805 uptr dummy_bytes_written;
806 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
807
808 // Initialize output parameters in case we fail.
809 *error_p = 0;
810 *bytes_written = 0;
811
812 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
813 // closed, in which case this will fail.
814 if (fd == kStdoutFd || fd == kStderrFd) {
815 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
816 if (fd == 0) {
817 *error_p = ERROR_INVALID_HANDLE;
818 return false;
819 }
820 }
821
822 DWORD bytes_written_32;
823 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
824 *error_p = GetLastError();
825 return false;
826 } else {
827 *bytes_written = bytes_written_32;
828 return true;
829 }
830}
831
832uptr internal_sched_yield() {
833 Sleep(0);
834 return 0;
835}
836
837void internal__exit(int exitcode) {
838 TraceLoggingUnregister(g_asan_provider);
839 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
840 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
841 // so add our own breakpoint here.
842 if (::IsDebuggerPresent())
843 __debugbreak();
844 TerminateProcess(GetCurrentProcess(), exitcode);
845 BUILTIN_UNREACHABLE();
846}
847
848uptr internal_ftruncate(fd_t fd, uptr size) {
849 UNIMPLEMENTED();
850}
851
852uptr GetRSS() {
853 PROCESS_MEMORY_COUNTERS counters;
854 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
855 return 0;
856 return counters.WorkingSetSize;
857}
858
859void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
860void internal_join_thread(void *th) { }
861
862void FutexWait(atomic_uint32_t *p, u32 cmp) {
863 WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
864}
865
866void FutexWake(atomic_uint32_t *p, u32 count) {
867 if (count == 1)
868 WakeByAddressSingle(p);
869 else
870 WakeByAddressAll(p);
871}
872
873uptr GetTlsSize() {
874 return 0;
875}
876
877void InitTlsSize() {
878}
879
880void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
881 uptr *tls_addr, uptr *tls_size) {
882#if SANITIZER_GO
883 *stk_addr = 0;
884 *stk_size = 0;
885 *tls_addr = 0;
886 *tls_size = 0;
887#else
888 uptr stack_top, stack_bottom;
889 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
890 *stk_addr = stack_bottom;
891 *stk_size = stack_top - stack_bottom;
892 *tls_addr = 0;
893 *tls_size = 0;
894#endif
895}
896
897void ReportFile::Write(const char *buffer, uptr length) {
898 SpinMutexLock l(mu);
899 ReopenIfNecessary();
900 if (!WriteToFile(fd, buffer, length)) {
901 // stderr may be closed, but we may be able to print to the debugger
902 // instead. This is the case when launching a program from Visual Studio,
903 // and the following routine should write to its console.
904 OutputDebugStringA(buffer);
905 }
906}
907
908void SetAlternateSignalStack() {
909 // FIXME: Decide what to do on Windows.
910}
911
912void UnsetAlternateSignalStack() {
913 // FIXME: Decide what to do on Windows.
914}
915
916void InstallDeadlySignalHandlers(SignalHandlerType handler) {
917 (void)handler;
918 // FIXME: Decide what to do on Windows.
919}
920
921HandleSignalMode GetHandleSignalMode(int signum) {
922 // FIXME: Decide what to do on Windows.
923 return kHandleSignalNo;
924}
925
926// Check based on flags if we should handle this exception.
927bool IsHandledDeadlyException(DWORD exceptionCode) {
928 switch (exceptionCode) {
929 case EXCEPTION_ACCESS_VIOLATION:
930 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
931 case EXCEPTION_STACK_OVERFLOW:
932 case EXCEPTION_DATATYPE_MISALIGNMENT:
933 case EXCEPTION_IN_PAGE_ERROR:
934 return common_flags()->handle_segv;
935 case EXCEPTION_ILLEGAL_INSTRUCTION:
936 case EXCEPTION_PRIV_INSTRUCTION:
937 case EXCEPTION_BREAKPOINT:
938 return common_flags()->handle_sigill;
939 case EXCEPTION_FLT_DENORMAL_OPERAND:
940 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
941 case EXCEPTION_FLT_INEXACT_RESULT:
942 case EXCEPTION_FLT_INVALID_OPERATION:
943 case EXCEPTION_FLT_OVERFLOW:
944 case EXCEPTION_FLT_STACK_CHECK:
945 case EXCEPTION_FLT_UNDERFLOW:
946 case EXCEPTION_INT_DIVIDE_BY_ZERO:
947 case EXCEPTION_INT_OVERFLOW:
948 return common_flags()->handle_sigfpe;
949 }
950 return false;
951}
952
953bool IsAccessibleMemoryRange(uptr beg, uptr size) {
954 SYSTEM_INFO si;
955 GetNativeSystemInfo(&si);
956 uptr page_size = si.dwPageSize;
957 uptr page_mask = ~(page_size - 1);
958
959 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
960 page <= end;) {
961 MEMORY_BASIC_INFORMATION info;
962 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
963 return false;
964
965 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
966 info.Protect == PAGE_EXECUTE)
967 return false;
968
969 if (info.RegionSize == 0)
970 return false;
971
972 page += info.RegionSize;
973 }
974
975 return true;
976}
977
978bool SignalContext::IsStackOverflow() const {
979 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
980}
981
982void SignalContext::InitPcSpBp() {
983 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
984 CONTEXT *context_record = (CONTEXT *)context;
985
986 pc = (uptr)exception_record->ExceptionAddress;
987# if SANITIZER_WINDOWS64
988# if SANITIZER_ARM64
989 bp = (uptr)context_record->Fp;
990 sp = (uptr)context_record->Sp;
991# else
992 bp = (uptr)context_record->Rbp;
993 sp = (uptr)context_record->Rsp;
994# endif
995# else
996 bp = (uptr)context_record->Ebp;
997 sp = (uptr)context_record->Esp;
998# endif
999}
1000
1001uptr SignalContext::GetAddress() const {
1002 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1003 if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
1004 return exception_record->ExceptionInformation[1];
1005 return (uptr)exception_record->ExceptionAddress;
1006}
1007
1008bool SignalContext::IsMemoryAccess() const {
1009 return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
1010 EXCEPTION_ACCESS_VIOLATION;
1011}
1012
1013bool SignalContext::IsTrueFaultingAddress() const { return true; }
1014
1015SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1016 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1017
1018 // The write flag is only available for access violation exceptions.
1019 if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
1020 return SignalContext::Unknown;
1021
1022 // The contents of this array are documented at
1023 // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
1024 // The first element indicates read as 0, write as 1, or execute as 8. The
1025 // second element is the faulting address.
1026 switch (exception_record->ExceptionInformation[0]) {
1027 case 0:
1028 return SignalContext::Read;
1029 case 1:
1030 return SignalContext::Write;
1031 case 8:
1032 return SignalContext::Unknown;
1033 }
1034 return SignalContext::Unknown;
1035}
1036
1037void SignalContext::DumpAllRegisters(void *context) {
1038 // FIXME: Implement this.
1039}
1040
1041int SignalContext::GetType() const {
1042 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1043}
1044
1045const char *SignalContext::Describe() const {
1046 unsigned code = GetType();
1047 // Get the string description of the exception if this is a known deadly
1048 // exception.
1049 switch (code) {
1050 case EXCEPTION_ACCESS_VIOLATION:
1051 return "access-violation";
1052 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1053 return "array-bounds-exceeded";
1054 case EXCEPTION_STACK_OVERFLOW:
1055 return "stack-overflow";
1056 case EXCEPTION_DATATYPE_MISALIGNMENT:
1057 return "datatype-misalignment";
1058 case EXCEPTION_IN_PAGE_ERROR:
1059 return "in-page-error";
1060 case EXCEPTION_ILLEGAL_INSTRUCTION:
1061 return "illegal-instruction";
1062 case EXCEPTION_PRIV_INSTRUCTION:
1063 return "priv-instruction";
1064 case EXCEPTION_BREAKPOINT:
1065 return "breakpoint";
1066 case EXCEPTION_FLT_DENORMAL_OPERAND:
1067 return "flt-denormal-operand";
1068 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1069 return "flt-divide-by-zero";
1070 case EXCEPTION_FLT_INEXACT_RESULT:
1071 return "flt-inexact-result";
1072 case EXCEPTION_FLT_INVALID_OPERATION:
1073 return "flt-invalid-operation";
1074 case EXCEPTION_FLT_OVERFLOW:
1075 return "flt-overflow";
1076 case EXCEPTION_FLT_STACK_CHECK:
1077 return "flt-stack-check";
1078 case EXCEPTION_FLT_UNDERFLOW:
1079 return "flt-underflow";
1080 case EXCEPTION_INT_DIVIDE_BY_ZERO:
1081 return "int-divide-by-zero";
1082 case EXCEPTION_INT_OVERFLOW:
1083 return "int-overflow";
1084 }
1085 return "unknown exception";
1086}
1087
1088uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1089 if (buf_len == 0)
1090 return 0;
1091
1092 // Get the UTF-16 path and convert to UTF-8.
1093 InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1094 int binname_utf16_len =
1095 GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1096 if (binname_utf16_len == 0) {
1097 buf[0] = '\0';
1098 return 0;
1099 }
1100 int binary_name_len =
1101 ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1102 buf, buf_len, NULL, NULL);
1103 if ((unsigned)binary_name_len == buf_len)
1104 --binary_name_len;
1105 buf[binary_name_len] = '\0';
1106 return binary_name_len;
1107}
1108
1109uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1110 return ReadBinaryName(buf, buf_len);
1111}
1112
1113void CheckVMASize() {
1114 // Do nothing.
1115}
1116
1117void InitializePlatformEarly() {
1118 // Do nothing.
1119}
1120
1121void CheckASLR() {
1122 // Do nothing
1123}
1124
1125void CheckMPROTECT() {
1126 // Do nothing
1127}
1128
1129char **GetArgv() {
1130 // FIXME: Actually implement this function.
1131 return 0;
1132}
1133
1134char **GetEnviron() {
1135 // FIXME: Actually implement this function.
1136 return 0;
1137}
1138
1139pid_t StartSubprocess(const char *program, const char *const argv[],
1140 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1141 fd_t stderr_fd) {
1142 // FIXME: implement on this platform
1143 // Should be implemented based on
1144 // SymbolizerProcess::StarAtSymbolizerSubprocess
1145 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1146 return -1;
1147}
1148
1149bool IsProcessRunning(pid_t pid) {
1150 // FIXME: implement on this platform.
1151 return false;
1152}
1153
1154int WaitForProcess(pid_t pid) { return -1; }
1155
1156// FIXME implement on this platform.
1157void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1158
1159void CheckNoDeepBind(const char *filename, int flag) {
1160 // Do nothing.
1161}
1162
1163// FIXME: implement on this platform.
1164bool GetRandom(void *buffer, uptr length, bool blocking) {
1165 UNIMPLEMENTED();
1166}
1167
1168u32 GetNumberOfCPUs() {
1169 SYSTEM_INFO sysinfo = {};
1170 GetNativeSystemInfo(&sysinfo);
1171 return sysinfo.dwNumberOfProcessors;
1172}
1173
1174#if SANITIZER_WIN_TRACE
1175// TODO(mcgov): Rename this project-wide to PlatformLogInit
1176void AndroidLogInit(void) {
1177 HRESULT hr = TraceLoggingRegister(g_asan_provider);
1178 if (!SUCCEEDED(hr))
1179 return;
1180}
1181
1182void SetAbortMessage(const char *) {}
1183
1184void LogFullErrorReport(const char *buffer) {
1185 if (common_flags()->log_to_syslog) {
1186 InternalMmapVector<wchar_t> filename;
1187 DWORD filename_length = 0;
1188 do {
1189 filename.resize(filename.size() + 0x100);
1190 filename_length =
1191 GetModuleFileNameW(NULL, filename.begin(), filename.size());
1192 } while (filename_length >= filename.size());
1193 TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1194 TraceLoggingValue(filename.begin(), "ExecutableName"),
1195 TraceLoggingValue(buffer, "AsanReportContents"));
1196 }
1197}
1198#endif // SANITIZER_WIN_TRACE
1199
1200void InitializePlatformCommonFlags(CommonFlags *cf) {}
1201
1202} // namespace __sanitizer
1203
1204#endif // _WIN32
1205

source code of compiler-rt/lib/sanitizer_common/sanitizer_win.cpp