1 | //===-- timing.h ------------------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef SCUDO_TIMING_H_ |
10 | #define SCUDO_TIMING_H_ |
11 | |
12 | #include "common.h" |
13 | #include "mutex.h" |
14 | #include "string_utils.h" |
15 | #include "thread_annotations.h" |
16 | |
17 | #include <inttypes.h> |
18 | #include <string.h> |
19 | |
20 | namespace scudo { |
21 | |
22 | class TimingManager; |
23 | |
24 | // A simple timer for evaluating execution time of code snippets. It can be used |
25 | // along with TimingManager or standalone. |
26 | class Timer { |
27 | public: |
28 | // The use of Timer without binding to a TimingManager is supposed to do the |
29 | // timer logging manually. Otherwise, TimingManager will do the logging stuff |
30 | // for you. |
31 | Timer() = default; |
32 | Timer(Timer &&Other) |
33 | : StartTime(0), AccTime(Other.AccTime), Manager(Other.Manager), |
34 | HandleId(Other.HandleId) { |
35 | Other.Manager = nullptr; |
36 | } |
37 | |
38 | Timer(const Timer &) = delete; |
39 | |
40 | ~Timer(); |
41 | |
42 | void start() { |
43 | CHECK_EQ(StartTime, 0U); |
44 | StartTime = getMonotonicTime(); |
45 | } |
46 | void stop() { |
47 | AccTime += getMonotonicTime() - StartTime; |
48 | StartTime = 0; |
49 | } |
50 | u64 getAccumulatedTime() const { return AccTime; } |
51 | |
52 | // Unset the bound TimingManager so that we don't report the data back. This |
53 | // is useful if we only want to track subset of certain scope events. |
54 | void ignore() { |
55 | StartTime = 0; |
56 | AccTime = 0; |
57 | Manager = nullptr; |
58 | } |
59 | |
60 | protected: |
61 | friend class TimingManager; |
62 | Timer(TimingManager &Manager, u32 HandleId) |
63 | : Manager(&Manager), HandleId(HandleId) {} |
64 | |
65 | u64 StartTime = 0; |
66 | u64 AccTime = 0; |
67 | TimingManager *Manager = nullptr; |
68 | u32 HandleId; |
69 | }; |
70 | |
71 | // A RAII-style wrapper for easy scope execution measurement. Note that in order |
72 | // not to take additional space for the message like `Name`. It only works with |
73 | // TimingManager. |
74 | class ScopedTimer : public Timer { |
75 | public: |
76 | ScopedTimer(TimingManager &Manager, const char *Name); |
77 | ScopedTimer(TimingManager &Manager, const Timer &Nest, const char *Name); |
78 | ~ScopedTimer() { stop(); } |
79 | }; |
80 | |
81 | // In Scudo, the execution time of single run of code snippets may not be |
82 | // useful, we are more interested in the average time from several runs. |
83 | // TimingManager lets the registered timer report their data and reports the |
84 | // average execution time for each timer periodically. |
85 | class TimingManager { |
86 | public: |
87 | TimingManager(u32 PrintingInterval = DefaultPrintingInterval) |
88 | : PrintingInterval(PrintingInterval) {} |
89 | ~TimingManager() { |
90 | if (NumAllocatedTimers != 0) |
91 | printAll(); |
92 | } |
93 | |
94 | Timer getOrCreateTimer(const char *Name) EXCLUDES(Mutex) { |
95 | ScopedLock L(Mutex); |
96 | |
97 | CHECK_LT(strlen(Name), MaxLenOfTimerName); |
98 | for (u32 I = 0; I < NumAllocatedTimers; ++I) { |
99 | if (strncmp(s1: Name, s2: Timers[I].Name, n: MaxLenOfTimerName) == 0) |
100 | return Timer(*this, I); |
101 | } |
102 | |
103 | CHECK_LT(NumAllocatedTimers, MaxNumberOfTimers); |
104 | strncpy(dest: Timers[NumAllocatedTimers].Name, src: Name, n: MaxLenOfTimerName); |
105 | TimerRecords[NumAllocatedTimers].AccumulatedTime = 0; |
106 | TimerRecords[NumAllocatedTimers].Occurrence = 0; |
107 | return Timer(*this, NumAllocatedTimers++); |
108 | } |
109 | |
110 | // Add a sub-Timer associated with another Timer. This is used when we want to |
111 | // detail the execution time in the scope of a Timer. |
112 | // For example, |
113 | // void Foo() { |
114 | // // T1 records the time spent in both first and second tasks. |
115 | // ScopedTimer T1(getTimingManager(), "Task1"); |
116 | // { |
117 | // // T2 records the time spent in first task |
118 | // ScopedTimer T2(getTimingManager, T1, "Task2"); |
119 | // // Do first task. |
120 | // } |
121 | // // Do second task. |
122 | // } |
123 | // |
124 | // The report will show proper indents to indicate the nested relation like, |
125 | // -- Average Operation Time -- -- Name (# of Calls) -- |
126 | // 10.0(ns) Task1 (1) |
127 | // 5.0(ns) Task2 (1) |
128 | Timer nest(const Timer &T, const char *Name) EXCLUDES(Mutex) { |
129 | CHECK_EQ(T.Manager, this); |
130 | Timer Nesting = getOrCreateTimer(Name); |
131 | |
132 | ScopedLock L(Mutex); |
133 | CHECK_NE(Nesting.HandleId, T.HandleId); |
134 | Timers[Nesting.HandleId].Nesting = T.HandleId; |
135 | return Nesting; |
136 | } |
137 | |
138 | void report(const Timer &T) EXCLUDES(Mutex) { |
139 | ScopedLock L(Mutex); |
140 | |
141 | const u32 HandleId = T.HandleId; |
142 | CHECK_LT(HandleId, MaxNumberOfTimers); |
143 | TimerRecords[HandleId].AccumulatedTime += T.getAccumulatedTime(); |
144 | ++TimerRecords[HandleId].Occurrence; |
145 | ++NumEventsReported; |
146 | if (NumEventsReported % PrintingInterval == 0) |
147 | printAllImpl(); |
148 | } |
149 | |
150 | void printAll() EXCLUDES(Mutex) { |
151 | ScopedLock L(Mutex); |
152 | printAllImpl(); |
153 | } |
154 | |
155 | private: |
156 | void printAllImpl() REQUIRES(Mutex) { |
157 | static char [] = "-- Name (# of Calls) --" ; |
158 | static char [] = "-- Average Operation Time --" ; |
159 | ScopedString Str; |
160 | Str.append(Format: "%-15s %-15s\n" , AvgHeader, NameHeader); |
161 | |
162 | for (u32 I = 0; I < NumAllocatedTimers; ++I) { |
163 | if (Timers[I].Nesting != MaxNumberOfTimers) |
164 | continue; |
165 | printImpl(Str, HandleId: I); |
166 | } |
167 | |
168 | Str.output(); |
169 | } |
170 | |
171 | void printImpl(ScopedString &Str, const u32 HandleId, |
172 | const u32 = 0) REQUIRES(Mutex) { |
173 | const u64 AccumulatedTime = TimerRecords[HandleId].AccumulatedTime; |
174 | const u64 Occurrence = TimerRecords[HandleId].Occurrence; |
175 | const u64 Integral = Occurrence == 0 ? 0 : AccumulatedTime / Occurrence; |
176 | // Only keep single digit of fraction is enough and it enables easier layout |
177 | // maintenance. |
178 | const u64 Fraction = |
179 | Occurrence == 0 ? 0 |
180 | : ((AccumulatedTime % Occurrence) * 10) / Occurrence; |
181 | |
182 | Str.append(Format: "%14" PRId64 ".%" PRId64 "(ns) %-11s" , Integral, Fraction, " " ); |
183 | |
184 | for (u32 I = 0; I < ExtraIndent; ++I) |
185 | Str.append(Format: "%s" , " " ); |
186 | Str.append(Format: "%s (%" PRId64 ")\n" , Timers[HandleId].Name, Occurrence); |
187 | |
188 | for (u32 I = 0; I < NumAllocatedTimers; ++I) |
189 | if (Timers[I].Nesting == HandleId) |
190 | printImpl(Str, HandleId: I, ExtraIndent: ExtraIndent + 1); |
191 | } |
192 | |
193 | // Instead of maintaining pages for timer registration, a static buffer is |
194 | // sufficient for most use cases in Scudo. |
195 | static constexpr u32 MaxNumberOfTimers = 50; |
196 | static constexpr u32 MaxLenOfTimerName = 50; |
197 | static constexpr u32 DefaultPrintingInterval = 100; |
198 | |
199 | struct Record { |
200 | u64 AccumulatedTime = 0; |
201 | u64 Occurrence = 0; |
202 | }; |
203 | |
204 | struct TimerInfo { |
205 | char Name[MaxLenOfTimerName + 1]; |
206 | u32 Nesting = MaxNumberOfTimers; |
207 | }; |
208 | |
209 | HybridMutex Mutex; |
210 | // The frequency of proactively dumping the timer statistics. For example, the |
211 | // default setting is to dump the statistics every 100 reported events. |
212 | u32 PrintingInterval GUARDED_BY(Mutex); |
213 | u64 NumEventsReported GUARDED_BY(Mutex) = 0; |
214 | u32 NumAllocatedTimers GUARDED_BY(Mutex) = 0; |
215 | TimerInfo Timers[MaxNumberOfTimers] GUARDED_BY(Mutex); |
216 | Record TimerRecords[MaxNumberOfTimers] GUARDED_BY(Mutex); |
217 | }; |
218 | |
219 | } // namespace scudo |
220 | |
221 | #endif // SCUDO_TIMING_H_ |
222 | |