1//===-- tsan_interceptors_posix.cpp ---------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11// FIXME: move as many interceptors as possible into
12// sanitizer_common/sanitizer_common_interceptors.inc
13//===----------------------------------------------------------------------===//
14
15#include "sanitizer_common/sanitizer_atomic.h"
16#include "sanitizer_common/sanitizer_errno.h"
17#include "sanitizer_common/sanitizer_glibc_version.h"
18#include "sanitizer_common/sanitizer_libc.h"
19#include "sanitizer_common/sanitizer_linux.h"
20#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
21#include "sanitizer_common/sanitizer_platform_limits_posix.h"
22#include "sanitizer_common/sanitizer_placement_new.h"
23#include "sanitizer_common/sanitizer_posix.h"
24#include "sanitizer_common/sanitizer_stacktrace.h"
25#include "sanitizer_common/sanitizer_tls_get_addr.h"
26#include "interception/interception.h"
27#include "tsan_interceptors.h"
28#include "tsan_interface.h"
29#include "tsan_platform.h"
30#include "tsan_suppressions.h"
31#include "tsan_rtl.h"
32#include "tsan_mman.h"
33#include "tsan_fd.h"
34
35#include <stdarg.h>
36
37using namespace __tsan;
38
39DECLARE_REAL(void *, memcpy, void *to, const void *from, SIZE_T size)
40DECLARE_REAL(void *, memset, void *block, int c, SIZE_T size)
41
42#if SANITIZER_FREEBSD || SANITIZER_APPLE
43#define stdout __stdoutp
44#define stderr __stderrp
45#endif
46
47#if SANITIZER_NETBSD
48#define dirfd(dirp) (*(int *)(dirp))
49#define fileno_unlocked(fp) \
50 (((__sanitizer_FILE *)fp)->_file == -1 \
51 ? -1 \
52 : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
53
54#define stdout ((__sanitizer_FILE*)&__sF[1])
55#define stderr ((__sanitizer_FILE*)&__sF[2])
56
57#define nanosleep __nanosleep50
58#define vfork __vfork14
59#endif
60
61#ifdef __mips__
62const int kSigCount = 129;
63#else
64const int kSigCount = 65;
65#endif
66
67#ifdef __mips__
68struct ucontext_t {
69 u64 opaque[768 / sizeof(u64) + 1];
70};
71#else
72struct ucontext_t {
73 // The size is determined by looking at sizeof of real ucontext_t on linux.
74 u64 opaque[936 / sizeof(u64) + 1];
75};
76#endif
77
78#if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \
79 defined(__s390x__)
80#define PTHREAD_ABI_BASE "GLIBC_2.3.2"
81#elif defined(__aarch64__) || SANITIZER_PPC64V2
82#define PTHREAD_ABI_BASE "GLIBC_2.17"
83#elif SANITIZER_LOONGARCH64
84#define PTHREAD_ABI_BASE "GLIBC_2.36"
85#elif SANITIZER_RISCV64
86# define PTHREAD_ABI_BASE "GLIBC_2.27"
87#endif
88
89extern "C" int pthread_attr_init(void *attr);
90extern "C" int pthread_attr_destroy(void *attr);
91DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
92extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
93extern "C" int pthread_atfork(void (*prepare)(void), void (*parent)(void),
94 void (*child)(void));
95extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
96extern "C" int pthread_setspecific(unsigned key, const void *v);
97DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
98DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
99DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
100DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
101extern "C" int pthread_equal(void *t1, void *t2);
102extern "C" void *pthread_self();
103extern "C" void _exit(int status);
104#if !SANITIZER_NETBSD
105extern "C" int fileno_unlocked(void *stream);
106extern "C" int dirfd(void *dirp);
107#endif
108#if SANITIZER_NETBSD
109extern __sanitizer_FILE __sF[];
110#else
111extern __sanitizer_FILE *stdout, *stderr;
112#endif
113#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
114const int PTHREAD_MUTEX_RECURSIVE = 1;
115const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
116#else
117const int PTHREAD_MUTEX_RECURSIVE = 2;
118const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
119#endif
120#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
121const int EPOLL_CTL_ADD = 1;
122#endif
123const int SIGILL = 4;
124const int SIGTRAP = 5;
125const int SIGABRT = 6;
126const int SIGFPE = 8;
127const int SIGSEGV = 11;
128const int SIGPIPE = 13;
129const int SIGTERM = 15;
130#if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
131const int SIGBUS = 10;
132const int SIGSYS = 12;
133#else
134const int SIGBUS = 7;
135const int SIGSYS = 31;
136#endif
137#if SANITIZER_HAS_SIGINFO
138const int SI_TIMER = -2;
139#endif
140void *const MAP_FAILED = (void*)-1;
141#if SANITIZER_NETBSD
142const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
143#elif !SANITIZER_APPLE
144const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
145#endif
146const int MAP_FIXED = 0x10;
147typedef long long_t;
148typedef __sanitizer::u16 mode_t;
149
150// From /usr/include/unistd.h
151# define F_ULOCK 0 /* Unlock a previously locked region. */
152# define F_LOCK 1 /* Lock a region for exclusive use. */
153# define F_TLOCK 2 /* Test and lock a region for exclusive use. */
154# define F_TEST 3 /* Test a region for other processes locks. */
155
156#if SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
157const int SA_SIGINFO = 0x40;
158const int SIG_SETMASK = 3;
159#elif defined(__mips__)
160const int SA_SIGINFO = 8;
161const int SIG_SETMASK = 3;
162#else
163const int SA_SIGINFO = 4;
164const int SIG_SETMASK = 2;
165#endif
166
167namespace __tsan {
168struct SignalDesc {
169 bool armed;
170 __sanitizer_siginfo siginfo;
171 ucontext_t ctx;
172};
173
174struct ThreadSignalContext {
175 int int_signal_send;
176 SignalDesc pending_signals[kSigCount];
177 // emptyset and oldset are too big for stack.
178 __sanitizer_sigset_t emptyset;
179 __sanitizer_sigset_t oldset;
180};
181
182void EnterBlockingFunc(ThreadState *thr) {
183 for (;;) {
184 // The order is important to not delay a signal infinitely if it's
185 // delivered right before we set in_blocking_func. Note: we can't call
186 // ProcessPendingSignals when in_blocking_func is set, or we can handle
187 // a signal synchronously when we are already handling a signal.
188 atomic_store(a: &thr->in_blocking_func, v: 1, mo: memory_order_relaxed);
189 if (atomic_load(a: &thr->pending_signals, mo: memory_order_relaxed) == 0)
190 break;
191 atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed);
192 ProcessPendingSignals(thr);
193 }
194}
195
196// The sole reason tsan wraps atexit callbacks is to establish synchronization
197// between callback setup and callback execution.
198struct AtExitCtx {
199 void (*f)();
200 void *arg;
201 uptr pc;
202};
203
204// InterceptorContext holds all global data required for interceptors.
205// It's explicitly constructed in InitializeInterceptors with placement new
206// and is never destroyed. This allows usage of members with non-trivial
207// constructors and destructors.
208struct InterceptorContext {
209 // The object is 64-byte aligned, because we want hot data to be located
210 // in a single cache line if possible (it's accessed in every interceptor).
211 ALIGNED(64) LibIgnore libignore;
212 __sanitizer_sigaction sigactions[kSigCount];
213#if !SANITIZER_APPLE && !SANITIZER_NETBSD
214 unsigned finalize_key;
215#endif
216
217 Mutex atexit_mu;
218 Vector<struct AtExitCtx *> AtExitStack;
219
220 InterceptorContext() : libignore(LINKER_INITIALIZED), atexit_mu(MutexTypeAtExit), AtExitStack() {}
221};
222
223static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
224InterceptorContext *interceptor_ctx() {
225 return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
226}
227
228LibIgnore *libignore() {
229 return &interceptor_ctx()->libignore;
230}
231
232void InitializeLibIgnore() {
233 const SuppressionContext &supp = *Suppressions();
234 const uptr n = supp.SuppressionCount();
235 for (uptr i = 0; i < n; i++) {
236 const Suppression *s = supp.SuppressionAt(i);
237 if (0 == internal_strcmp(s1: s->type, s2: kSuppressionLib))
238 libignore()->AddIgnoredLibrary(name_templ: s->templ);
239 }
240 if (flags()->ignore_noninstrumented_modules)
241 libignore()->IgnoreNoninstrumentedModules(enable: true);
242 libignore()->OnLibraryLoaded(name: 0);
243}
244
245// The following two hooks can be used by for cooperative scheduling when
246// locking.
247#ifdef TSAN_EXTERNAL_HOOKS
248void OnPotentiallyBlockingRegionBegin();
249void OnPotentiallyBlockingRegionEnd();
250#else
251SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
252SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
253#endif
254
255} // namespace __tsan
256
257static ThreadSignalContext *SigCtx(ThreadState *thr) {
258 // This function may be called reentrantly if it is interrupted by a signal
259 // handler. Use CAS to handle the race.
260 uptr ctx = atomic_load(a: &thr->signal_ctx, mo: memory_order_relaxed);
261 if (ctx == 0 && !thr->is_dead) {
262 uptr pctx =
263 (uptr)MmapOrDie(size: sizeof(ThreadSignalContext), mem_type: "ThreadSignalContext");
264 MemoryResetRange(thr, pc: (uptr)&SigCtx, addr: pctx, size: sizeof(ThreadSignalContext));
265 if (atomic_compare_exchange_strong(a: &thr->signal_ctx, cmp: &ctx, xchg: pctx,
266 mo: memory_order_relaxed)) {
267 ctx = pctx;
268 } else {
269 UnmapOrDie(addr: (ThreadSignalContext *)pctx, size: sizeof(ThreadSignalContext));
270 }
271 }
272 return (ThreadSignalContext *)ctx;
273}
274
275ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
276 uptr pc)
277 : thr_(thr) {
278 LazyInitialize(thr);
279 if (UNLIKELY(atomic_load(&thr->in_blocking_func, memory_order_relaxed))) {
280 // pthread_join is marked as blocking, but it's also known to call other
281 // intercepted functions (mmap, free). If we don't reset in_blocking_func
282 // we can get deadlocks and memory corruptions if we deliver a synchronous
283 // signal inside of an mmap/free interceptor.
284 // So reset it and restore it back in the destructor.
285 // See https://github.com/google/sanitizers/issues/1540
286 atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed);
287 in_blocking_func_ = true;
288 }
289 if (!thr_->is_inited) return;
290 if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
291 DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
292 ignoring_ =
293 !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
294 libignore()->IsIgnored(pc, pc_in_ignored_lib: &in_ignored_lib_));
295 EnableIgnores();
296}
297
298ScopedInterceptor::~ScopedInterceptor() {
299 if (!thr_->is_inited) return;
300 DisableIgnores();
301 if (UNLIKELY(in_blocking_func_))
302 EnterBlockingFunc(thr: thr_);
303 if (!thr_->ignore_interceptors) {
304 ProcessPendingSignals(thr: thr_);
305 FuncExit(thr: thr_);
306 CheckedMutex::CheckNoLocks();
307 }
308}
309
310NOINLINE
311void ScopedInterceptor::EnableIgnoresImpl() {
312 ThreadIgnoreBegin(thr: thr_, pc: 0);
313 if (flags()->ignore_noninstrumented_modules)
314 thr_->suppress_reports++;
315 if (in_ignored_lib_) {
316 DCHECK(!thr_->in_ignored_lib);
317 thr_->in_ignored_lib = true;
318 }
319}
320
321NOINLINE
322void ScopedInterceptor::DisableIgnoresImpl() {
323 ThreadIgnoreEnd(thr: thr_);
324 if (flags()->ignore_noninstrumented_modules)
325 thr_->suppress_reports--;
326 if (in_ignored_lib_) {
327 DCHECK(thr_->in_ignored_lib);
328 thr_->in_ignored_lib = false;
329 }
330}
331
332#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
333#if SANITIZER_FREEBSD || SANITIZER_NETBSD
334# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
335#else
336# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
337#endif
338#if SANITIZER_FREEBSD
339# define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \
340 INTERCEPT_FUNCTION(_pthread_##func)
341#else
342# define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func)
343#endif
344#if SANITIZER_NETBSD
345# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
346 INTERCEPT_FUNCTION(__libc_##func)
347# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
348 INTERCEPT_FUNCTION(__libc_thr_##func)
349#else
350# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
351# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
352#endif
353
354#define READ_STRING_OF_LEN(thr, pc, s, len, n) \
355 MemoryAccessRange((thr), (pc), (uptr)(s), \
356 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
357
358#define READ_STRING(thr, pc, s, n) \
359 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
360
361#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
362
363struct BlockingCall {
364 explicit BlockingCall(ThreadState *thr)
365 : thr(thr) {
366 EnterBlockingFunc(thr);
367 // When we are in a "blocking call", we process signals asynchronously
368 // (right when they arrive). In this context we do not expect to be
369 // executing any user/runtime code. The known interceptor sequence when
370 // this is not true is: pthread_join -> munmap(stack). It's fine
371 // to ignore munmap in this case -- we handle stack shadow separately.
372 thr->ignore_interceptors++;
373 }
374
375 ~BlockingCall() {
376 thr->ignore_interceptors--;
377 atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed);
378 }
379
380 ThreadState *thr;
381};
382
383TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
384 SCOPED_TSAN_INTERCEPTOR(sleep, sec);
385 unsigned res = BLOCK_REAL(sleep)(sec);
386 AfterSleep(thr, pc);
387 return res;
388}
389
390TSAN_INTERCEPTOR(int, usleep, long_t usec) {
391 SCOPED_TSAN_INTERCEPTOR(usleep, usec);
392 int res = BLOCK_REAL(usleep)(usec);
393 AfterSleep(thr, pc);
394 return res;
395}
396
397TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
398 SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
399 int res = BLOCK_REAL(nanosleep)(req, rem);
400 AfterSleep(thr, pc);
401 return res;
402}
403
404TSAN_INTERCEPTOR(int, pause, int fake) {
405 SCOPED_TSAN_INTERCEPTOR(pause, fake);
406 return BLOCK_REAL(pause)(fake);
407}
408
409// Note: we specifically call the function in such strange way
410// with "installed_at" because in reports it will appear between
411// callback frames and the frame that installed the callback.
412static void at_exit_callback_installed_at() {
413 AtExitCtx *ctx;
414 {
415 // Ensure thread-safety.
416 Lock l(&interceptor_ctx()->atexit_mu);
417
418 // Pop AtExitCtx from the top of the stack of callback functions
419 uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
420 ctx = interceptor_ctx()->AtExitStack[element];
421 interceptor_ctx()->AtExitStack.PopBack();
422 }
423
424 ThreadState *thr = cur_thread();
425 Acquire(thr, pc: ctx->pc, addr: (uptr)ctx);
426 FuncEntry(thr, pc: ctx->pc);
427 ((void(*)())ctx->f)();
428 FuncExit(thr);
429 Free(p&: ctx);
430}
431
432static void cxa_at_exit_callback_installed_at(void *arg) {
433 ThreadState *thr = cur_thread();
434 AtExitCtx *ctx = (AtExitCtx*)arg;
435 Acquire(thr, pc: ctx->pc, addr: (uptr)arg);
436 FuncEntry(thr, pc: ctx->pc);
437 ((void(*)(void *arg))ctx->f)(ctx->arg);
438 FuncExit(thr);
439 Free(p&: ctx);
440}
441
442static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
443 void *arg, void *dso);
444
445#if !SANITIZER_ANDROID
446TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
447 if (in_symbolizer())
448 return 0;
449 // We want to setup the atexit callback even if we are in ignored lib
450 // or after fork.
451 SCOPED_INTERCEPTOR_RAW(atexit, f);
452 return setup_at_exit_wrapper(thr, GET_CALLER_PC(), f: (void (*)())f, arg: 0, dso: 0);
453}
454#endif
455
456TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
457 if (in_symbolizer())
458 return 0;
459 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
460 return setup_at_exit_wrapper(thr, GET_CALLER_PC(), f: (void (*)())f, arg, dso);
461}
462
463static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
464 void *arg, void *dso) {
465 auto *ctx = New<AtExitCtx>();
466 ctx->f = f;
467 ctx->arg = arg;
468 ctx->pc = pc;
469 Release(thr, pc, addr: (uptr)ctx);
470 // Memory allocation in __cxa_atexit will race with free during exit,
471 // because we do not see synchronization around atexit callback list.
472 ThreadIgnoreBegin(thr, pc);
473 int res;
474 if (!dso) {
475 // NetBSD does not preserve the 2nd argument if dso is equal to 0
476 // Store ctx in a local stack-like structure
477
478 // Ensure thread-safety.
479 Lock l(&interceptor_ctx()->atexit_mu);
480 // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail
481 // due to atexit_mu held on exit from the calloc interceptor.
482 ScopedIgnoreInterceptors ignore;
483
484 res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_callback_installed_at,
485 0, 0);
486 // Push AtExitCtx on the top of the stack of callback functions
487 if (!res) {
488 interceptor_ctx()->AtExitStack.PushBack(v: ctx);
489 }
490 } else {
491 res = REAL(__cxa_atexit)(cxa_at_exit_callback_installed_at, ctx, dso);
492 }
493 ThreadIgnoreEnd(thr);
494 return res;
495}
496
497#if !SANITIZER_APPLE && !SANITIZER_NETBSD
498static void on_exit_callback_installed_at(int status, void *arg) {
499 ThreadState *thr = cur_thread();
500 AtExitCtx *ctx = (AtExitCtx*)arg;
501 Acquire(thr, pc: ctx->pc, addr: (uptr)arg);
502 FuncEntry(thr, pc: ctx->pc);
503 ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
504 FuncExit(thr);
505 Free(p&: ctx);
506}
507
508TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
509 if (in_symbolizer())
510 return 0;
511 SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
512 auto *ctx = New<AtExitCtx>();
513 ctx->f = (void(*)())f;
514 ctx->arg = arg;
515 ctx->pc = GET_CALLER_PC();
516 Release(thr, pc, addr: (uptr)ctx);
517 // Memory allocation in __cxa_atexit will race with free during exit,
518 // because we do not see synchronization around atexit callback list.
519 ThreadIgnoreBegin(thr, pc);
520 int res = REAL(on_exit)(on_exit_callback_installed_at, ctx);
521 ThreadIgnoreEnd(thr);
522 return res;
523}
524#define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
525#else
526#define TSAN_MAYBE_INTERCEPT_ON_EXIT
527#endif
528
529// Cleanup old bufs.
530static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
531 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
532 JmpBuf *buf = &thr->jmp_bufs[i];
533 if (buf->sp <= sp) {
534 uptr sz = thr->jmp_bufs.Size();
535 internal_memcpy(dest: buf, src: &thr->jmp_bufs[sz - 1], n: sizeof(*buf));
536 thr->jmp_bufs.PopBack();
537 i--;
538 }
539 }
540}
541
542static void SetJmp(ThreadState *thr, uptr sp) {
543 if (!thr->is_inited) // called from libc guts during bootstrap
544 return;
545 // Cleanup old bufs.
546 JmpBufGarbageCollect(thr, sp);
547 // Remember the buf.
548 JmpBuf *buf = thr->jmp_bufs.PushBack();
549 buf->sp = sp;
550 buf->shadow_stack_pos = thr->shadow_stack_pos;
551 ThreadSignalContext *sctx = SigCtx(thr);
552 buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
553 buf->in_blocking_func = atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed);
554 buf->in_signal_handler = atomic_load(a: &thr->in_signal_handler,
555 mo: memory_order_relaxed);
556}
557
558static void LongJmp(ThreadState *thr, uptr *env) {
559 uptr sp = ExtractLongJmpSp(env);
560 // Find the saved buf with matching sp.
561 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
562 JmpBuf *buf = &thr->jmp_bufs[i];
563 if (buf->sp == sp) {
564 CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
565 // Unwind the stack.
566 while (thr->shadow_stack_pos > buf->shadow_stack_pos)
567 FuncExit(thr);
568 ThreadSignalContext *sctx = SigCtx(thr);
569 if (sctx)
570 sctx->int_signal_send = buf->int_signal_send;
571 atomic_store(a: &thr->in_blocking_func, v: buf->in_blocking_func,
572 mo: memory_order_relaxed);
573 atomic_store(a: &thr->in_signal_handler, v: buf->in_signal_handler,
574 mo: memory_order_relaxed);
575 JmpBufGarbageCollect(thr, sp: buf->sp - 1); // do not collect buf->sp
576 return;
577 }
578 }
579 Printf(format: "ThreadSanitizer: can't find longjmp buf\n");
580 CHECK(0);
581}
582
583// FIXME: put everything below into a common extern "C" block?
584extern "C" void __tsan_setjmp(uptr sp) { SetJmp(thr: cur_thread_init(), sp); }
585
586#if SANITIZER_APPLE
587TSAN_INTERCEPTOR(int, setjmp, void *env);
588TSAN_INTERCEPTOR(int, _setjmp, void *env);
589TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
590#else // SANITIZER_APPLE
591
592#if SANITIZER_NETBSD
593#define setjmp_symname __setjmp14
594#define sigsetjmp_symname __sigsetjmp14
595#else
596#define setjmp_symname setjmp
597#define sigsetjmp_symname sigsetjmp
598#endif
599
600DEFINE_REAL(int, setjmp_symname, void *env)
601DEFINE_REAL(int, _setjmp, void *env)
602DEFINE_REAL(int, sigsetjmp_symname, void *env)
603#if !SANITIZER_NETBSD
604DEFINE_REAL(int, __sigsetjmp, void *env)
605#endif
606
607// The real interceptor for setjmp is special, and implemented in pure asm. We
608// just need to initialize the REAL functions so that they can be used in asm.
609static void InitializeSetjmpInterceptors() {
610 // We can not use TSAN_INTERCEPT to get setjmp addr, because it does &setjmp and
611 // setjmp is not present in some versions of libc.
612 using __interception::InterceptFunction;
613 InterceptFunction(SANITIZER_STRINGIFY(setjmp_symname), ptr_to_real: (uptr*)&REAL(setjmp_symname), func: 0, trampoline: 0);
614 InterceptFunction(name: "_setjmp", ptr_to_real: (uptr*)&REAL(_setjmp), func: 0, trampoline: 0);
615 InterceptFunction(SANITIZER_STRINGIFY(sigsetjmp_symname), ptr_to_real: (uptr*)&REAL(sigsetjmp_symname), func: 0,
616 trampoline: 0);
617#if !SANITIZER_NETBSD
618 InterceptFunction(name: "__sigsetjmp", ptr_to_real: (uptr*)&REAL(__sigsetjmp), func: 0, trampoline: 0);
619#endif
620}
621#endif // SANITIZER_APPLE
622
623#if SANITIZER_NETBSD
624#define longjmp_symname __longjmp14
625#define siglongjmp_symname __siglongjmp14
626#else
627#define longjmp_symname longjmp
628#define siglongjmp_symname siglongjmp
629#endif
630
631TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
632 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
633 // bad things will happen. We will jump over ScopedInterceptor dtor and can
634 // leave thr->in_ignored_lib set.
635 {
636 SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
637 }
638 LongJmp(thr: cur_thread(), env);
639 REAL(longjmp_symname)(env, val);
640}
641
642TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
643 {
644 SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
645 }
646 LongJmp(thr: cur_thread(), env);
647 REAL(siglongjmp_symname)(env, val);
648}
649
650#if SANITIZER_NETBSD
651TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
652 {
653 SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
654 }
655 LongJmp(cur_thread(), env);
656 REAL(_longjmp)(env, val);
657}
658#endif
659
660#if !SANITIZER_APPLE
661TSAN_INTERCEPTOR(void*, malloc, uptr size) {
662 if (in_symbolizer())
663 return InternalAlloc(size);
664 void *p = 0;
665 {
666 SCOPED_INTERCEPTOR_RAW(malloc, size);
667 p = user_alloc(thr, pc, sz: size);
668 }
669 invoke_malloc_hook(ptr: p, size);
670 return p;
671}
672
673// In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept
674// __libc_memalign so that (1) we can detect races (2) free will not be called
675// on libc internally allocated blocks.
676TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
677 SCOPED_INTERCEPTOR_RAW(__libc_memalign, align, sz);
678 return user_memalign(thr, pc, align, sz);
679}
680
681TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
682 if (in_symbolizer())
683 return InternalCalloc(count: size, size: n);
684 void *p = 0;
685 {
686 SCOPED_INTERCEPTOR_RAW(calloc, size, n);
687 p = user_calloc(thr, pc, sz: size, n);
688 }
689 invoke_malloc_hook(ptr: p, size: n * size);
690 return p;
691}
692
693TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
694 if (in_symbolizer())
695 return InternalRealloc(p, size);
696 if (p)
697 invoke_free_hook(ptr: p);
698 {
699 SCOPED_INTERCEPTOR_RAW(realloc, p, size);
700 p = user_realloc(thr, pc, p, sz: size);
701 }
702 invoke_malloc_hook(ptr: p, size);
703 return p;
704}
705
706TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
707 if (in_symbolizer())
708 return InternalReallocArray(p, count: size, size: n);
709 if (p)
710 invoke_free_hook(ptr: p);
711 {
712 SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
713 p = user_reallocarray(thr, pc, p, sz: size, n);
714 }
715 invoke_malloc_hook(ptr: p, size);
716 return p;
717}
718
719TSAN_INTERCEPTOR(void, free, void *p) {
720 if (p == 0)
721 return;
722 if (in_symbolizer())
723 return InternalFree(p);
724 invoke_free_hook(ptr: p);
725 SCOPED_INTERCEPTOR_RAW(free, p);
726 user_free(thr, pc, p);
727}
728
729TSAN_INTERCEPTOR(void, cfree, void *p) {
730 if (p == 0)
731 return;
732 if (in_symbolizer())
733 return InternalFree(p);
734 invoke_free_hook(ptr: p);
735 SCOPED_INTERCEPTOR_RAW(cfree, p);
736 user_free(thr, pc, p);
737}
738
739TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
740 SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
741 return user_alloc_usable_size(p);
742}
743#endif
744
745TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
746 SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
747 uptr srclen = internal_strlen(s: src);
748 MemoryAccessRange(thr, pc, addr: (uptr)dst, size: srclen + 1, is_write: true);
749 MemoryAccessRange(thr, pc, addr: (uptr)src, size: srclen + 1, is_write: false);
750 return REAL(strcpy)(dst, src);
751}
752
753TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
754 SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
755 uptr srclen = internal_strnlen(s: src, maxlen: n);
756 MemoryAccessRange(thr, pc, addr: (uptr)dst, size: n, is_write: true);
757 MemoryAccessRange(thr, pc, addr: (uptr)src, size: min(a: srclen + 1, b: n), is_write: false);
758 return REAL(strncpy)(dst, src, n);
759}
760
761TSAN_INTERCEPTOR(char*, strdup, const char *str) {
762 SCOPED_TSAN_INTERCEPTOR(strdup, str);
763 // strdup will call malloc, so no instrumentation is required here.
764 return REAL(strdup)(str);
765}
766
767// Zero out addr if it points into shadow memory and was provided as a hint
768// only, i.e., MAP_FIXED is not set.
769static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
770 if (*addr) {
771 if (!IsAppMem(mem: (uptr)*addr) || !IsAppMem(mem: (uptr)*addr + sz - 1)) {
772 if (flags & MAP_FIXED) {
773 errno = errno_EINVAL;
774 return false;
775 } else {
776 *addr = 0;
777 }
778 }
779 }
780 return true;
781}
782
783template <class Mmap>
784static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
785 void *addr, SIZE_T sz, int prot, int flags,
786 int fd, OFF64_T off) {
787 if (!fix_mmap_addr(addr: &addr, sz, flags)) return MAP_FAILED;
788 void *res = real_mmap(addr, sz, prot, flags, fd, off);
789 if (res != MAP_FAILED) {
790 if (!IsAppMem(mem: (uptr)res) || !IsAppMem(mem: (uptr)res + sz - 1)) {
791 Report(format: "ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n",
792 addr, (void*)sz, res);
793 Die();
794 }
795 if (fd > 0) FdAccess(thr, pc, fd);
796 MemoryRangeImitateWriteOrResetRange(thr, pc, addr: (uptr)res, size: sz);
797 }
798 return res;
799}
800
801template <class Munmap>
802static int munmap_interceptor(ThreadState *thr, uptr pc, Munmap real_munmap,
803 void *addr, SIZE_T sz) {
804 UnmapShadow(thr, addr: (uptr)addr, size: sz);
805 int res = real_munmap(addr, sz);
806 return res;
807}
808
809#if SANITIZER_LINUX
810TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
811 SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
812 return user_memalign(thr, pc, align, sz);
813}
814#define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
815#else
816#define TSAN_MAYBE_INTERCEPT_MEMALIGN
817#endif
818
819#if !SANITIZER_APPLE
820TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
821 if (in_symbolizer())
822 return InternalAlloc(size: sz, cache: nullptr, alignment: align);
823 SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
824 return user_aligned_alloc(thr, pc, align, sz);
825}
826
827TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
828 if (in_symbolizer())
829 return InternalAlloc(size: sz, cache: nullptr, alignment: GetPageSizeCached());
830 SCOPED_INTERCEPTOR_RAW(valloc, sz);
831 return user_valloc(thr, pc, sz);
832}
833#endif
834
835#if SANITIZER_LINUX
836TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
837 if (in_symbolizer()) {
838 uptr PageSize = GetPageSizeCached();
839 sz = sz ? RoundUpTo(size: sz, boundary: PageSize) : PageSize;
840 return InternalAlloc(size: sz, cache: nullptr, alignment: PageSize);
841 }
842 SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
843 return user_pvalloc(thr, pc, sz);
844}
845#define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
846#else
847#define TSAN_MAYBE_INTERCEPT_PVALLOC
848#endif
849
850#if !SANITIZER_APPLE
851TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
852 if (in_symbolizer()) {
853 void *p = InternalAlloc(size: sz, cache: nullptr, alignment: align);
854 if (!p)
855 return errno_ENOMEM;
856 *memptr = p;
857 return 0;
858 }
859 SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
860 return user_posix_memalign(thr, pc, memptr, align, sz);
861}
862#endif
863
864// Both __cxa_guard_acquire and pthread_once 0-initialize
865// the object initially. pthread_once does not have any
866// other ABI requirements. __cxa_guard_acquire assumes
867// that any non-0 value in the first byte means that
868// initialization is completed. Contents of the remaining
869// bytes are up to us.
870constexpr u32 kGuardInit = 0;
871constexpr u32 kGuardDone = 1;
872constexpr u32 kGuardRunning = 1 << 16;
873constexpr u32 kGuardWaiter = 1 << 17;
874
875static int guard_acquire(ThreadState *thr, uptr pc, atomic_uint32_t *g,
876 bool blocking_hooks = true) {
877 if (blocking_hooks)
878 OnPotentiallyBlockingRegionBegin();
879 auto on_exit = at_scope_exit(fn: [blocking_hooks] {
880 if (blocking_hooks)
881 OnPotentiallyBlockingRegionEnd();
882 });
883
884 for (;;) {
885 u32 cmp = atomic_load(a: g, mo: memory_order_acquire);
886 if (cmp == kGuardInit) {
887 if (atomic_compare_exchange_strong(a: g, cmp: &cmp, xchg: kGuardRunning,
888 mo: memory_order_relaxed))
889 return 1;
890 } else if (cmp == kGuardDone) {
891 if (!thr->in_ignored_lib)
892 Acquire(thr, pc, addr: (uptr)g);
893 return 0;
894 } else {
895 if ((cmp & kGuardWaiter) ||
896 atomic_compare_exchange_strong(a: g, cmp: &cmp, xchg: cmp | kGuardWaiter,
897 mo: memory_order_relaxed))
898 FutexWait(p: g, cmp: cmp | kGuardWaiter);
899 }
900 }
901}
902
903static void guard_release(ThreadState *thr, uptr pc, atomic_uint32_t *g,
904 u32 v) {
905 if (!thr->in_ignored_lib)
906 Release(thr, pc, addr: (uptr)g);
907 u32 old = atomic_exchange(a: g, v, mo: memory_order_release);
908 if (old & kGuardWaiter)
909 FutexWake(p: g, count: 1 << 30);
910}
911
912// __cxa_guard_acquire and friends need to be intercepted in a special way -
913// regular interceptors will break statically-linked libstdc++. Linux
914// interceptors are especially defined as weak functions (so that they don't
915// cause link errors when user defines them as well). So they silently
916// auto-disable themselves when such symbol is already present in the binary. If
917// we link libstdc++ statically, it will bring own __cxa_guard_acquire which
918// will silently replace our interceptor. That's why on Linux we simply export
919// these interceptors with INTERFACE_ATTRIBUTE.
920// On OS X, we don't support statically linking, so we just use a regular
921// interceptor.
922#if SANITIZER_APPLE
923#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
924#else
925#define STDCXX_INTERCEPTOR(rettype, name, ...) \
926 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
927#endif
928
929// Used in thread-safe function static initialization.
930STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
931 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
932 return guard_acquire(thr, pc, g);
933}
934
935STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
936 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
937 guard_release(thr, pc, g, v: kGuardDone);
938}
939
940STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
941 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
942 guard_release(thr, pc, g, v: kGuardInit);
943}
944
945namespace __tsan {
946void DestroyThreadState() {
947 ThreadState *thr = cur_thread();
948 Processor *proc = thr->proc();
949 ThreadFinish(thr);
950 ProcUnwire(proc, thr);
951 ProcDestroy(proc);
952 DTLS_Destroy();
953 cur_thread_finalize();
954}
955
956void PlatformCleanUpThreadState(ThreadState *thr) {
957 ThreadSignalContext *sctx = (ThreadSignalContext *)atomic_load(
958 a: &thr->signal_ctx, mo: memory_order_relaxed);
959 if (sctx) {
960 atomic_store(a: &thr->signal_ctx, v: 0, mo: memory_order_relaxed);
961 UnmapOrDie(addr: sctx, size: sizeof(*sctx));
962 }
963}
964} // namespace __tsan
965
966#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
967static void thread_finalize(void *v) {
968 uptr iter = (uptr)v;
969 if (iter > 1) {
970 if (pthread_setspecific(key: interceptor_ctx()->finalize_key,
971 v: (void*)(iter - 1))) {
972 Printf(format: "ThreadSanitizer: failed to set thread key\n");
973 Die();
974 }
975 return;
976 }
977 DestroyThreadState();
978}
979#endif
980
981
982struct ThreadParam {
983 void* (*callback)(void *arg);
984 void *param;
985 Tid tid;
986 Semaphore created;
987 Semaphore started;
988};
989
990extern "C" void *__tsan_thread_start_func(void *arg) {
991 ThreadParam *p = (ThreadParam*)arg;
992 void* (*callback)(void *arg) = p->callback;
993 void *param = p->param;
994 {
995 ThreadState *thr = cur_thread_init();
996 // Thread-local state is not initialized yet.
997 ScopedIgnoreInterceptors ignore;
998#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
999 ThreadIgnoreBegin(thr, pc: 0);
1000 if (pthread_setspecific(key: interceptor_ctx()->finalize_key,
1001 v: (void *)GetPthreadDestructorIterations())) {
1002 Printf(format: "ThreadSanitizer: failed to set thread key\n");
1003 Die();
1004 }
1005 ThreadIgnoreEnd(thr);
1006#endif
1007 p->created.Wait();
1008 Processor *proc = ProcCreate();
1009 ProcWire(proc, thr);
1010 ThreadStart(thr, tid: p->tid, os_id: GetTid(), thread_type: ThreadType::Regular);
1011 p->started.Post();
1012 }
1013 void *res = callback(param);
1014 // Prevent the callback from being tail called,
1015 // it mixes up stack traces.
1016 volatile int foo = 42;
1017 foo++;
1018 return res;
1019}
1020
1021TSAN_INTERCEPTOR(int, pthread_create,
1022 void *th, void *attr, void *(*callback)(void*), void * param) {
1023 SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
1024
1025 MaybeSpawnBackgroundThread();
1026
1027 if (ctx->after_multithreaded_fork) {
1028 if (flags()->die_after_fork) {
1029 Report(format: "ThreadSanitizer: starting new threads after multi-threaded "
1030 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
1031 Die();
1032 } else {
1033 VPrintf(1,
1034 "ThreadSanitizer: starting new threads after multi-threaded "
1035 "fork is not supported (pid %lu). Continuing because of "
1036 "die_after_fork=0, but you are on your own\n",
1037 internal_getpid());
1038 }
1039 }
1040 __sanitizer_pthread_attr_t myattr;
1041 if (attr == 0) {
1042 pthread_attr_init(attr: &myattr);
1043 attr = &myattr;
1044 }
1045 int detached = 0;
1046 REAL(pthread_attr_getdetachstate)(attr, &detached);
1047 AdjustStackSize(attr);
1048
1049 ThreadParam p;
1050 p.callback = callback;
1051 p.param = param;
1052 p.tid = kMainTid;
1053 int res = -1;
1054 {
1055 // Otherwise we see false positives in pthread stack manipulation.
1056 ScopedIgnoreInterceptors ignore;
1057 ThreadIgnoreBegin(thr, pc);
1058 res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
1059 ThreadIgnoreEnd(thr);
1060 }
1061 if (res == 0) {
1062 p.tid = ThreadCreate(thr, pc, uid: *(uptr *)th, detached: IsStateDetached(state: detached));
1063 CHECK_NE(p.tid, kMainTid);
1064 // Synchronization on p.tid serves two purposes:
1065 // 1. ThreadCreate must finish before the new thread starts.
1066 // Otherwise the new thread can call pthread_detach, but the pthread_t
1067 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
1068 // 2. ThreadStart must finish before this thread continues.
1069 // Otherwise, this thread can call pthread_detach and reset thr->sync
1070 // before the new thread got a chance to acquire from it in ThreadStart.
1071 p.created.Post();
1072 p.started.Wait();
1073 }
1074 if (attr == &myattr)
1075 pthread_attr_destroy(attr: &myattr);
1076 return res;
1077}
1078
1079TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1080 SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1081 Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th);
1082 ThreadIgnoreBegin(thr, pc);
1083 int res = BLOCK_REAL(pthread_join)(th, ret);
1084 ThreadIgnoreEnd(thr);
1085 if (res == 0) {
1086 ThreadJoin(thr, pc, tid);
1087 }
1088 return res;
1089}
1090
1091DEFINE_REAL_PTHREAD_FUNCTIONS
1092
1093TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1094 SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
1095 Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th);
1096 int res = REAL(pthread_detach)(th);
1097 if (res == 0) {
1098 ThreadDetach(thr, pc, tid);
1099 }
1100 return res;
1101}
1102
1103TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
1104 {
1105 SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
1106#if !SANITIZER_APPLE && !SANITIZER_ANDROID
1107 CHECK_EQ(thr, &cur_thread_placeholder);
1108#endif
1109 }
1110 REAL(pthread_exit)(retval);
1111}
1112
1113#if SANITIZER_LINUX
1114TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
1115 SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
1116 Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th);
1117 ThreadIgnoreBegin(thr, pc);
1118 int res = REAL(pthread_tryjoin_np)(th, ret);
1119 ThreadIgnoreEnd(thr);
1120 if (res == 0)
1121 ThreadJoin(thr, pc, tid);
1122 else
1123 ThreadNotJoined(thr, pc, tid, uid: (uptr)th);
1124 return res;
1125}
1126
1127TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
1128 const struct timespec *abstime) {
1129 SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
1130 Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th);
1131 ThreadIgnoreBegin(thr, pc);
1132 int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
1133 ThreadIgnoreEnd(thr);
1134 if (res == 0)
1135 ThreadJoin(thr, pc, tid);
1136 else
1137 ThreadNotJoined(thr, pc, tid, uid: (uptr)th);
1138 return res;
1139}
1140#endif
1141
1142// Problem:
1143// NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1144// pthread_cond_t has different size in the different versions.
1145// If call new REAL functions for old pthread_cond_t, they will corrupt memory
1146// after pthread_cond_t (old cond is smaller).
1147// If we call old REAL functions for new pthread_cond_t, we will lose some
1148// functionality (e.g. old functions do not support waiting against
1149// CLOCK_REALTIME).
1150// Proper handling would require to have 2 versions of interceptors as well.
1151// But this is messy, in particular requires linker scripts when sanitizer
1152// runtime is linked into a shared library.
1153// Instead we assume we don't have dynamic libraries built against old
1154// pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1155// that allows to work with old libraries (but this mode does not support
1156// some features, e.g. pthread_condattr_getpshared).
1157static void *init_cond(void *c, bool force = false) {
1158 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1159 // So we allocate additional memory on the side large enough to hold
1160 // any pthread_cond_t object. Always call new REAL functions, but pass
1161 // the aux object to them.
1162 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1163 // first word of pthread_cond_t to zero.
1164 // It's all relevant only for linux.
1165 if (!common_flags()->legacy_pthread_cond)
1166 return c;
1167 atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1168 uptr cond = atomic_load(a: p, mo: memory_order_acquire);
1169 if (!force && cond != 0)
1170 return (void*)cond;
1171 void *newcond = WRAP(malloc)(size: pthread_cond_t_sz);
1172 internal_memset(s: newcond, c: 0, n: pthread_cond_t_sz);
1173 if (atomic_compare_exchange_strong(a: p, cmp: &cond, xchg: (uptr)newcond,
1174 mo: memory_order_acq_rel))
1175 return newcond;
1176 WRAP(free)(p: newcond);
1177 return (void*)cond;
1178}
1179
1180namespace {
1181
1182template <class Fn>
1183struct CondMutexUnlockCtx {
1184 ScopedInterceptor *si;
1185 ThreadState *thr;
1186 uptr pc;
1187 void *m;
1188 void *c;
1189 const Fn &fn;
1190
1191 int Cancel() const { return fn(); }
1192 void Unlock() const;
1193};
1194
1195template <class Fn>
1196void CondMutexUnlockCtx<Fn>::Unlock() const {
1197 // pthread_cond_wait interceptor has enabled async signal delivery
1198 // (see BlockingCall below). Disable async signals since we are running
1199 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1200 // since the thread is cancelled, so we have to manually execute them
1201 // (the thread still can run some user code due to pthread_cleanup_push).
1202 CHECK_EQ(atomic_load(&thr->in_blocking_func, memory_order_relaxed), 1);
1203 atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed);
1204 MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagDoPreLockOnPostLock);
1205 // Undo BlockingCall ctor effects.
1206 thr->ignore_interceptors--;
1207 si->~ScopedInterceptor();
1208}
1209} // namespace
1210
1211INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1212 void *cond = init_cond(c, force: true);
1213 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1214 MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: true);
1215 return REAL(pthread_cond_init)(cond, a);
1216}
1217
1218template <class Fn>
1219int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si, const Fn &fn,
1220 void *c, void *m) {
1221 MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false);
1222 MutexUnlock(thr, pc, addr: (uptr)m);
1223 int res = 0;
1224 // This ensures that we handle mutex lock even in case of pthread_cancel.
1225 // See test/tsan/cond_cancel.cpp.
1226 {
1227 // Enable signal delivery while the thread is blocked.
1228 BlockingCall bc(thr);
1229 CondMutexUnlockCtx<Fn> arg = {si, thr, pc, m, c, fn};
1230 res = call_pthread_cancel_with_cleanup(
1231 [](void *arg) -> int {
1232 return ((const CondMutexUnlockCtx<Fn> *)arg)->Cancel();
1233 },
1234 [](void *arg) { ((const CondMutexUnlockCtx<Fn> *)arg)->Unlock(); },
1235 &arg);
1236 }
1237 if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, addr: (uptr)m);
1238 MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagDoPreLockOnPostLock);
1239 return res;
1240}
1241
1242INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1243 void *cond = init_cond(c);
1244 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1245 return cond_wait(
1246 thr, pc, si: &si, fn: [=]() { return REAL(pthread_cond_wait)(cond, m); }, c: cond,
1247 m);
1248}
1249
1250INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1251 void *cond = init_cond(c);
1252 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1253 return cond_wait(
1254 thr, pc, si: &si,
1255 fn: [=]() { return REAL(pthread_cond_timedwait)(cond, m, abstime); }, c: cond,
1256 m);
1257}
1258
1259#if SANITIZER_LINUX
1260INTERCEPTOR(int, pthread_cond_clockwait, void *c, void *m,
1261 __sanitizer_clockid_t clock, void *abstime) {
1262 void *cond = init_cond(c);
1263 SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait, cond, m, clock, abstime);
1264 return cond_wait(
1265 thr, pc, si: &si,
1266 fn: [=]() { return REAL(pthread_cond_clockwait)(cond, m, clock, abstime); },
1267 c: cond, m);
1268}
1269#define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait)
1270#else
1271#define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
1272#endif
1273
1274#if SANITIZER_APPLE
1275INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1276 void *reltime) {
1277 void *cond = init_cond(c);
1278 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1279 return cond_wait(
1280 thr, pc, &si,
1281 [=]() {
1282 return REAL(pthread_cond_timedwait_relative_np)(cond, m, reltime);
1283 },
1284 cond, m);
1285}
1286#endif
1287
1288INTERCEPTOR(int, pthread_cond_signal, void *c) {
1289 void *cond = init_cond(c);
1290 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1291 MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false);
1292 return REAL(pthread_cond_signal)(cond);
1293}
1294
1295INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1296 void *cond = init_cond(c);
1297 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1298 MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false);
1299 return REAL(pthread_cond_broadcast)(cond);
1300}
1301
1302INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1303 void *cond = init_cond(c);
1304 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1305 MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: true);
1306 int res = REAL(pthread_cond_destroy)(cond);
1307 if (common_flags()->legacy_pthread_cond) {
1308 // Free our aux cond and zero the pointer to not leave dangling pointers.
1309 WRAP(free)(p: cond);
1310 atomic_store(a: (atomic_uintptr_t*)c, v: 0, mo: memory_order_relaxed);
1311 }
1312 return res;
1313}
1314
1315TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1316 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1317 int res = REAL(pthread_mutex_init)(m, a);
1318 if (res == 0) {
1319 u32 flagz = 0;
1320 if (a) {
1321 int type = 0;
1322 if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1323 if (type == PTHREAD_MUTEX_RECURSIVE ||
1324 type == PTHREAD_MUTEX_RECURSIVE_NP)
1325 flagz |= MutexFlagWriteReentrant;
1326 }
1327 MutexCreate(thr, pc, addr: (uptr)m, flagz);
1328 }
1329 return res;
1330}
1331
1332TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1333 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1334 int res = REAL(pthread_mutex_destroy)(m);
1335 if (res == 0 || res == errno_EBUSY) {
1336 MutexDestroy(thr, pc, addr: (uptr)m);
1337 }
1338 return res;
1339}
1340
1341TSAN_INTERCEPTOR(int, pthread_mutex_lock, void *m) {
1342 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock, m);
1343 MutexPreLock(thr, pc, addr: (uptr)m);
1344 int res = BLOCK_REAL(pthread_mutex_lock)(m);
1345 if (res == errno_EOWNERDEAD)
1346 MutexRepair(thr, pc, addr: (uptr)m);
1347 if (res == 0 || res == errno_EOWNERDEAD)
1348 MutexPostLock(thr, pc, addr: (uptr)m);
1349 if (res == errno_EINVAL)
1350 MutexInvalidAccess(thr, pc, addr: (uptr)m);
1351 return res;
1352}
1353
1354TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1355 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1356 int res = REAL(pthread_mutex_trylock)(m);
1357 if (res == errno_EOWNERDEAD)
1358 MutexRepair(thr, pc, addr: (uptr)m);
1359 if (res == 0 || res == errno_EOWNERDEAD)
1360 MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock);
1361 return res;
1362}
1363
1364#if !SANITIZER_APPLE
1365TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1366 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1367 int res = REAL(pthread_mutex_timedlock)(m, abstime);
1368 if (res == 0) {
1369 MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock);
1370 }
1371 return res;
1372}
1373#endif
1374
1375TSAN_INTERCEPTOR(int, pthread_mutex_unlock, void *m) {
1376 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock, m);
1377 MutexUnlock(thr, pc, addr: (uptr)m);
1378 int res = REAL(pthread_mutex_unlock)(m);
1379 if (res == errno_EINVAL)
1380 MutexInvalidAccess(thr, pc, addr: (uptr)m);
1381 return res;
1382}
1383
1384#if SANITIZER_LINUX
1385TSAN_INTERCEPTOR(int, pthread_mutex_clocklock, void *m,
1386 __sanitizer_clockid_t clock, void *abstime) {
1387 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_clocklock, m, clock, abstime);
1388 MutexPreLock(thr, pc, addr: (uptr)m);
1389 int res = BLOCK_REAL(pthread_mutex_clocklock)(m, clock, abstime);
1390 if (res == errno_EOWNERDEAD)
1391 MutexRepair(thr, pc, addr: (uptr)m);
1392 if (res == 0 || res == errno_EOWNERDEAD)
1393 MutexPostLock(thr, pc, addr: (uptr)m);
1394 if (res == errno_EINVAL)
1395 MutexInvalidAccess(thr, pc, addr: (uptr)m);
1396 return res;
1397}
1398#endif
1399
1400#if SANITIZER_GLIBC
1401# if !__GLIBC_PREREQ(2, 34)
1402// glibc 2.34 applies a non-default version for the two functions. They are no
1403// longer expected to be intercepted by programs.
1404TSAN_INTERCEPTOR(int, __pthread_mutex_lock, void *m) {
1405 SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_lock, m);
1406 MutexPreLock(thr, pc, (uptr)m);
1407 int res = BLOCK_REAL(__pthread_mutex_lock)(m);
1408 if (res == errno_EOWNERDEAD)
1409 MutexRepair(thr, pc, (uptr)m);
1410 if (res == 0 || res == errno_EOWNERDEAD)
1411 MutexPostLock(thr, pc, (uptr)m);
1412 if (res == errno_EINVAL)
1413 MutexInvalidAccess(thr, pc, (uptr)m);
1414 return res;
1415}
1416
1417TSAN_INTERCEPTOR(int, __pthread_mutex_unlock, void *m) {
1418 SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_unlock, m);
1419 MutexUnlock(thr, pc, (uptr)m);
1420 int res = REAL(__pthread_mutex_unlock)(m);
1421 if (res == errno_EINVAL)
1422 MutexInvalidAccess(thr, pc, (uptr)m);
1423 return res;
1424}
1425# endif
1426#endif
1427
1428#if !SANITIZER_APPLE
1429TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1430 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1431 int res = REAL(pthread_spin_init)(m, pshared);
1432 if (res == 0) {
1433 MutexCreate(thr, pc, addr: (uptr)m);
1434 }
1435 return res;
1436}
1437
1438TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1439 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1440 int res = REAL(pthread_spin_destroy)(m);
1441 if (res == 0) {
1442 MutexDestroy(thr, pc, addr: (uptr)m);
1443 }
1444 return res;
1445}
1446
1447TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1448 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1449 MutexPreLock(thr, pc, addr: (uptr)m);
1450 int res = BLOCK_REAL(pthread_spin_lock)(m);
1451 if (res == 0) {
1452 MutexPostLock(thr, pc, addr: (uptr)m);
1453 }
1454 return res;
1455}
1456
1457TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1458 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1459 int res = REAL(pthread_spin_trylock)(m);
1460 if (res == 0) {
1461 MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock);
1462 }
1463 return res;
1464}
1465
1466TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1467 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1468 MutexUnlock(thr, pc, addr: (uptr)m);
1469 int res = REAL(pthread_spin_unlock)(m);
1470 return res;
1471}
1472#endif
1473
1474TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1475 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1476 int res = REAL(pthread_rwlock_init)(m, a);
1477 if (res == 0) {
1478 MutexCreate(thr, pc, addr: (uptr)m);
1479 }
1480 return res;
1481}
1482
1483TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1484 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1485 int res = REAL(pthread_rwlock_destroy)(m);
1486 if (res == 0) {
1487 MutexDestroy(thr, pc, addr: (uptr)m);
1488 }
1489 return res;
1490}
1491
1492TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1493 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1494 MutexPreReadLock(thr, pc, addr: (uptr)m);
1495 int res = REAL(pthread_rwlock_rdlock)(m);
1496 if (res == 0) {
1497 MutexPostReadLock(thr, pc, addr: (uptr)m);
1498 }
1499 return res;
1500}
1501
1502TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1503 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1504 int res = REAL(pthread_rwlock_tryrdlock)(m);
1505 if (res == 0) {
1506 MutexPostReadLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock);
1507 }
1508 return res;
1509}
1510
1511#if !SANITIZER_APPLE
1512TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1513 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1514 int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1515 if (res == 0) {
1516 MutexPostReadLock(thr, pc, addr: (uptr)m);
1517 }
1518 return res;
1519}
1520#endif
1521
1522TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1523 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1524 MutexPreLock(thr, pc, addr: (uptr)m);
1525 int res = BLOCK_REAL(pthread_rwlock_wrlock)(m);
1526 if (res == 0) {
1527 MutexPostLock(thr, pc, addr: (uptr)m);
1528 }
1529 return res;
1530}
1531
1532TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1533 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1534 int res = REAL(pthread_rwlock_trywrlock)(m);
1535 if (res == 0) {
1536 MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock);
1537 }
1538 return res;
1539}
1540
1541#if !SANITIZER_APPLE
1542TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1543 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1544 int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1545 if (res == 0) {
1546 MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock);
1547 }
1548 return res;
1549}
1550#endif
1551
1552TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1553 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1554 MutexReadOrWriteUnlock(thr, pc, addr: (uptr)m);
1555 int res = REAL(pthread_rwlock_unlock)(m);
1556 return res;
1557}
1558
1559#if !SANITIZER_APPLE
1560TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1561 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1562 MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessWrite);
1563 int res = REAL(pthread_barrier_init)(b, a, count);
1564 return res;
1565}
1566
1567TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1568 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1569 MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessWrite);
1570 int res = REAL(pthread_barrier_destroy)(b);
1571 return res;
1572}
1573
1574TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1575 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1576 Release(thr, pc, addr: (uptr)b);
1577 MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessRead);
1578 int res = REAL(pthread_barrier_wait)(b);
1579 MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessRead);
1580 if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1581 Acquire(thr, pc, addr: (uptr)b);
1582 }
1583 return res;
1584}
1585#endif
1586
1587TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1588 SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1589 if (o == 0 || f == 0)
1590 return errno_EINVAL;
1591 atomic_uint32_t *a;
1592
1593 if (SANITIZER_APPLE)
1594 a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1595 else if (SANITIZER_NETBSD)
1596 a = static_cast<atomic_uint32_t*>
1597 ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1598 else
1599 a = static_cast<atomic_uint32_t*>(o);
1600
1601 // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks
1602 // result in crashes due to too little stack space.
1603 if (guard_acquire(thr, pc, g: a, blocking_hooks: !SANITIZER_APPLE)) {
1604 (*f)();
1605 guard_release(thr, pc, g: a, v: kGuardDone);
1606 }
1607 return 0;
1608}
1609
1610#if SANITIZER_GLIBC
1611TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1612 SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1613 if (fd > 0)
1614 FdAccess(thr, pc, fd);
1615 return REAL(__fxstat)(version, fd, buf);
1616}
1617
1618TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1619 SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1620 if (fd > 0)
1621 FdAccess(thr, pc, fd);
1622 return REAL(__fxstat64)(version, fd, buf);
1623}
1624#define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat); TSAN_INTERCEPT(__fxstat64)
1625#else
1626#define TSAN_MAYBE_INTERCEPT___FXSTAT
1627#endif
1628
1629#if !SANITIZER_GLIBC || __GLIBC_PREREQ(2, 33)
1630TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1631 SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1632 if (fd > 0)
1633 FdAccess(thr, pc, fd);
1634 return REAL(fstat)(fd, buf);
1635}
1636# define TSAN_MAYBE_INTERCEPT_FSTAT TSAN_INTERCEPT(fstat)
1637#else
1638# define TSAN_MAYBE_INTERCEPT_FSTAT
1639#endif
1640
1641#if __GLIBC_PREREQ(2, 33)
1642TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1643 SCOPED_TSAN_INTERCEPTOR(fstat64, fd, buf);
1644 if (fd > 0)
1645 FdAccess(thr, pc, fd);
1646 return REAL(fstat64)(fd, buf);
1647}
1648# define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1649#else
1650# define TSAN_MAYBE_INTERCEPT_FSTAT64
1651#endif
1652
1653TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) {
1654 va_list ap;
1655 va_start(ap, oflag);
1656 mode_t mode = va_arg(ap, int);
1657 va_end(ap);
1658 SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode);
1659 READ_STRING(thr, pc, name, 0);
1660 int fd = REAL(open)(name, oflag, mode);
1661 if (fd >= 0)
1662 FdFileCreate(thr, pc, fd);
1663 return fd;
1664}
1665
1666#if SANITIZER_LINUX
1667TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) {
1668 va_list ap;
1669 va_start(ap, oflag);
1670 mode_t mode = va_arg(ap, int);
1671 va_end(ap);
1672 SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode);
1673 READ_STRING(thr, pc, name, 0);
1674 int fd = REAL(open64)(name, oflag, mode);
1675 if (fd >= 0)
1676 FdFileCreate(thr, pc, fd);
1677 return fd;
1678}
1679#define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1680#else
1681#define TSAN_MAYBE_INTERCEPT_OPEN64
1682#endif
1683
1684TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1685 SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1686 READ_STRING(thr, pc, name, 0);
1687 int fd = REAL(creat)(name, mode);
1688 if (fd >= 0)
1689 FdFileCreate(thr, pc, fd);
1690 return fd;
1691}
1692
1693#if SANITIZER_LINUX
1694TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1695 SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1696 READ_STRING(thr, pc, name, 0);
1697 int fd = REAL(creat64)(name, mode);
1698 if (fd >= 0)
1699 FdFileCreate(thr, pc, fd);
1700 return fd;
1701}
1702#define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1703#else
1704#define TSAN_MAYBE_INTERCEPT_CREAT64
1705#endif
1706
1707TSAN_INTERCEPTOR(int, dup, int oldfd) {
1708 SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1709 int newfd = REAL(dup)(oldfd);
1710 if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1711 FdDup(thr, pc, oldfd, newfd, write: true);
1712 return newfd;
1713}
1714
1715TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1716 SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1717 int newfd2 = REAL(dup2)(oldfd, newfd);
1718 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1719 FdDup(thr, pc, oldfd, newfd: newfd2, write: false);
1720 return newfd2;
1721}
1722
1723#if !SANITIZER_APPLE
1724TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1725 SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1726 int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1727 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1728 FdDup(thr, pc, oldfd, newfd: newfd2, write: false);
1729 return newfd2;
1730}
1731#endif
1732
1733#if SANITIZER_LINUX
1734TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1735 SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1736 int fd = REAL(eventfd)(initval, flags);
1737 if (fd >= 0)
1738 FdEventCreate(thr, pc, fd);
1739 return fd;
1740}
1741#define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1742#else
1743#define TSAN_MAYBE_INTERCEPT_EVENTFD
1744#endif
1745
1746#if SANITIZER_LINUX
1747TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1748 SCOPED_INTERCEPTOR_RAW(signalfd, fd, mask, flags);
1749 FdClose(thr, pc, fd);
1750 fd = REAL(signalfd)(fd, mask, flags);
1751 if (!MustIgnoreInterceptor(thr))
1752 FdSignalCreate(thr, pc, fd);
1753 return fd;
1754}
1755#define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1756#else
1757#define TSAN_MAYBE_INTERCEPT_SIGNALFD
1758#endif
1759
1760#if SANITIZER_LINUX
1761TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1762 SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1763 int fd = REAL(inotify_init)(fake);
1764 if (fd >= 0)
1765 FdInotifyCreate(thr, pc, fd);
1766 return fd;
1767}
1768#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1769#else
1770#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1771#endif
1772
1773#if SANITIZER_LINUX
1774TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1775 SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1776 int fd = REAL(inotify_init1)(flags);
1777 if (fd >= 0)
1778 FdInotifyCreate(thr, pc, fd);
1779 return fd;
1780}
1781#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1782#else
1783#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1784#endif
1785
1786TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1787 SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1788 int fd = REAL(socket)(domain, type, protocol);
1789 if (fd >= 0)
1790 FdSocketCreate(thr, pc, fd);
1791 return fd;
1792}
1793
1794TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1795 SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1796 int res = REAL(socketpair)(domain, type, protocol, fd);
1797 if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1798 FdPipeCreate(thr, pc, rfd: fd[0], wfd: fd[1]);
1799 return res;
1800}
1801
1802TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1803 SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1804 FdSocketConnecting(thr, pc, fd);
1805 int res = REAL(connect)(fd, addr, addrlen);
1806 if (res == 0 && fd >= 0)
1807 FdSocketConnect(thr, pc, fd);
1808 return res;
1809}
1810
1811TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1812 SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1813 int res = REAL(bind)(fd, addr, addrlen);
1814 if (fd > 0 && res == 0)
1815 FdAccess(thr, pc, fd);
1816 return res;
1817}
1818
1819TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1820 SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1821 int res = REAL(listen)(fd, backlog);
1822 if (fd > 0 && res == 0)
1823 FdAccess(thr, pc, fd);
1824 return res;
1825}
1826
1827TSAN_INTERCEPTOR(int, close, int fd) {
1828 SCOPED_INTERCEPTOR_RAW(close, fd);
1829 if (!in_symbolizer())
1830 FdClose(thr, pc, fd);
1831 return REAL(close)(fd);
1832}
1833
1834#if SANITIZER_LINUX
1835TSAN_INTERCEPTOR(int, __close, int fd) {
1836 SCOPED_INTERCEPTOR_RAW(__close, fd);
1837 FdClose(thr, pc, fd);
1838 return REAL(__close)(fd);
1839}
1840#define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1841#else
1842#define TSAN_MAYBE_INTERCEPT___CLOSE
1843#endif
1844
1845// glibc guts
1846#if SANITIZER_LINUX && !SANITIZER_ANDROID
1847TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1848 SCOPED_INTERCEPTOR_RAW(__res_iclose, state, free_addr);
1849 int fds[64];
1850 int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1851 for (int i = 0; i < cnt; i++) FdClose(thr, pc, fd: fds[i]);
1852 REAL(__res_iclose)(state, free_addr);
1853}
1854#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1855#else
1856#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1857#endif
1858
1859TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1860 SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1861 int res = REAL(pipe)(pipefd);
1862 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1863 FdPipeCreate(thr, pc, rfd: pipefd[0], wfd: pipefd[1]);
1864 return res;
1865}
1866
1867#if !SANITIZER_APPLE
1868TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1869 SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1870 int res = REAL(pipe2)(pipefd, flags);
1871 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1872 FdPipeCreate(thr, pc, rfd: pipefd[0], wfd: pipefd[1]);
1873 return res;
1874}
1875#endif
1876
1877TSAN_INTERCEPTOR(int, unlink, char *path) {
1878 SCOPED_TSAN_INTERCEPTOR(unlink, path);
1879 Release(thr, pc, addr: File2addr(path));
1880 int res = REAL(unlink)(path);
1881 return res;
1882}
1883
1884TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1885 SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1886 void *res = REAL(tmpfile)(fake);
1887 if (res) {
1888 int fd = fileno_unlocked(stream: res);
1889 if (fd >= 0)
1890 FdFileCreate(thr, pc, fd);
1891 }
1892 return res;
1893}
1894
1895#if SANITIZER_LINUX
1896TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1897 SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1898 void *res = REAL(tmpfile64)(fake);
1899 if (res) {
1900 int fd = fileno_unlocked(stream: res);
1901 if (fd >= 0)
1902 FdFileCreate(thr, pc, fd);
1903 }
1904 return res;
1905}
1906#define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1907#else
1908#define TSAN_MAYBE_INTERCEPT_TMPFILE64
1909#endif
1910
1911static void FlushStreams() {
1912 // Flushing all the streams here may freeze the process if a child thread is
1913 // performing file stream operations at the same time.
1914 REAL(fflush)(stdout);
1915 REAL(fflush)(stderr);
1916}
1917
1918TSAN_INTERCEPTOR(void, abort, int fake) {
1919 SCOPED_TSAN_INTERCEPTOR(abort, fake);
1920 FlushStreams();
1921 REAL(abort)(fake);
1922}
1923
1924TSAN_INTERCEPTOR(int, rmdir, char *path) {
1925 SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1926 Release(thr, pc, addr: Dir2addr(path));
1927 int res = REAL(rmdir)(path);
1928 return res;
1929}
1930
1931TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1932 SCOPED_INTERCEPTOR_RAW(closedir, dirp);
1933 if (dirp) {
1934 int fd = dirfd(dirp);
1935 FdClose(thr, pc, fd);
1936 }
1937 return REAL(closedir)(dirp);
1938}
1939
1940#if SANITIZER_LINUX
1941TSAN_INTERCEPTOR(int, epoll_create, int size) {
1942 SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1943 int fd = REAL(epoll_create)(size);
1944 if (fd >= 0)
1945 FdPollCreate(thr, pc, fd);
1946 return fd;
1947}
1948
1949TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1950 SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1951 int fd = REAL(epoll_create1)(flags);
1952 if (fd >= 0)
1953 FdPollCreate(thr, pc, fd);
1954 return fd;
1955}
1956
1957TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1958 SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1959 if (epfd >= 0)
1960 FdAccess(thr, pc, fd: epfd);
1961 if (epfd >= 0 && fd >= 0)
1962 FdAccess(thr, pc, fd);
1963 if (op == EPOLL_CTL_ADD && epfd >= 0) {
1964 FdPollAdd(thr, pc, epfd, fd);
1965 FdRelease(thr, pc, fd: epfd);
1966 }
1967 int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1968 return res;
1969}
1970
1971TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1972 SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1973 if (epfd >= 0)
1974 FdAccess(thr, pc, fd: epfd);
1975 int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1976 if (res > 0 && epfd >= 0)
1977 FdAcquire(thr, pc, fd: epfd);
1978 return res;
1979}
1980
1981TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1982 void *sigmask) {
1983 SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1984 if (epfd >= 0)
1985 FdAccess(thr, pc, fd: epfd);
1986 int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1987 if (res > 0 && epfd >= 0)
1988 FdAcquire(thr, pc, fd: epfd);
1989 return res;
1990}
1991
1992TSAN_INTERCEPTOR(int, epoll_pwait2, int epfd, void *ev, int cnt, void *timeout,
1993 void *sigmask) {
1994 SCOPED_INTERCEPTOR_RAW(epoll_pwait2, epfd, ev, cnt, timeout, sigmask);
1995 // This function is new and may not be present in libc and/or kernel.
1996 // Since we effectively add it to libc (as will be probed by the program
1997 // using dlsym or a weak function pointer) we need to handle the case
1998 // when it's not present in the actual libc.
1999 if (!REAL(epoll_pwait2)) {
2000 errno = errno_ENOSYS;
2001 return -1;
2002 }
2003 if (MustIgnoreInterceptor(thr))
2004 REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask);
2005 if (epfd >= 0)
2006 FdAccess(thr, pc, fd: epfd);
2007 int res = BLOCK_REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask);
2008 if (res > 0 && epfd >= 0)
2009 FdAcquire(thr, pc, fd: epfd);
2010 return res;
2011}
2012
2013# define TSAN_MAYBE_INTERCEPT_EPOLL \
2014 TSAN_INTERCEPT(epoll_create); \
2015 TSAN_INTERCEPT(epoll_create1); \
2016 TSAN_INTERCEPT(epoll_ctl); \
2017 TSAN_INTERCEPT(epoll_wait); \
2018 TSAN_INTERCEPT(epoll_pwait); \
2019 TSAN_INTERCEPT(epoll_pwait2)
2020#else
2021#define TSAN_MAYBE_INTERCEPT_EPOLL
2022#endif
2023
2024// The following functions are intercepted merely to process pending signals.
2025// If program blocks signal X, we must deliver the signal before the function
2026// returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
2027// it's better to deliver the signal straight away.
2028TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
2029 SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
2030 return REAL(sigsuspend)(mask);
2031}
2032
2033TSAN_INTERCEPTOR(int, sigblock, int mask) {
2034 SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
2035 return REAL(sigblock)(mask);
2036}
2037
2038TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
2039 SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
2040 return REAL(sigsetmask)(mask);
2041}
2042
2043TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
2044 __sanitizer_sigset_t *oldset) {
2045 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
2046 return REAL(pthread_sigmask)(how, set, oldset);
2047}
2048
2049namespace __tsan {
2050
2051static void ReportErrnoSpoiling(ThreadState *thr, uptr pc, int sig) {
2052 VarSizeStackTrace stack;
2053 // StackTrace::GetNestInstructionPc(pc) is used because return address is
2054 // expected, OutputReport() will undo this.
2055 ObtainCurrentStack(thr, toppc: StackTrace::GetNextInstructionPc(pc), stack: &stack);
2056 ThreadRegistryLock l(&ctx->thread_registry);
2057 ScopedReport rep(ReportTypeErrnoInSignal);
2058 rep.SetSigNum(sig);
2059 if (!IsFiredSuppression(ctx, type: ReportTypeErrnoInSignal, trace: stack)) {
2060 rep.AddStack(stack, suppressable: true);
2061 OutputReport(thr, srep: rep);
2062 }
2063}
2064
2065static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
2066 int sig, __sanitizer_siginfo *info,
2067 void *uctx) {
2068 CHECK(thr->slot);
2069 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2070 if (acquire)
2071 Acquire(thr, pc: 0, addr: (uptr)&sigactions[sig]);
2072 // Signals are generally asynchronous, so if we receive a signals when
2073 // ignores are enabled we should disable ignores. This is critical for sync
2074 // and interceptors, because otherwise we can miss synchronization and report
2075 // false races.
2076 int ignore_reads_and_writes = thr->ignore_reads_and_writes;
2077 int ignore_interceptors = thr->ignore_interceptors;
2078 int ignore_sync = thr->ignore_sync;
2079 // For symbolizer we only process SIGSEGVs synchronously
2080 // (bug in symbolizer or in tsan). But we want to reset
2081 // in_symbolizer to fail gracefully. Symbolizer and user code
2082 // use different memory allocators, so if we don't reset
2083 // in_symbolizer we can get memory allocated with one being
2084 // feed with another, which can cause more crashes.
2085 int in_symbolizer = thr->in_symbolizer;
2086 if (!ctx->after_multithreaded_fork) {
2087 thr->ignore_reads_and_writes = 0;
2088 thr->fast_state.ClearIgnoreBit();
2089 thr->ignore_interceptors = 0;
2090 thr->ignore_sync = 0;
2091 thr->in_symbolizer = 0;
2092 }
2093 // Ensure that the handler does not spoil errno.
2094 const int saved_errno = errno;
2095 errno = 99;
2096 // This code races with sigaction. Be careful to not read sa_sigaction twice.
2097 // Also need to remember pc for reporting before the call,
2098 // because the handler can reset it.
2099 volatile uptr pc = (sigactions[sig].sa_flags & SA_SIGINFO)
2100 ? (uptr)sigactions[sig].sigaction
2101 : (uptr)sigactions[sig].handler;
2102 if (pc != sig_dfl && pc != sig_ign) {
2103 // The callback can be either sa_handler or sa_sigaction.
2104 // They have different signatures, but we assume that passing
2105 // additional arguments to sa_handler works and is harmless.
2106 ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
2107 }
2108 if (!ctx->after_multithreaded_fork) {
2109 thr->ignore_reads_and_writes = ignore_reads_and_writes;
2110 if (ignore_reads_and_writes)
2111 thr->fast_state.SetIgnoreBit();
2112 thr->ignore_interceptors = ignore_interceptors;
2113 thr->ignore_sync = ignore_sync;
2114 thr->in_symbolizer = in_symbolizer;
2115 }
2116 // We do not detect errno spoiling for SIGTERM,
2117 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
2118 // tsan reports false positive in such case.
2119 // It's difficult to properly detect this situation (reraise),
2120 // because in async signal processing case (when handler is called directly
2121 // from rtl_generic_sighandler) we have not yet received the reraised
2122 // signal; and it looks too fragile to intercept all ways to reraise a signal.
2123 if (ShouldReport(thr, typ: ReportTypeErrnoInSignal) && !sync && sig != SIGTERM &&
2124 errno != 99)
2125 ReportErrnoSpoiling(thr, pc, sig);
2126 errno = saved_errno;
2127}
2128
2129void ProcessPendingSignalsImpl(ThreadState *thr) {
2130 atomic_store(a: &thr->pending_signals, v: 0, mo: memory_order_relaxed);
2131 ThreadSignalContext *sctx = SigCtx(thr);
2132 if (sctx == 0)
2133 return;
2134 atomic_fetch_add(a: &thr->in_signal_handler, v: 1, mo: memory_order_relaxed);
2135 internal_sigfillset(set: &sctx->emptyset);
2136 int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
2137 CHECK_EQ(res, 0);
2138 for (int sig = 0; sig < kSigCount; sig++) {
2139 SignalDesc *signal = &sctx->pending_signals[sig];
2140 if (signal->armed) {
2141 signal->armed = false;
2142 CallUserSignalHandler(thr, sync: false, acquire: true, sig, info: &signal->siginfo,
2143 uctx: &signal->ctx);
2144 }
2145 }
2146 res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
2147 CHECK_EQ(res, 0);
2148 atomic_fetch_add(a: &thr->in_signal_handler, v: -1, mo: memory_order_relaxed);
2149}
2150
2151} // namespace __tsan
2152
2153static bool is_sync_signal(ThreadSignalContext *sctx, int sig,
2154 __sanitizer_siginfo *info) {
2155 // If we are sending signal to ourselves, we must process it now.
2156 if (sctx && sig == sctx->int_signal_send)
2157 return true;
2158#if SANITIZER_HAS_SIGINFO
2159 // POSIX timers can be configured to send any kind of signal; however, it
2160 // doesn't make any sense to consider a timer signal as synchronous!
2161 if (info->si_code == SI_TIMER)
2162 return false;
2163#endif
2164 return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
2165 sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS;
2166}
2167
2168void sighandler(int sig, __sanitizer_siginfo *info, void *ctx) {
2169 ThreadState *thr = cur_thread_init();
2170 ThreadSignalContext *sctx = SigCtx(thr);
2171 if (sig < 0 || sig >= kSigCount) {
2172 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
2173 return;
2174 }
2175 // Don't mess with synchronous signals.
2176 const bool sync = is_sync_signal(sctx, sig, info);
2177 if (sync ||
2178 // If we are in blocking function, we can safely process it now
2179 // (but check if we are in a recursive interceptor,
2180 // i.e. pthread_join()->munmap()).
2181 atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed)) {
2182 atomic_fetch_add(a: &thr->in_signal_handler, v: 1, mo: memory_order_relaxed);
2183 if (atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed)) {
2184 atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed);
2185 CallUserSignalHandler(thr, sync, acquire: true, sig, info, uctx: ctx);
2186 atomic_store(a: &thr->in_blocking_func, v: 1, mo: memory_order_relaxed);
2187 } else {
2188 // Be very conservative with when we do acquire in this case.
2189 // It's unsafe to do acquire in async handlers, because ThreadState
2190 // can be in inconsistent state.
2191 // SIGSYS looks relatively safe -- it's synchronous and can actually
2192 // need some global state.
2193 bool acq = (sig == SIGSYS);
2194 CallUserSignalHandler(thr, sync, acquire: acq, sig, info, uctx: ctx);
2195 }
2196 atomic_fetch_add(a: &thr->in_signal_handler, v: -1, mo: memory_order_relaxed);
2197 return;
2198 }
2199
2200 if (sctx == 0)
2201 return;
2202 SignalDesc *signal = &sctx->pending_signals[sig];
2203 if (signal->armed == false) {
2204 signal->armed = true;
2205 internal_memcpy(dest: &signal->siginfo, src: info, n: sizeof(*info));
2206 internal_memcpy(dest: &signal->ctx, src: ctx, n: sizeof(signal->ctx));
2207 atomic_store(a: &thr->pending_signals, v: 1, mo: memory_order_relaxed);
2208 }
2209}
2210
2211TSAN_INTERCEPTOR(int, raise, int sig) {
2212 SCOPED_TSAN_INTERCEPTOR(raise, sig);
2213 ThreadSignalContext *sctx = SigCtx(thr);
2214 CHECK_NE(sctx, 0);
2215 int prev = sctx->int_signal_send;
2216 sctx->int_signal_send = sig;
2217 int res = REAL(raise)(sig);
2218 CHECK_EQ(sctx->int_signal_send, sig);
2219 sctx->int_signal_send = prev;
2220 return res;
2221}
2222
2223TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2224 SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2225 ThreadSignalContext *sctx = SigCtx(thr);
2226 CHECK_NE(sctx, 0);
2227 int prev = sctx->int_signal_send;
2228 if (pid == (int)internal_getpid()) {
2229 sctx->int_signal_send = sig;
2230 }
2231 int res = REAL(kill)(pid, sig);
2232 if (pid == (int)internal_getpid()) {
2233 CHECK_EQ(sctx->int_signal_send, sig);
2234 sctx->int_signal_send = prev;
2235 }
2236 return res;
2237}
2238
2239TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2240 SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2241 ThreadSignalContext *sctx = SigCtx(thr);
2242 CHECK_NE(sctx, 0);
2243 int prev = sctx->int_signal_send;
2244 bool self = pthread_equal(t1: tid, t2: pthread_self());
2245 if (self)
2246 sctx->int_signal_send = sig;
2247 int res = REAL(pthread_kill)(tid, sig);
2248 if (self) {
2249 CHECK_EQ(sctx->int_signal_send, sig);
2250 sctx->int_signal_send = prev;
2251 }
2252 return res;
2253}
2254
2255TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2256 SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2257 // It's intercepted merely to process pending signals.
2258 return REAL(gettimeofday)(tv, tz);
2259}
2260
2261TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2262 void *hints, void *rv) {
2263 SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2264 // We miss atomic synchronization in getaddrinfo,
2265 // and can report false race between malloc and free
2266 // inside of getaddrinfo. So ignore memory accesses.
2267 ThreadIgnoreBegin(thr, pc);
2268 int res = REAL(getaddrinfo)(node, service, hints, rv);
2269 ThreadIgnoreEnd(thr);
2270 return res;
2271}
2272
2273TSAN_INTERCEPTOR(int, fork, int fake) {
2274 if (in_symbolizer())
2275 return REAL(fork)(fake);
2276 SCOPED_INTERCEPTOR_RAW(fork, fake);
2277 return REAL(fork)(fake);
2278}
2279
2280void atfork_prepare() {
2281 if (in_symbolizer())
2282 return;
2283 ThreadState *thr = cur_thread();
2284 const uptr pc = StackTrace::GetCurrentPc();
2285 ForkBefore(thr, pc);
2286}
2287
2288void atfork_parent() {
2289 if (in_symbolizer())
2290 return;
2291 ThreadState *thr = cur_thread();
2292 const uptr pc = StackTrace::GetCurrentPc();
2293 ForkParentAfter(thr, pc);
2294}
2295
2296void atfork_child() {
2297 if (in_symbolizer())
2298 return;
2299 ThreadState *thr = cur_thread();
2300 const uptr pc = StackTrace::GetCurrentPc();
2301 ForkChildAfter(thr, pc, start_thread: true);
2302 FdOnFork(thr, pc);
2303}
2304
2305#if !SANITIZER_IOS
2306TSAN_INTERCEPTOR(int, vfork, int fake) {
2307 // Some programs (e.g. openjdk) call close for all file descriptors
2308 // in the child process. Under tsan it leads to false positives, because
2309 // address space is shared, so the parent process also thinks that
2310 // the descriptors are closed (while they are actually not).
2311 // This leads to false positives due to missed synchronization.
2312 // Strictly saying this is undefined behavior, because vfork child is not
2313 // allowed to call any functions other than exec/exit. But this is what
2314 // openjdk does, so we want to handle it.
2315 // We could disable interceptors in the child process. But it's not possible
2316 // to simply intercept and wrap vfork, because vfork child is not allowed
2317 // to return from the function that calls vfork, and that's exactly what
2318 // we would do. So this would require some assembly trickery as well.
2319 // Instead we simply turn vfork into fork.
2320 return WRAP(fork)(fake);
2321}
2322#endif
2323
2324#if SANITIZER_LINUX
2325TSAN_INTERCEPTOR(int, clone, int (*fn)(void *), void *stack, int flags,
2326 void *arg, int *parent_tid, void *tls, pid_t *child_tid) {
2327 SCOPED_INTERCEPTOR_RAW(clone, fn, stack, flags, arg, parent_tid, tls,
2328 child_tid);
2329 struct Arg {
2330 int (*fn)(void *);
2331 void *arg;
2332 };
2333 auto wrapper = +[](void *p) -> int {
2334 auto *thr = cur_thread();
2335 uptr pc = GET_CURRENT_PC();
2336 // Start the background thread for fork, but not for clone.
2337 // For fork we did this always and it's known to work (or user code has
2338 // adopted). But if we do this for the new clone interceptor some code
2339 // (sandbox2) fails. So model we used to do for years and don't start the
2340 // background thread after clone.
2341 ForkChildAfter(thr, pc, start_thread: false);
2342 FdOnFork(thr, pc);
2343 auto *arg = static_cast<Arg *>(p);
2344 return arg->fn(arg->arg);
2345 };
2346 ForkBefore(thr, pc);
2347 Arg arg_wrapper = {.fn: fn, .arg: arg};
2348 int pid = REAL(clone)(wrapper, stack, flags, &arg_wrapper, parent_tid, tls,
2349 child_tid);
2350 ForkParentAfter(thr, pc);
2351 return pid;
2352}
2353#endif
2354
2355#if !SANITIZER_APPLE && !SANITIZER_ANDROID
2356typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2357 void *data);
2358struct dl_iterate_phdr_data {
2359 ThreadState *thr;
2360 uptr pc;
2361 dl_iterate_phdr_cb_t cb;
2362 void *data;
2363};
2364
2365static bool IsAppNotRodata(uptr addr) {
2366 return IsAppMem(mem: addr) && *MemToShadow(x: addr) != Shadow::kRodata;
2367}
2368
2369static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2370 void *data) {
2371 dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2372 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2373 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2374 // inside of dynamic linker, so we "unpoison" it here in order to not
2375 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2376 // because some libc functions call __libc_dlopen.
2377 if (info && IsAppNotRodata(addr: (uptr)info->dlpi_name))
2378 MemoryResetRange(thr: cbdata->thr, pc: cbdata->pc, addr: (uptr)info->dlpi_name,
2379 size: internal_strlen(s: info->dlpi_name));
2380 int res = cbdata->cb(info, size, cbdata->data);
2381 // Perform the check one more time in case info->dlpi_name was overwritten
2382 // by user callback.
2383 if (info && IsAppNotRodata(addr: (uptr)info->dlpi_name))
2384 MemoryResetRange(thr: cbdata->thr, pc: cbdata->pc, addr: (uptr)info->dlpi_name,
2385 size: internal_strlen(s: info->dlpi_name));
2386 return res;
2387}
2388
2389TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2390 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2391 dl_iterate_phdr_data cbdata;
2392 cbdata.thr = thr;
2393 cbdata.pc = pc;
2394 cbdata.cb = cb;
2395 cbdata.data = data;
2396 int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2397 return res;
2398}
2399#endif
2400
2401static int OnExit(ThreadState *thr) {
2402 int status = Finalize(thr);
2403 FlushStreams();
2404 return status;
2405}
2406
2407#if !SANITIZER_APPLE
2408static void HandleRecvmsg(ThreadState *thr, uptr pc,
2409 __sanitizer_msghdr *msg) {
2410 int fds[64];
2411 int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2412 for (int i = 0; i < cnt; i++)
2413 FdEventCreate(thr, pc, fd: fds[i]);
2414}
2415#endif
2416
2417#include "sanitizer_common/sanitizer_platform_interceptors.h"
2418// Causes interceptor recursion (getaddrinfo() and fopen())
2419#undef SANITIZER_INTERCEPT_GETADDRINFO
2420// We define our own.
2421#if SANITIZER_INTERCEPT_TLS_GET_ADDR
2422#define NEED_TLS_GET_ADDR
2423#endif
2424#undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2425#define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1
2426#undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2427
2428#define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2429 INTERCEPT_FUNCTION_VER(name, ver)
2430#define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \
2431 (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name))
2432
2433#define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2434 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2435 TsanInterceptorContext _ctx = {thr, pc}; \
2436 ctx = (void *)&_ctx; \
2437 (void)ctx;
2438
2439#define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2440 if (path) \
2441 Acquire(thr, pc, File2addr(path)); \
2442 if (file) { \
2443 int fd = fileno_unlocked(file); \
2444 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2445 }
2446
2447#define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2448 if (file) { \
2449 int fd = fileno_unlocked(file); \
2450 FdClose(thr, pc, fd); \
2451 }
2452
2453#define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \
2454 ({ \
2455 CheckNoDeepBind(filename, flag); \
2456 ThreadIgnoreBegin(thr, 0); \
2457 void *res = REAL(dlopen)(filename, flag); \
2458 ThreadIgnoreEnd(thr); \
2459 res; \
2460 })
2461
2462// Ignore interceptors in OnLibraryLoaded()/Unloaded(). These hooks use code
2463// (ListOfModules::init, MemoryMappingLayout::DumpListOfModules) that make
2464// intercepted calls, which can cause deadlockes with ReportRace() which also
2465// uses this code.
2466#define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2467 ({ \
2468 ScopedIgnoreInterceptors ignore_interceptors; \
2469 libignore()->OnLibraryLoaded(filename); \
2470 })
2471
2472#define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2473 ({ \
2474 ScopedIgnoreInterceptors ignore_interceptors; \
2475 libignore()->OnLibraryUnloaded(); \
2476 })
2477
2478#define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2479 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2480
2481#define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2482 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2483
2484#define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2485 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2486
2487#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2488 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2489
2490#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2491 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2492
2493#define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2494 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2495
2496#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2497 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2498
2499#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2500 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2501
2502#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2503 if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \
2504 COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name); \
2505 else \
2506 __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name)
2507
2508#define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2509
2510#define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2511 OnExit(((TsanInterceptorContext *) ctx)->thr)
2512
2513#define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
2514 off) \
2515 do { \
2516 return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2517 off); \
2518 } while (false)
2519
2520#define COMMON_INTERCEPTOR_MUNMAP_IMPL(ctx, addr, sz) \
2521 do { \
2522 return munmap_interceptor(thr, pc, REAL(munmap), addr, sz); \
2523 } while (false)
2524
2525#if !SANITIZER_APPLE
2526#define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2527 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2528 ((TsanInterceptorContext *)ctx)->pc, msg)
2529#endif
2530
2531#define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2532 if (TsanThread *t = GetCurrentThread()) { \
2533 *begin = t->tls_begin(); \
2534 *end = t->tls_end(); \
2535 } else { \
2536 *begin = *end = 0; \
2537 }
2538
2539#define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2540 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2541
2542#define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2543 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2544
2545#include "sanitizer_common/sanitizer_common_interceptors.inc"
2546
2547static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2548 __sanitizer_sigaction *old);
2549static __sanitizer_sighandler_ptr signal_impl(int sig,
2550 __sanitizer_sighandler_ptr h);
2551
2552#define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2553 { return sigaction_impl(signo, act, oldact); }
2554
2555#define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2556 { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2557
2558#define SIGNAL_INTERCEPTOR_ENTER() LazyInitialize(cur_thread_init())
2559
2560#include "sanitizer_common/sanitizer_signal_interceptors.inc"
2561
2562int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2563 __sanitizer_sigaction *old) {
2564 // Note: if we call REAL(sigaction) directly for any reason without proxying
2565 // the signal handler through sighandler, very bad things will happen.
2566 // The handler will run synchronously and corrupt tsan per-thread state.
2567 SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2568 if (sig <= 0 || sig >= kSigCount) {
2569 errno = errno_EINVAL;
2570 return -1;
2571 }
2572 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2573 __sanitizer_sigaction old_stored;
2574 if (old) internal_memcpy(dest: &old_stored, src: &sigactions[sig], n: sizeof(old_stored));
2575 __sanitizer_sigaction newact;
2576 if (act) {
2577 // Copy act into sigactions[sig].
2578 // Can't use struct copy, because compiler can emit call to memcpy.
2579 // Can't use internal_memcpy, because it copies byte-by-byte,
2580 // and signal handler reads the handler concurrently. It can read
2581 // some bytes from old value and some bytes from new value.
2582 // Use volatile to prevent insertion of memcpy.
2583 sigactions[sig].handler =
2584 *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2585 sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2586 internal_memcpy(dest: &sigactions[sig].sa_mask, src: &act->sa_mask,
2587 n: sizeof(sigactions[sig].sa_mask));
2588#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
2589 sigactions[sig].sa_restorer = act->sa_restorer;
2590#endif
2591 internal_memcpy(dest: &newact, src: act, n: sizeof(newact));
2592 internal_sigfillset(set: &newact.sa_mask);
2593 if ((act->sa_flags & SA_SIGINFO) ||
2594 ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl)) {
2595 newact.sa_flags |= SA_SIGINFO;
2596 newact.sigaction = sighandler;
2597 }
2598 ReleaseStore(thr, pc, addr: (uptr)&sigactions[sig]);
2599 act = &newact;
2600 }
2601 int res = REAL(sigaction)(sig, act, old);
2602 if (res == 0 && old && old->sigaction == sighandler)
2603 internal_memcpy(dest: old, src: &old_stored, n: sizeof(*old));
2604 return res;
2605}
2606
2607static __sanitizer_sighandler_ptr signal_impl(int sig,
2608 __sanitizer_sighandler_ptr h) {
2609 __sanitizer_sigaction act;
2610 act.handler = h;
2611 internal_memset(s: &act.sa_mask, c: -1, n: sizeof(act.sa_mask));
2612 act.sa_flags = 0;
2613 __sanitizer_sigaction old;
2614 int res = sigaction_symname(signum: sig, act: &act, oldact: &old);
2615 if (res) return (__sanitizer_sighandler_ptr)sig_err;
2616 return old.handler;
2617}
2618
2619#define TSAN_SYSCALL() \
2620 ThreadState *thr = cur_thread(); \
2621 if (thr->ignore_interceptors) \
2622 return; \
2623 ScopedSyscall scoped_syscall(thr)
2624
2625struct ScopedSyscall {
2626 ThreadState *thr;
2627
2628 explicit ScopedSyscall(ThreadState *thr) : thr(thr) { LazyInitialize(thr); }
2629
2630 ~ScopedSyscall() {
2631 ProcessPendingSignals(thr);
2632 }
2633};
2634
2635#if !SANITIZER_FREEBSD && !SANITIZER_APPLE
2636static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2637 TSAN_SYSCALL();
2638 MemoryAccessRange(thr, pc, addr: p, size: s, is_write: write);
2639}
2640
2641static USED void syscall_acquire(uptr pc, uptr addr) {
2642 TSAN_SYSCALL();
2643 Acquire(thr, pc, addr);
2644 DPrintf("syscall_acquire(0x%zx))\n", addr);
2645}
2646
2647static USED void syscall_release(uptr pc, uptr addr) {
2648 TSAN_SYSCALL();
2649 DPrintf("syscall_release(0x%zx)\n", addr);
2650 Release(thr, pc, addr);
2651}
2652
2653static void syscall_fd_close(uptr pc, int fd) {
2654 auto *thr = cur_thread();
2655 FdClose(thr, pc, fd);
2656}
2657
2658static USED void syscall_fd_acquire(uptr pc, int fd) {
2659 TSAN_SYSCALL();
2660 FdAcquire(thr, pc, fd);
2661 DPrintf("syscall_fd_acquire(%d)\n", fd);
2662}
2663
2664static USED void syscall_fd_release(uptr pc, int fd) {
2665 TSAN_SYSCALL();
2666 DPrintf("syscall_fd_release(%d)\n", fd);
2667 FdRelease(thr, pc, fd);
2668}
2669
2670static USED void sycall_blocking_start() {
2671 DPrintf("sycall_blocking_start()\n");
2672 ThreadState *thr = cur_thread();
2673 EnterBlockingFunc(thr);
2674 // When we are in a "blocking call", we process signals asynchronously
2675 // (right when they arrive). In this context we do not expect to be
2676 // executing any user/runtime code. The known interceptor sequence when
2677 // this is not true is: pthread_join -> munmap(stack). It's fine
2678 // to ignore munmap in this case -- we handle stack shadow separately.
2679 thr->ignore_interceptors++;
2680}
2681
2682static USED void sycall_blocking_end() {
2683 DPrintf("sycall_blocking_end()\n");
2684 ThreadState *thr = cur_thread();
2685 thr->ignore_interceptors--;
2686 atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed);
2687}
2688
2689static void syscall_pre_fork(uptr pc) { ForkBefore(thr: cur_thread(), pc); }
2690
2691static void syscall_post_fork(uptr pc, int pid) {
2692 ThreadState *thr = cur_thread();
2693 if (pid == 0) {
2694 // child
2695 ForkChildAfter(thr, pc, start_thread: true);
2696 FdOnFork(thr, pc);
2697 } else if (pid > 0) {
2698 // parent
2699 ForkParentAfter(thr, pc);
2700 } else {
2701 // error
2702 ForkParentAfter(thr, pc);
2703 }
2704}
2705#endif
2706
2707#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2708 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2709
2710#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2711 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2712
2713#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2714 do { \
2715 (void)(p); \
2716 (void)(s); \
2717 } while (false)
2718
2719#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2720 do { \
2721 (void)(p); \
2722 (void)(s); \
2723 } while (false)
2724
2725#define COMMON_SYSCALL_ACQUIRE(addr) \
2726 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2727
2728#define COMMON_SYSCALL_RELEASE(addr) \
2729 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2730
2731#define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2732
2733#define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2734
2735#define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2736
2737#define COMMON_SYSCALL_PRE_FORK() \
2738 syscall_pre_fork(GET_CALLER_PC())
2739
2740#define COMMON_SYSCALL_POST_FORK(res) \
2741 syscall_post_fork(GET_CALLER_PC(), res)
2742
2743#define COMMON_SYSCALL_BLOCKING_START() sycall_blocking_start()
2744#define COMMON_SYSCALL_BLOCKING_END() sycall_blocking_end()
2745
2746#include "sanitizer_common/sanitizer_common_syscalls.inc"
2747#include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2748
2749#ifdef NEED_TLS_GET_ADDR
2750
2751static void handle_tls_addr(void *arg, void *res) {
2752 ThreadState *thr = cur_thread();
2753 if (!thr)
2754 return;
2755 DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, static_tls_begin: thr->tls_addr,
2756 static_tls_end: thr->tls_addr + thr->tls_size);
2757 if (!dtv)
2758 return;
2759 // New DTLS block has been allocated.
2760 MemoryResetRange(thr, pc: 0, addr: dtv->beg, size: dtv->size);
2761}
2762
2763#if !SANITIZER_S390
2764// Define own interceptor instead of sanitizer_common's for three reasons:
2765// 1. It must not process pending signals.
2766// Signal handlers may contain MOVDQA instruction (see below).
2767// 2. It must be as simple as possible to not contain MOVDQA.
2768// 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2769// is empty for tsan (meant only for msan).
2770// Note: __tls_get_addr can be called with mis-aligned stack due to:
2771// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2772// So the interceptor must work with mis-aligned stack, in particular, does not
2773// execute MOVDQA with stack addresses.
2774TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2775 void *res = REAL(__tls_get_addr)(arg);
2776 handle_tls_addr(arg, res);
2777 return res;
2778}
2779#else // SANITIZER_S390
2780TSAN_INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) {
2781 uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset));
2782 char *tp = static_cast<char *>(__builtin_thread_pointer());
2783 handle_tls_addr(arg, res + tp);
2784 return res;
2785}
2786#endif
2787#endif
2788
2789#if SANITIZER_NETBSD
2790TSAN_INTERCEPTOR(void, _lwp_exit) {
2791 SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2792 DestroyThreadState();
2793 REAL(_lwp_exit)();
2794}
2795#define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2796#else
2797#define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2798#endif
2799
2800#if SANITIZER_FREEBSD
2801TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2802 SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2803 DestroyThreadState();
2804 REAL(thr_exit(state));
2805}
2806#define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2807#else
2808#define TSAN_MAYBE_INTERCEPT_THR_EXIT
2809#endif
2810
2811TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init, void *c, void *a)
2812TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy, void *c)
2813TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal, void *c)
2814TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast, void *c)
2815TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait, void *c, void *m)
2816TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init, void *m, void *a)
2817TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy, void *m)
2818TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock, void *m)
2819TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock, void *m)
2820TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock, void *m)
2821TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init, void *l, void *a)
2822TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy, void *l)
2823TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock, void *l)
2824TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock, void *l)
2825TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock, void *l)
2826TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock, void *l)
2827TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock, void *l)
2828TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once, void *o, void (*i)())
2829TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask, int f, void *n, void *o)
2830
2831TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2832TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2833TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2834TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2835TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2836TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2837TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2838TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_lock, void *m)
2839TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2840TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_unlock, void *m)
2841TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2842TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2843TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2844TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2845TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2846TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2847TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2848TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2849TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
2850 void *c)
2851
2852namespace __tsan {
2853
2854static void finalize(void *arg) {
2855 ThreadState *thr = cur_thread();
2856 int status = Finalize(thr);
2857 // Make sure the output is not lost.
2858 FlushStreams();
2859 if (status)
2860 Die();
2861}
2862
2863#if !SANITIZER_APPLE && !SANITIZER_ANDROID
2864static void unreachable() {
2865 Report(format: "FATAL: ThreadSanitizer: unreachable called\n");
2866 Die();
2867}
2868#endif
2869
2870// Define default implementation since interception of libdispatch is optional.
2871SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
2872
2873void InitializeInterceptors() {
2874#if !SANITIZER_APPLE
2875 // We need to setup it early, because functions like dlsym() can call it.
2876 REAL(memset) = internal_memset;
2877 REAL(memcpy) = internal_memcpy;
2878#endif
2879
2880 __interception::DoesNotSupportStaticLinking();
2881
2882 new(interceptor_ctx()) InterceptorContext();
2883
2884 // Interpose __tls_get_addr before the common interposers. This is needed
2885 // because dlsym() may call malloc on failure which could result in other
2886 // interposed functions being called that could eventually make use of TLS.
2887#ifdef NEED_TLS_GET_ADDR
2888# if !SANITIZER_S390
2889 TSAN_INTERCEPT(__tls_get_addr);
2890# else
2891 TSAN_INTERCEPT(__tls_get_addr_internal);
2892 TSAN_INTERCEPT(__tls_get_offset);
2893# endif
2894#endif
2895 InitializeCommonInterceptors();
2896 InitializeSignalInterceptors();
2897 InitializeLibdispatchInterceptors();
2898
2899#if !SANITIZER_APPLE
2900 InitializeSetjmpInterceptors();
2901#endif
2902
2903 TSAN_INTERCEPT(longjmp_symname);
2904 TSAN_INTERCEPT(siglongjmp_symname);
2905#if SANITIZER_NETBSD
2906 TSAN_INTERCEPT(_longjmp);
2907#endif
2908
2909 TSAN_INTERCEPT(malloc);
2910 TSAN_INTERCEPT(__libc_memalign);
2911 TSAN_INTERCEPT(calloc);
2912 TSAN_INTERCEPT(realloc);
2913 TSAN_INTERCEPT(reallocarray);
2914 TSAN_INTERCEPT(free);
2915 TSAN_INTERCEPT(cfree);
2916 TSAN_INTERCEPT(munmap);
2917 TSAN_MAYBE_INTERCEPT_MEMALIGN;
2918 TSAN_INTERCEPT(valloc);
2919 TSAN_MAYBE_INTERCEPT_PVALLOC;
2920 TSAN_INTERCEPT(posix_memalign);
2921
2922 TSAN_INTERCEPT(strcpy);
2923 TSAN_INTERCEPT(strncpy);
2924 TSAN_INTERCEPT(strdup);
2925
2926 TSAN_INTERCEPT(pthread_create);
2927 TSAN_INTERCEPT(pthread_join);
2928 TSAN_INTERCEPT(pthread_detach);
2929 TSAN_INTERCEPT(pthread_exit);
2930 #if SANITIZER_LINUX
2931 TSAN_INTERCEPT(pthread_tryjoin_np);
2932 TSAN_INTERCEPT(pthread_timedjoin_np);
2933 #endif
2934
2935 TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2936 TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2937 TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2938 TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2939 TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2940 TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2941
2942 TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT;
2943
2944 TSAN_INTERCEPT(pthread_mutex_init);
2945 TSAN_INTERCEPT(pthread_mutex_destroy);
2946 TSAN_INTERCEPT(pthread_mutex_lock);
2947 TSAN_INTERCEPT(pthread_mutex_trylock);
2948 TSAN_INTERCEPT(pthread_mutex_timedlock);
2949 TSAN_INTERCEPT(pthread_mutex_unlock);
2950#if SANITIZER_LINUX
2951 TSAN_INTERCEPT(pthread_mutex_clocklock);
2952#endif
2953#if SANITIZER_GLIBC
2954# if !__GLIBC_PREREQ(2, 34)
2955 TSAN_INTERCEPT(__pthread_mutex_lock);
2956 TSAN_INTERCEPT(__pthread_mutex_unlock);
2957# endif
2958#endif
2959
2960 TSAN_INTERCEPT(pthread_spin_init);
2961 TSAN_INTERCEPT(pthread_spin_destroy);
2962 TSAN_INTERCEPT(pthread_spin_lock);
2963 TSAN_INTERCEPT(pthread_spin_trylock);
2964 TSAN_INTERCEPT(pthread_spin_unlock);
2965
2966 TSAN_INTERCEPT(pthread_rwlock_init);
2967 TSAN_INTERCEPT(pthread_rwlock_destroy);
2968 TSAN_INTERCEPT(pthread_rwlock_rdlock);
2969 TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2970 TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2971 TSAN_INTERCEPT(pthread_rwlock_wrlock);
2972 TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2973 TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2974 TSAN_INTERCEPT(pthread_rwlock_unlock);
2975
2976 TSAN_INTERCEPT(pthread_barrier_init);
2977 TSAN_INTERCEPT(pthread_barrier_destroy);
2978 TSAN_INTERCEPT(pthread_barrier_wait);
2979
2980 TSAN_INTERCEPT(pthread_once);
2981
2982 TSAN_MAYBE_INTERCEPT___FXSTAT;
2983 TSAN_MAYBE_INTERCEPT_FSTAT;
2984 TSAN_MAYBE_INTERCEPT_FSTAT64;
2985 TSAN_INTERCEPT(open);
2986 TSAN_MAYBE_INTERCEPT_OPEN64;
2987 TSAN_INTERCEPT(creat);
2988 TSAN_MAYBE_INTERCEPT_CREAT64;
2989 TSAN_INTERCEPT(dup);
2990 TSAN_INTERCEPT(dup2);
2991 TSAN_INTERCEPT(dup3);
2992 TSAN_MAYBE_INTERCEPT_EVENTFD;
2993 TSAN_MAYBE_INTERCEPT_SIGNALFD;
2994 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2995 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2996 TSAN_INTERCEPT(socket);
2997 TSAN_INTERCEPT(socketpair);
2998 TSAN_INTERCEPT(connect);
2999 TSAN_INTERCEPT(bind);
3000 TSAN_INTERCEPT(listen);
3001 TSAN_MAYBE_INTERCEPT_EPOLL;
3002 TSAN_INTERCEPT(close);
3003 TSAN_MAYBE_INTERCEPT___CLOSE;
3004 TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
3005 TSAN_INTERCEPT(pipe);
3006 TSAN_INTERCEPT(pipe2);
3007
3008 TSAN_INTERCEPT(unlink);
3009 TSAN_INTERCEPT(tmpfile);
3010 TSAN_MAYBE_INTERCEPT_TMPFILE64;
3011 TSAN_INTERCEPT(abort);
3012 TSAN_INTERCEPT(rmdir);
3013 TSAN_INTERCEPT(closedir);
3014
3015 TSAN_INTERCEPT(sigsuspend);
3016 TSAN_INTERCEPT(sigblock);
3017 TSAN_INTERCEPT(sigsetmask);
3018 TSAN_INTERCEPT(pthread_sigmask);
3019 TSAN_INTERCEPT(raise);
3020 TSAN_INTERCEPT(kill);
3021 TSAN_INTERCEPT(pthread_kill);
3022 TSAN_INTERCEPT(sleep);
3023 TSAN_INTERCEPT(usleep);
3024 TSAN_INTERCEPT(nanosleep);
3025 TSAN_INTERCEPT(pause);
3026 TSAN_INTERCEPT(gettimeofday);
3027 TSAN_INTERCEPT(getaddrinfo);
3028
3029 TSAN_INTERCEPT(fork);
3030 TSAN_INTERCEPT(vfork);
3031#if SANITIZER_LINUX
3032 TSAN_INTERCEPT(clone);
3033#endif
3034#if !SANITIZER_ANDROID
3035 TSAN_INTERCEPT(dl_iterate_phdr);
3036#endif
3037 TSAN_MAYBE_INTERCEPT_ON_EXIT;
3038 TSAN_INTERCEPT(__cxa_atexit);
3039 TSAN_INTERCEPT(_exit);
3040
3041 TSAN_MAYBE_INTERCEPT__LWP_EXIT;
3042 TSAN_MAYBE_INTERCEPT_THR_EXIT;
3043
3044#if !SANITIZER_APPLE && !SANITIZER_ANDROID
3045 // Need to setup it, because interceptors check that the function is resolved.
3046 // But atexit is emitted directly into the module, so can't be resolved.
3047 REAL(atexit) = (int(*)(void(*)()))unreachable;
3048#endif
3049
3050 if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
3051 Printf(format: "ThreadSanitizer: failed to setup atexit callback\n");
3052 Die();
3053 }
3054 if (pthread_atfork(prepare: atfork_prepare, parent: atfork_parent, child: atfork_child)) {
3055 Printf(format: "ThreadSanitizer: failed to setup atfork callbacks\n");
3056 Die();
3057 }
3058
3059#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
3060 if (pthread_key_create(key: &interceptor_ctx()->finalize_key, destructor: &thread_finalize)) {
3061 Printf(format: "ThreadSanitizer: failed to create thread key\n");
3062 Die();
3063 }
3064#endif
3065
3066 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init);
3067 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy);
3068 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal);
3069 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast);
3070 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait);
3071 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init);
3072 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy);
3073 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock);
3074 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock);
3075 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock);
3076 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init);
3077 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy);
3078 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock);
3079 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock);
3080 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock);
3081 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock);
3082 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock);
3083 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once);
3084 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask);
3085
3086 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
3087 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
3088 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
3089 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
3090 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
3091 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
3092 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
3093 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_lock);
3094 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
3095 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_unlock);
3096 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
3097 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
3098 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
3099 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
3100 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
3101 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
3102 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
3103 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
3104 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
3105
3106 FdInit();
3107}
3108
3109} // namespace __tsan
3110
3111// Invisible barrier for tests.
3112// There were several unsuccessful iterations for this functionality:
3113// 1. Initially it was implemented in user code using
3114// REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
3115// MacOS. Futexes are linux-specific for this matter.
3116// 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
3117// "as-if synchronized via sleep" messages in reports which failed some
3118// output tests.
3119// 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
3120// visible events, which lead to "failed to restore stack trace" failures.
3121// Note that no_sanitize_thread attribute does not turn off atomic interception
3122// so attaching it to the function defined in user code does not help.
3123// That's why we now have what we have.
3124constexpr u32 kBarrierThreadBits = 10;
3125constexpr u32 kBarrierThreads = 1 << kBarrierThreadBits;
3126
3127extern "C" {
3128
3129SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_init(
3130 atomic_uint32_t *barrier, u32 num_threads) {
3131 if (num_threads >= kBarrierThreads) {
3132 Printf(format: "barrier_init: count is too large (%d)\n", num_threads);
3133 Die();
3134 }
3135 // kBarrierThreadBits lsb is thread count,
3136 // the remaining are count of entered threads.
3137 atomic_store(a: barrier, v: num_threads, mo: memory_order_relaxed);
3138}
3139
3140static u32 barrier_epoch(u32 value) {
3141 return (value >> kBarrierThreadBits) / (value & (kBarrierThreads - 1));
3142}
3143
3144SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_wait(
3145 atomic_uint32_t *barrier) {
3146 u32 old = atomic_fetch_add(a: barrier, v: kBarrierThreads, mo: memory_order_relaxed);
3147 u32 old_epoch = barrier_epoch(value: old);
3148 if (barrier_epoch(value: old + kBarrierThreads) != old_epoch) {
3149 FutexWake(p: barrier, count: (1 << 30));
3150 return;
3151 }
3152 for (;;) {
3153 u32 cur = atomic_load(a: barrier, mo: memory_order_relaxed);
3154 if (barrier_epoch(value: cur) != old_epoch)
3155 return;
3156 FutexWait(p: barrier, cmp: cur);
3157 }
3158}
3159
3160} // extern "C"
3161

source code of compiler-rt/lib/tsan/rtl/tsan_interceptors_posix.cpp