1 | //===-- ubsan_type_hash_itanium.cpp ---------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implementation of type hashing/lookup for Itanium C++ ABI. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "sanitizer_common/sanitizer_platform.h" |
14 | #include "ubsan_platform.h" |
15 | #if CAN_SANITIZE_UB && !defined(_MSC_VER) |
16 | #include "ubsan_type_hash.h" |
17 | |
18 | #include "sanitizer_common/sanitizer_common.h" |
19 | #include "sanitizer_common/sanitizer_ptrauth.h" |
20 | #include <stdint.h> |
21 | |
22 | // The following are intended to be binary compatible with the definitions |
23 | // given in the Itanium ABI. We make no attempt to be ODR-compatible with |
24 | // those definitions, since existing ABI implementations aren't. |
25 | |
26 | namespace std { |
27 | class type_info { |
28 | public: |
29 | typedef const char *__type_name_t; |
30 | virtual ~type_info(); |
31 | |
32 | const char *__type_name; |
33 | |
34 | __type_name_t name() const { |
35 | #if defined(__APPLE__) && defined(__LP64__) && !defined(__x86_64__) |
36 | uintptr_t __non_unique_rtti_bit = |
37 | (1ULL << ((__CHAR_BIT__ * sizeof(__type_name_t)) - 1)); |
38 | return (__type_name_t)((uintptr_t)__type_name & ~__non_unique_rtti_bit); |
39 | #else |
40 | return __type_name; |
41 | #endif |
42 | } |
43 | }; |
44 | } |
45 | |
46 | namespace __cxxabiv1 { |
47 | |
48 | /// Type info for classes with no bases, and base class for type info for |
49 | /// classes with bases. |
50 | class __class_type_info : public std::type_info { |
51 | ~__class_type_info() override; |
52 | }; |
53 | |
54 | /// Type info for classes with simple single public inheritance. |
55 | class __si_class_type_info : public __class_type_info { |
56 | public: |
57 | ~__si_class_type_info() override; |
58 | |
59 | const __class_type_info *__base_type; |
60 | }; |
61 | |
62 | class __base_class_type_info { |
63 | public: |
64 | const __class_type_info *__base_type; |
65 | long __offset_flags; |
66 | |
67 | enum __offset_flags_masks { |
68 | __virtual_mask = 0x1, |
69 | __public_mask = 0x2, |
70 | __offset_shift = 8 |
71 | }; |
72 | }; |
73 | |
74 | /// Type info for classes with multiple, virtual, or non-public inheritance. |
75 | class __vmi_class_type_info : public __class_type_info { |
76 | public: |
77 | ~__vmi_class_type_info() override; |
78 | |
79 | unsigned int flags; |
80 | unsigned int base_count; |
81 | __base_class_type_info base_info[1]; |
82 | }; |
83 | |
84 | } |
85 | |
86 | namespace abi = __cxxabiv1; |
87 | |
88 | using namespace __sanitizer; |
89 | |
90 | // We implement a simple two-level cache for type-checking results. For each |
91 | // (vptr,type) pair, a hash is computed. This hash is assumed to be globally |
92 | // unique; if it collides, we will get false negatives, but: |
93 | // * such a collision would have to occur on the *first* bad access, |
94 | // * the probability of such a collision is low (and for a 64-bit target, is |
95 | // negligible), and |
96 | // * the vptr, and thus the hash, can be affected by ASLR, so multiple runs |
97 | // give better coverage. |
98 | // |
99 | // The first caching layer is a small hash table with no chaining; buckets are |
100 | // reused as needed. The second caching layer is a large hash table with open |
101 | // chaining. We can freely evict from either layer since this is just a cache. |
102 | // |
103 | // FIXME: Make these hash table accesses thread-safe. The races here are benign: |
104 | // assuming the unsequenced loads and stores don't misbehave too badly, |
105 | // the worst case is false negatives or poor cache behavior, not false |
106 | // positives or crashes. |
107 | |
108 | /// Find a bucket to store the given hash value in. |
109 | static __ubsan::HashValue *getTypeCacheHashTableBucket(__ubsan::HashValue V) { |
110 | static const unsigned HashTableSize = 65537; |
111 | static __ubsan::HashValue __ubsan_vptr_hash_set[HashTableSize]; |
112 | |
113 | unsigned First = (V & 65535) ^ 1; |
114 | unsigned Probe = First; |
115 | for (int Tries = 5; Tries; --Tries) { |
116 | if (!__ubsan_vptr_hash_set[Probe] || __ubsan_vptr_hash_set[Probe] == V) |
117 | return &__ubsan_vptr_hash_set[Probe]; |
118 | Probe += ((V >> 16) & 65535) + 1; |
119 | if (Probe >= HashTableSize) |
120 | Probe -= HashTableSize; |
121 | } |
122 | // FIXME: Pick a random entry from the probe sequence to evict rather than |
123 | // just taking the first. |
124 | return &__ubsan_vptr_hash_set[First]; |
125 | } |
126 | |
127 | /// \brief Determine whether \p Derived has a \p Base base class subobject at |
128 | /// offset \p Offset. |
129 | static bool isDerivedFromAtOffset(const abi::__class_type_info *Derived, |
130 | const abi::__class_type_info *Base, |
131 | sptr Offset) { |
132 | if (Derived->name() == Base->name() || |
133 | __ubsan::checkTypeInfoEquality(TypeInfo1: Derived, TypeInfo2: Base)) |
134 | return Offset == 0; |
135 | |
136 | if (const abi::__si_class_type_info *SI = |
137 | dynamic_cast<const abi::__si_class_type_info*>(Derived)) |
138 | return isDerivedFromAtOffset(Derived: SI->__base_type, Base, Offset); |
139 | |
140 | const abi::__vmi_class_type_info *VTI = |
141 | dynamic_cast<const abi::__vmi_class_type_info*>(Derived); |
142 | if (!VTI) |
143 | // No base class subobjects. |
144 | return false; |
145 | |
146 | // Look for a base class which is derived from \p Base at the right offset. |
147 | for (unsigned int base = 0; base != VTI->base_count; ++base) { |
148 | // FIXME: Curtail the recursion if this base can't possibly contain the |
149 | // given offset. |
150 | sptr OffsetHere = VTI->base_info[base].__offset_flags >> |
151 | abi::__base_class_type_info::__offset_shift; |
152 | if (VTI->base_info[base].__offset_flags & |
153 | abi::__base_class_type_info::__virtual_mask) |
154 | // For now, just punt on virtual bases and say 'yes'. |
155 | // FIXME: OffsetHere is the offset in the vtable of the virtual base |
156 | // offset. Read the vbase offset out of the vtable and use it. |
157 | return true; |
158 | if (isDerivedFromAtOffset(Derived: VTI->base_info[base].__base_type, |
159 | Base, Offset: Offset - OffsetHere)) |
160 | return true; |
161 | } |
162 | |
163 | return false; |
164 | } |
165 | |
166 | /// \brief Find the derived-most dynamic base class of \p Derived at offset |
167 | /// \p Offset. |
168 | static const abi::__class_type_info *findBaseAtOffset( |
169 | const abi::__class_type_info *Derived, sptr Offset) { |
170 | if (!Offset) |
171 | return Derived; |
172 | |
173 | if (const abi::__si_class_type_info *SI = |
174 | dynamic_cast<const abi::__si_class_type_info*>(Derived)) |
175 | return findBaseAtOffset(Derived: SI->__base_type, Offset); |
176 | |
177 | const abi::__vmi_class_type_info *VTI = |
178 | dynamic_cast<const abi::__vmi_class_type_info*>(Derived); |
179 | if (!VTI) |
180 | // No base class subobjects. |
181 | return nullptr; |
182 | |
183 | for (unsigned int base = 0; base != VTI->base_count; ++base) { |
184 | sptr OffsetHere = VTI->base_info[base].__offset_flags >> |
185 | abi::__base_class_type_info::__offset_shift; |
186 | if (VTI->base_info[base].__offset_flags & |
187 | abi::__base_class_type_info::__virtual_mask) |
188 | // FIXME: Can't handle virtual bases yet. |
189 | continue; |
190 | if (const abi::__class_type_info *Base = |
191 | findBaseAtOffset(Derived: VTI->base_info[base].__base_type, |
192 | Offset: Offset - OffsetHere)) |
193 | return Base; |
194 | } |
195 | |
196 | return nullptr; |
197 | } |
198 | |
199 | namespace { |
200 | |
201 | struct VtablePrefix { |
202 | /// The offset from the vptr to the start of the most-derived object. |
203 | /// This will only be greater than zero in some virtual base class vtables |
204 | /// used during object con-/destruction, and will usually be exactly zero. |
205 | sptr Offset; |
206 | /// The type_info object describing the most-derived class type. |
207 | std::type_info *TypeInfo; |
208 | }; |
209 | VtablePrefix *getVtablePrefix(void *Vtable) { |
210 | Vtable = ptrauth_auth_data(Vtable, ptrauth_key_cxx_vtable_pointer, 0); |
211 | VtablePrefix *Vptr = reinterpret_cast<VtablePrefix*>(Vtable); |
212 | VtablePrefix *Prefix = Vptr - 1; |
213 | if (!IsAccessibleMemoryRange(beg: (uptr)Prefix, size: sizeof(VtablePrefix))) |
214 | return nullptr; |
215 | if (!Prefix->TypeInfo) |
216 | // This can't possibly be a valid vtable. |
217 | return nullptr; |
218 | return Prefix; |
219 | } |
220 | |
221 | } |
222 | |
223 | bool __ubsan::checkDynamicType(void *Object, void *Type, HashValue Hash) { |
224 | // A crash anywhere within this function probably means the vptr is corrupted. |
225 | // FIXME: Perform these checks more cautiously. |
226 | |
227 | // Check whether this is something we've evicted from the cache. |
228 | HashValue *Bucket = getTypeCacheHashTableBucket(V: Hash); |
229 | if (*Bucket == Hash) { |
230 | __ubsan_vptr_type_cache[Hash % VptrTypeCacheSize] = Hash; |
231 | return true; |
232 | } |
233 | |
234 | void *VtablePtr = *reinterpret_cast<void **>(Object); |
235 | VtablePrefix *Vtable = getVtablePrefix(Vtable: VtablePtr); |
236 | if (!Vtable) |
237 | return false; |
238 | if (Vtable->Offset < -VptrMaxOffsetToTop || Vtable->Offset > VptrMaxOffsetToTop) { |
239 | // Too large or too small offset are signs of Vtable corruption. |
240 | return false; |
241 | } |
242 | |
243 | // Check that this is actually a type_info object for a class type. |
244 | abi::__class_type_info *Derived = |
245 | dynamic_cast<abi::__class_type_info*>(Vtable->TypeInfo); |
246 | if (!Derived) |
247 | return false; |
248 | |
249 | abi::__class_type_info *Base = (abi::__class_type_info*)Type; |
250 | if (!isDerivedFromAtOffset(Derived, Base, Offset: -Vtable->Offset)) |
251 | return false; |
252 | |
253 | // Success. Cache this result. |
254 | __ubsan_vptr_type_cache[Hash % VptrTypeCacheSize] = Hash; |
255 | *Bucket = Hash; |
256 | return true; |
257 | } |
258 | |
259 | __ubsan::DynamicTypeInfo |
260 | __ubsan::getDynamicTypeInfoFromVtable(void *VtablePtr) { |
261 | VtablePrefix *Vtable = getVtablePrefix(Vtable: VtablePtr); |
262 | if (!Vtable) |
263 | return DynamicTypeInfo(nullptr, 0, nullptr); |
264 | if (Vtable->Offset < -VptrMaxOffsetToTop || Vtable->Offset > VptrMaxOffsetToTop) |
265 | return DynamicTypeInfo(nullptr, Vtable->Offset, nullptr); |
266 | const abi::__class_type_info *ObjectType = findBaseAtOffset( |
267 | Derived: static_cast<const abi::__class_type_info*>(Vtable->TypeInfo), |
268 | Offset: -Vtable->Offset); |
269 | return DynamicTypeInfo(Vtable->TypeInfo->name(), -Vtable->Offset, |
270 | ObjectType ? ObjectType->name() : "<unknown>" ); |
271 | } |
272 | |
273 | bool __ubsan::checkTypeInfoEquality(const void *TypeInfo1, |
274 | const void *TypeInfo2) { |
275 | auto TI1 = static_cast<const std::type_info *>(TypeInfo1); |
276 | auto TI2 = static_cast<const std::type_info *>(TypeInfo2); |
277 | return SANITIZER_NON_UNIQUE_TYPEINFO && TI1->name()[0] != '*' && |
278 | TI2->name()[0] != '*' && !internal_strcmp(s1: TI1->name(), s2: TI2->name()); |
279 | } |
280 | |
281 | #endif // CAN_SANITIZE_UB && !SANITIZER_WINDOWS |
282 | |