| 1 | //===-- fdr_controller_test.cpp -------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of XRay, a function call tracing system. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | #include <algorithm> |
| 13 | #include <memory> |
| 14 | #include <time.h> |
| 15 | |
| 16 | #include "test_helpers.h" |
| 17 | #include "xray/xray_records.h" |
| 18 | #include "xray_buffer_queue.h" |
| 19 | #include "xray_fdr_controller.h" |
| 20 | #include "xray_fdr_log_writer.h" |
| 21 | #include "llvm/Support/DataExtractor.h" |
| 22 | #include "llvm/Testing/Support/Error.h" |
| 23 | #include "llvm/XRay/Trace.h" |
| 24 | #include "llvm/XRay/XRayRecord.h" |
| 25 | #include "gmock/gmock.h" |
| 26 | #include "gtest/gtest.h" |
| 27 | |
| 28 | namespace __xray { |
| 29 | namespace { |
| 30 | |
| 31 | using ::llvm::HasValue; |
| 32 | using ::llvm::xray::testing::FuncId; |
| 33 | using ::llvm::xray::testing::HasArg; |
| 34 | using ::llvm::xray::testing::RecordType; |
| 35 | using ::llvm::xray::testing::TSCIs; |
| 36 | using ::testing::AllOf; |
| 37 | using ::testing::ElementsAre; |
| 38 | using ::testing::Eq; |
| 39 | using ::testing::Field; |
| 40 | using ::testing::Gt; |
| 41 | using ::testing::IsEmpty; |
| 42 | using ::testing::SizeIs; |
| 43 | |
| 44 | class FunctionSequenceTest : public ::testing::Test { |
| 45 | protected: |
| 46 | BufferQueue::Buffer B{}; |
| 47 | std::unique_ptr<BufferQueue> BQ; |
| 48 | std::unique_ptr<FDRLogWriter> W; |
| 49 | std::unique_ptr<FDRController<>> C; |
| 50 | |
| 51 | public: |
| 52 | void SetUp() override { |
| 53 | bool Success; |
| 54 | BQ = std::make_unique<BufferQueue>(args: 4096, args: 1, args&: Success); |
| 55 | ASSERT_TRUE(Success); |
| 56 | ASSERT_EQ(BQ->getBuffer(Buf&: B), BufferQueue::ErrorCode::Ok); |
| 57 | W = std::make_unique<FDRLogWriter>(args&: B); |
| 58 | C = std::make_unique<FDRController<>>(args: BQ.get(), args&: B, args&: *W, args&: clock_gettime, args: 0); |
| 59 | } |
| 60 | }; |
| 61 | |
| 62 | TEST_F(FunctionSequenceTest, DefaultInitFinalizeFlush) { |
| 63 | ASSERT_TRUE(C->functionEnter(1, 2, 3)); |
| 64 | ASSERT_TRUE(C->functionExit(1, 2, 3)); |
| 65 | ASSERT_TRUE(C->flush()); |
| 66 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 67 | |
| 68 | // Serialize the buffers then test to see we find the expected records. |
| 69 | std::string Serialized = serialize(*BQ, 3); |
| 70 | llvm::DataExtractor DE(Serialized, true, 8); |
| 71 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 72 | EXPECT_THAT_EXPECTED( |
| 73 | TraceOrErr, |
| 74 | HasValue(ElementsAre( |
| 75 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER)), |
| 76 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT))))); |
| 77 | } |
| 78 | |
| 79 | TEST_F(FunctionSequenceTest, BoundaryFuncIdEncoding) { |
| 80 | // We ensure that we can write function id's that are at the boundary of the |
| 81 | // acceptable function ids. |
| 82 | int32_t FId = (1 << 28) - 1; |
| 83 | uint64_t TSC = 2; |
| 84 | uint16_t CPU = 1; |
| 85 | ASSERT_TRUE(C->functionEnter(FId, TSC++, CPU)); |
| 86 | ASSERT_TRUE(C->functionExit(FId, TSC++, CPU)); |
| 87 | ASSERT_TRUE(C->functionEnterArg(FId, TSC++, CPU, 1)); |
| 88 | ASSERT_TRUE(C->functionTailExit(FId, TSC++, CPU)); |
| 89 | ASSERT_TRUE(C->flush()); |
| 90 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 91 | |
| 92 | // Serialize the buffers then test to see we find the expected records. |
| 93 | std::string Serialized = serialize(*BQ, 3); |
| 94 | llvm::DataExtractor DE(Serialized, true, 8); |
| 95 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 96 | EXPECT_THAT_EXPECTED( |
| 97 | TraceOrErr, |
| 98 | HasValue(ElementsAre( |
| 99 | AllOf(FuncId(FId), RecordType(llvm::xray::RecordTypes::ENTER)), |
| 100 | AllOf(FuncId(FId), RecordType(llvm::xray::RecordTypes::EXIT)), |
| 101 | AllOf(FuncId(FId), RecordType(llvm::xray::RecordTypes::ENTER_ARG)), |
| 102 | AllOf(FuncId(FId), RecordType(llvm::xray::RecordTypes::TAIL_EXIT))))); |
| 103 | } |
| 104 | |
| 105 | TEST_F(FunctionSequenceTest, ThresholdsAreEnforced) { |
| 106 | C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000); |
| 107 | ASSERT_TRUE(C->functionEnter(1, 2, 3)); |
| 108 | ASSERT_TRUE(C->functionExit(1, 2, 3)); |
| 109 | ASSERT_TRUE(C->flush()); |
| 110 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 111 | |
| 112 | // Serialize the buffers then test to see we find the *no* records, because |
| 113 | // the function entry-exit comes under the cycle threshold. |
| 114 | std::string Serialized = serialize(*BQ, 3); |
| 115 | llvm::DataExtractor DE(Serialized, true, 8); |
| 116 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 117 | EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(IsEmpty())); |
| 118 | } |
| 119 | |
| 120 | TEST_F(FunctionSequenceTest, ArgsAreHandledAndKept) { |
| 121 | C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000); |
| 122 | ASSERT_TRUE(C->functionEnterArg(1, 2, 3, 4)); |
| 123 | ASSERT_TRUE(C->functionExit(1, 2, 3)); |
| 124 | ASSERT_TRUE(C->flush()); |
| 125 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 126 | |
| 127 | // Serialize the buffers then test to see we find the function enter arg |
| 128 | // record with the specified argument. |
| 129 | std::string Serialized = serialize(*BQ, 3); |
| 130 | llvm::DataExtractor DE(Serialized, true, 8); |
| 131 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 132 | EXPECT_THAT_EXPECTED( |
| 133 | TraceOrErr, |
| 134 | HasValue(ElementsAre( |
| 135 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER_ARG), |
| 136 | HasArg(4)), |
| 137 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT))))); |
| 138 | } |
| 139 | |
| 140 | TEST_F(FunctionSequenceTest, PreservedCallsHaveCorrectTSC) { |
| 141 | C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000); |
| 142 | uint64_t TSC = 1; |
| 143 | uint16_t CPU = 0; |
| 144 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 145 | ASSERT_TRUE(C->functionEnter(2, TSC++, CPU)); |
| 146 | ASSERT_TRUE(C->functionExit(2, TSC++, CPU)); |
| 147 | ASSERT_TRUE(C->functionExit(1, TSC += 1000, CPU)); |
| 148 | ASSERT_TRUE(C->flush()); |
| 149 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 150 | |
| 151 | // Serialize the buffers then test to see if we find the remaining records, |
| 152 | // because the function entry-exit comes under the cycle threshold. |
| 153 | std::string Serialized = serialize(*BQ, 3); |
| 154 | llvm::DataExtractor DE(Serialized, true, 8); |
| 155 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 156 | EXPECT_THAT_EXPECTED( |
| 157 | TraceOrErr, |
| 158 | HasValue(ElementsAre( |
| 159 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER), |
| 160 | TSCIs(Eq(1uL))), |
| 161 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT), |
| 162 | TSCIs(Gt(1000uL)))))); |
| 163 | } |
| 164 | |
| 165 | TEST_F(FunctionSequenceTest, PreservedCallsSupportLargeDeltas) { |
| 166 | C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000); |
| 167 | uint64_t TSC = 1; |
| 168 | uint16_t CPU = 0; |
| 169 | const auto LargeDelta = uint64_t{std::numeric_limits<int32_t>::max()}; |
| 170 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 171 | ASSERT_TRUE(C->functionExit(1, TSC += LargeDelta, CPU)); |
| 172 | ASSERT_TRUE(C->flush()); |
| 173 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 174 | |
| 175 | // Serialize the buffer then test to see if we find the right TSC with a large |
| 176 | // delta. |
| 177 | std::string Serialized = serialize(*BQ, 3); |
| 178 | llvm::DataExtractor DE(Serialized, true, 8); |
| 179 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 180 | EXPECT_THAT_EXPECTED( |
| 181 | TraceOrErr, |
| 182 | HasValue(ElementsAre( |
| 183 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER), |
| 184 | TSCIs(Eq(1uL))), |
| 185 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT), |
| 186 | TSCIs(Gt(LargeDelta)))))); |
| 187 | } |
| 188 | |
| 189 | TEST_F(FunctionSequenceTest, RewindingMultipleCalls) { |
| 190 | C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000); |
| 191 | |
| 192 | // First we construct an arbitrarily deep function enter/call stack. |
| 193 | // We also ensure that we are in the same CPU. |
| 194 | uint64_t TSC = 1; |
| 195 | uint16_t CPU = 1; |
| 196 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 197 | ASSERT_TRUE(C->functionEnter(2, TSC++, CPU)); |
| 198 | ASSERT_TRUE(C->functionEnter(3, TSC++, CPU)); |
| 199 | |
| 200 | // Then we exit them one at a time, in reverse order of entry. |
| 201 | ASSERT_TRUE(C->functionExit(3, TSC++, CPU)); |
| 202 | ASSERT_TRUE(C->functionExit(2, TSC++, CPU)); |
| 203 | ASSERT_TRUE(C->functionExit(1, TSC++, CPU)); |
| 204 | |
| 205 | ASSERT_TRUE(C->flush()); |
| 206 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 207 | |
| 208 | // Serialize the buffers then test to see we find that all the calls have been |
| 209 | // unwound because all of them are under the cycle counter threshold. |
| 210 | std::string Serialized = serialize(*BQ, 3); |
| 211 | llvm::DataExtractor DE(Serialized, true, 8); |
| 212 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 213 | EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(IsEmpty())); |
| 214 | } |
| 215 | |
| 216 | TEST_F(FunctionSequenceTest, RewindingIntermediaryTailExits) { |
| 217 | C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000); |
| 218 | |
| 219 | // First we construct an arbitrarily deep function enter/call stack. |
| 220 | // We also ensure that we are in the same CPU. |
| 221 | uint64_t TSC = 1; |
| 222 | uint16_t CPU = 1; |
| 223 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 224 | ASSERT_TRUE(C->functionEnter(2, TSC++, CPU)); |
| 225 | ASSERT_TRUE(C->functionEnter(3, TSC++, CPU)); |
| 226 | |
| 227 | // Next we tail-exit into a new function multiple times. |
| 228 | ASSERT_TRUE(C->functionTailExit(3, TSC++, CPU)); |
| 229 | ASSERT_TRUE(C->functionEnter(4, TSC++, CPU)); |
| 230 | ASSERT_TRUE(C->functionTailExit(4, TSC++, CPU)); |
| 231 | ASSERT_TRUE(C->functionEnter(5, TSC++, CPU)); |
| 232 | ASSERT_TRUE(C->functionTailExit(5, TSC++, CPU)); |
| 233 | ASSERT_TRUE(C->functionEnter(6, TSC++, CPU)); |
| 234 | |
| 235 | // Then we exit them one at a time, in reverse order of entry. |
| 236 | ASSERT_TRUE(C->functionExit(6, TSC++, CPU)); |
| 237 | ASSERT_TRUE(C->functionExit(2, TSC++, CPU)); |
| 238 | ASSERT_TRUE(C->functionExit(1, TSC++, CPU)); |
| 239 | ASSERT_TRUE(C->flush()); |
| 240 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 241 | |
| 242 | // Serialize the buffers then test to see we find that all the calls have been |
| 243 | // unwound because all of them are under the cycle counter threshold. |
| 244 | std::string Serialized = serialize(*BQ, 3); |
| 245 | llvm::DataExtractor DE(Serialized, true, 8); |
| 246 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 247 | EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(IsEmpty())); |
| 248 | } |
| 249 | |
| 250 | TEST_F(FunctionSequenceTest, RewindingAfterMigration) { |
| 251 | C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000); |
| 252 | |
| 253 | // First we construct an arbitrarily deep function enter/call stack. |
| 254 | // We also ensure that we are in the same CPU. |
| 255 | uint64_t TSC = 1; |
| 256 | uint16_t CPU = 1; |
| 257 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 258 | ASSERT_TRUE(C->functionEnter(2, TSC++, CPU)); |
| 259 | ASSERT_TRUE(C->functionEnter(3, TSC++, CPU)); |
| 260 | |
| 261 | // Next we tail-exit into a new function multiple times. |
| 262 | ASSERT_TRUE(C->functionTailExit(3, TSC++, CPU)); |
| 263 | ASSERT_TRUE(C->functionEnter(4, TSC++, CPU)); |
| 264 | ASSERT_TRUE(C->functionTailExit(4, TSC++, CPU)); |
| 265 | |
| 266 | // But before we enter the next function, we migrate to a different CPU. |
| 267 | CPU = 2; |
| 268 | ASSERT_TRUE(C->functionEnter(5, TSC++, CPU)); |
| 269 | ASSERT_TRUE(C->functionTailExit(5, TSC++, CPU)); |
| 270 | ASSERT_TRUE(C->functionEnter(6, TSC++, CPU)); |
| 271 | |
| 272 | // Then we exit them one at a time, in reverse order of entry. |
| 273 | ASSERT_TRUE(C->functionExit(6, TSC++, CPU)); |
| 274 | ASSERT_TRUE(C->functionExit(2, TSC++, CPU)); |
| 275 | ASSERT_TRUE(C->functionExit(1, TSC++, CPU)); |
| 276 | |
| 277 | ASSERT_TRUE(C->flush()); |
| 278 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 279 | |
| 280 | // Serialize buffers then test that we can find all the events that span the |
| 281 | // CPU migration. |
| 282 | std::string Serialized = serialize(*BQ, 3); |
| 283 | llvm::DataExtractor DE(Serialized, true, 8); |
| 284 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 285 | EXPECT_THAT_EXPECTED( |
| 286 | TraceOrErr, |
| 287 | HasValue(ElementsAre( |
| 288 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER)), |
| 289 | AllOf(FuncId(2), RecordType(llvm::xray::RecordTypes::ENTER)), |
| 290 | AllOf(FuncId(2), RecordType(llvm::xray::RecordTypes::EXIT)), |
| 291 | AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT))))); |
| 292 | } |
| 293 | |
| 294 | class BufferManagementTest : public ::testing::Test { |
| 295 | protected: |
| 296 | BufferQueue::Buffer B{}; |
| 297 | std::unique_ptr<BufferQueue> BQ; |
| 298 | std::unique_ptr<FDRLogWriter> W; |
| 299 | std::unique_ptr<FDRController<>> C; |
| 300 | |
| 301 | static constexpr size_t kBuffers = 10; |
| 302 | |
| 303 | public: |
| 304 | void SetUp() override { |
| 305 | bool Success; |
| 306 | BQ = std::make_unique<BufferQueue>(args: sizeof(MetadataRecord) * 5 + |
| 307 | sizeof(FunctionRecord) * 2, |
| 308 | args: kBuffers, args&: Success); |
| 309 | ASSERT_TRUE(Success); |
| 310 | ASSERT_EQ(BQ->getBuffer(Buf&: B), BufferQueue::ErrorCode::Ok); |
| 311 | W = std::make_unique<FDRLogWriter>(args&: B); |
| 312 | C = std::make_unique<FDRController<>>(args: BQ.get(), args&: B, args&: *W, args&: clock_gettime, args: 0); |
| 313 | } |
| 314 | }; |
| 315 | |
| 316 | constexpr size_t BufferManagementTest::kBuffers; |
| 317 | |
| 318 | TEST_F(BufferManagementTest, HandlesOverflow) { |
| 319 | uint64_t TSC = 1; |
| 320 | uint16_t CPU = 1; |
| 321 | for (size_t I = 0; I < kBuffers + 1; ++I) { |
| 322 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 323 | ASSERT_TRUE(C->functionExit(1, TSC++, CPU)); |
| 324 | } |
| 325 | ASSERT_TRUE(C->flush()); |
| 326 | ASSERT_THAT(BQ->finalize(), Eq(BufferQueue::ErrorCode::Ok)); |
| 327 | |
| 328 | std::string Serialized = serialize(*BQ, 3); |
| 329 | llvm::DataExtractor DE(Serialized, true, 8); |
| 330 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 331 | EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(SizeIs(kBuffers * 2))); |
| 332 | } |
| 333 | |
| 334 | TEST_F(BufferManagementTest, HandlesOverflowWithArgs) { |
| 335 | uint64_t TSC = 1; |
| 336 | uint16_t CPU = 1; |
| 337 | uint64_t ARG = 1; |
| 338 | for (size_t I = 0; I < kBuffers + 1; ++I) { |
| 339 | ASSERT_TRUE(C->functionEnterArg(1, TSC++, CPU, ARG++)); |
| 340 | ASSERT_TRUE(C->functionExit(1, TSC++, CPU)); |
| 341 | } |
| 342 | ASSERT_TRUE(C->flush()); |
| 343 | ASSERT_THAT(BQ->finalize(), Eq(BufferQueue::ErrorCode::Ok)); |
| 344 | |
| 345 | std::string Serialized = serialize(*BQ, 3); |
| 346 | llvm::DataExtractor DE(Serialized, true, 8); |
| 347 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 348 | EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(SizeIs(kBuffers))); |
| 349 | } |
| 350 | |
| 351 | TEST_F(BufferManagementTest, HandlesOverflowWithCustomEvents) { |
| 352 | uint64_t TSC = 1; |
| 353 | uint16_t CPU = 1; |
| 354 | int32_t D = 0x9009; |
| 355 | for (size_t I = 0; I < kBuffers; ++I) { |
| 356 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 357 | ASSERT_TRUE(C->functionExit(1, TSC++, CPU)); |
| 358 | ASSERT_TRUE(C->customEvent(TSC++, CPU, &D, sizeof(D))); |
| 359 | } |
| 360 | ASSERT_TRUE(C->flush()); |
| 361 | ASSERT_THAT(BQ->finalize(), Eq(BufferQueue::ErrorCode::Ok)); |
| 362 | |
| 363 | std::string Serialized = serialize(*BQ, 3); |
| 364 | llvm::DataExtractor DE(Serialized, true, 8); |
| 365 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 366 | |
| 367 | // We expect to also now count the kBuffers/2 custom event records showing up |
| 368 | // in the Trace. |
| 369 | EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(SizeIs(kBuffers + (kBuffers / 2)))); |
| 370 | } |
| 371 | |
| 372 | TEST_F(BufferManagementTest, HandlesFinalizedBufferQueue) { |
| 373 | uint64_t TSC = 1; |
| 374 | uint16_t CPU = 1; |
| 375 | |
| 376 | // First write one function entry. |
| 377 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 378 | |
| 379 | // Then we finalize the buffer queue, simulating the case where the logging |
| 380 | // has been finalized. |
| 381 | ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok); |
| 382 | |
| 383 | // At this point further calls to the controller must fail. |
| 384 | ASSERT_FALSE(C->functionExit(1, TSC++, CPU)); |
| 385 | |
| 386 | // But flushing should succeed. |
| 387 | ASSERT_TRUE(C->flush()); |
| 388 | |
| 389 | // We expect that we'll only be able to find the function enter event, but not |
| 390 | // the function exit event. |
| 391 | std::string Serialized = serialize(*BQ, 3); |
| 392 | llvm::DataExtractor DE(Serialized, true, 8); |
| 393 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 394 | EXPECT_THAT_EXPECTED( |
| 395 | TraceOrErr, HasValue(ElementsAre(AllOf( |
| 396 | FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER))))); |
| 397 | } |
| 398 | |
| 399 | TEST_F(BufferManagementTest, HandlesGenerationalBufferQueue) { |
| 400 | uint64_t TSC = 1; |
| 401 | uint16_t CPU = 1; |
| 402 | |
| 403 | ASSERT_TRUE(C->functionEnter(1, TSC++, CPU)); |
| 404 | ASSERT_THAT(BQ->finalize(), Eq(BufferQueue::ErrorCode::Ok)); |
| 405 | ASSERT_THAT(BQ->init(sizeof(MetadataRecord) * 4 + sizeof(FunctionRecord) * 2, |
| 406 | kBuffers), |
| 407 | Eq(BufferQueue::ErrorCode::Ok)); |
| 408 | EXPECT_TRUE(C->functionExit(1, TSC++, CPU)); |
| 409 | ASSERT_TRUE(C->flush()); |
| 410 | |
| 411 | // We expect that we will only be able to find the function exit event, but |
| 412 | // not the function enter event, since we only have information about the new |
| 413 | // generation of the buffers. |
| 414 | std::string Serialized = serialize(*BQ, 3); |
| 415 | llvm::DataExtractor DE(Serialized, true, 8); |
| 416 | auto TraceOrErr = llvm::xray::loadTrace(Extractor: DE); |
| 417 | EXPECT_THAT_EXPECTED( |
| 418 | TraceOrErr, HasValue(ElementsAre(AllOf( |
| 419 | FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT))))); |
| 420 | } |
| 421 | |
| 422 | } // namespace |
| 423 | } // namespace __xray |
| 424 | |