| 1 | #include "test_helpers.h" |
| 2 | #include "xray_segmented_array.h" |
| 3 | #include "gmock/gmock.h" |
| 4 | #include "gtest/gtest.h" |
| 5 | #include <algorithm> |
| 6 | #include <numeric> |
| 7 | #include <vector> |
| 8 | |
| 9 | namespace __xray { |
| 10 | namespace { |
| 11 | |
| 12 | using ::testing::SizeIs; |
| 13 | |
| 14 | struct TestData { |
| 15 | s64 First; |
| 16 | s64 Second; |
| 17 | |
| 18 | // Need a constructor for emplace operations. |
| 19 | TestData(s64 F, s64 S) : First(F), Second(S) {} |
| 20 | }; |
| 21 | |
| 22 | void PrintTo(const TestData &D, std::ostream *OS) { |
| 23 | *OS << "{ " << D.First << ", " << D.Second << " }" ; |
| 24 | } |
| 25 | |
| 26 | TEST(SegmentedArrayTest, ConstructWithAllocators) { |
| 27 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 28 | AllocatorType A(1 << 4); |
| 29 | Array<TestData> Data(A); |
| 30 | (void)Data; |
| 31 | } |
| 32 | |
| 33 | TEST(SegmentedArrayTest, ConstructAndPopulate) { |
| 34 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 35 | AllocatorType A(1 << 4); |
| 36 | Array<TestData> data(A); |
| 37 | ASSERT_NE(data.Append(E: TestData{0, 0}), nullptr); |
| 38 | ASSERT_NE(data.Append(E: TestData{1, 1}), nullptr); |
| 39 | ASSERT_EQ(data.size(), 2u); |
| 40 | } |
| 41 | |
| 42 | TEST(SegmentedArrayTest, ConstructPopulateAndLookup) { |
| 43 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 44 | AllocatorType A(1 << 4); |
| 45 | Array<TestData> data(A); |
| 46 | ASSERT_NE(data.Append(E: TestData{0, 1}), nullptr); |
| 47 | ASSERT_EQ(data.size(), 1u); |
| 48 | ASSERT_EQ(data[0].First, 0); |
| 49 | ASSERT_EQ(data[0].Second, 1); |
| 50 | } |
| 51 | |
| 52 | TEST(SegmentedArrayTest, PopulateWithMoreElements) { |
| 53 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 54 | AllocatorType A(1 << 24); |
| 55 | Array<TestData> data(A); |
| 56 | static const auto kMaxElements = 100u; |
| 57 | for (auto I = 0u; I < kMaxElements; ++I) { |
| 58 | ASSERT_NE(data.Append(E: TestData{I, I + 1}), nullptr); |
| 59 | } |
| 60 | ASSERT_EQ(data.size(), kMaxElements); |
| 61 | for (auto I = 0u; I < kMaxElements; ++I) { |
| 62 | ASSERT_EQ(data[I].First, I); |
| 63 | ASSERT_EQ(data[I].Second, I + 1); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | TEST(SegmentedArrayTest, AppendEmplace) { |
| 68 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 69 | AllocatorType A(1 << 4); |
| 70 | Array<TestData> data(A); |
| 71 | ASSERT_NE(data.AppendEmplace(args: 1, args: 1), nullptr); |
| 72 | ASSERT_EQ(data[0].First, 1); |
| 73 | ASSERT_EQ(data[0].Second, 1); |
| 74 | } |
| 75 | |
| 76 | TEST(SegmentedArrayTest, AppendAndTrim) { |
| 77 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 78 | AllocatorType A(1 << 4); |
| 79 | Array<TestData> data(A); |
| 80 | ASSERT_NE(data.AppendEmplace(args: 1, args: 1), nullptr); |
| 81 | ASSERT_EQ(data.size(), 1u); |
| 82 | data.trim(Elements: 1); |
| 83 | ASSERT_EQ(data.size(), 0u); |
| 84 | ASSERT_TRUE(data.empty()); |
| 85 | } |
| 86 | |
| 87 | TEST(SegmentedArrayTest, IteratorAdvance) { |
| 88 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 89 | AllocatorType A(1 << 4); |
| 90 | Array<TestData> data(A); |
| 91 | ASSERT_TRUE(data.empty()); |
| 92 | ASSERT_EQ(data.begin(), data.end()); |
| 93 | auto I0 = data.begin(); |
| 94 | ASSERT_EQ(I0++, data.begin()); |
| 95 | ASSERT_NE(I0, data.begin()); |
| 96 | for (const auto &D : data) { |
| 97 | (void)D; |
| 98 | FAIL(); |
| 99 | } |
| 100 | ASSERT_NE(data.AppendEmplace(args: 1, args: 1), nullptr); |
| 101 | ASSERT_EQ(data.size(), 1u); |
| 102 | ASSERT_NE(data.begin(), data.end()); |
| 103 | auto &D0 = *data.begin(); |
| 104 | ASSERT_EQ(D0.First, 1); |
| 105 | ASSERT_EQ(D0.Second, 1); |
| 106 | } |
| 107 | |
| 108 | TEST(SegmentedArrayTest, IteratorRetreat) { |
| 109 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 110 | AllocatorType A(1 << 4); |
| 111 | Array<TestData> data(A); |
| 112 | ASSERT_TRUE(data.empty()); |
| 113 | ASSERT_EQ(data.begin(), data.end()); |
| 114 | ASSERT_NE(data.AppendEmplace(args: 1, args: 1), nullptr); |
| 115 | ASSERT_EQ(data.size(), 1u); |
| 116 | ASSERT_NE(data.begin(), data.end()); |
| 117 | auto &D0 = *data.begin(); |
| 118 | ASSERT_EQ(D0.First, 1); |
| 119 | ASSERT_EQ(D0.Second, 1); |
| 120 | |
| 121 | auto I0 = data.end(); |
| 122 | ASSERT_EQ(I0--, data.end()); |
| 123 | ASSERT_NE(I0, data.end()); |
| 124 | ASSERT_EQ(I0, data.begin()); |
| 125 | ASSERT_EQ(I0->First, 1); |
| 126 | ASSERT_EQ(I0->Second, 1); |
| 127 | } |
| 128 | |
| 129 | TEST(SegmentedArrayTest, IteratorTrimBehaviour) { |
| 130 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 131 | AllocatorType A(1 << 20); |
| 132 | Array<TestData> Data(A); |
| 133 | ASSERT_TRUE(Data.empty()); |
| 134 | auto I0Begin = Data.begin(), I0End = Data.end(); |
| 135 | // Add enough elements in Data to have more than one chunk. |
| 136 | constexpr auto Segment = Array<TestData>::SegmentSize; |
| 137 | constexpr auto SegmentX2 = Segment * 2; |
| 138 | for (auto i = SegmentX2; i > 0u; --i) { |
| 139 | Data.AppendEmplace(args: static_cast<s64>(i), args: static_cast<s64>(i)); |
| 140 | } |
| 141 | ASSERT_EQ(Data.size(), SegmentX2); |
| 142 | { |
| 143 | auto &Back = Data.back(); |
| 144 | ASSERT_EQ(Back.First, 1); |
| 145 | ASSERT_EQ(Back.Second, 1); |
| 146 | } |
| 147 | |
| 148 | // Trim one chunk's elements worth. |
| 149 | Data.trim(Elements: Segment); |
| 150 | ASSERT_EQ(Data.size(), Segment); |
| 151 | |
| 152 | // Check that we are still able to access 'back' properly. |
| 153 | { |
| 154 | auto &Back = Data.back(); |
| 155 | ASSERT_EQ(Back.First, static_cast<s64>(Segment + 1)); |
| 156 | ASSERT_EQ(Back.Second, static_cast<s64>(Segment + 1)); |
| 157 | } |
| 158 | |
| 159 | // Then trim until it's empty. |
| 160 | Data.trim(Elements: Segment); |
| 161 | ASSERT_TRUE(Data.empty()); |
| 162 | |
| 163 | // Here our iterators should be the same. |
| 164 | auto I1Begin = Data.begin(), I1End = Data.end(); |
| 165 | EXPECT_EQ(I0Begin, I1Begin); |
| 166 | EXPECT_EQ(I0End, I1End); |
| 167 | |
| 168 | // Then we ensure that adding elements back works just fine. |
| 169 | for (auto i = SegmentX2; i > 0u; --i) { |
| 170 | Data.AppendEmplace(args: static_cast<s64>(i), args: static_cast<s64>(i)); |
| 171 | } |
| 172 | EXPECT_EQ(Data.size(), SegmentX2); |
| 173 | } |
| 174 | |
| 175 | TEST(SegmentedArrayTest, HandleExhaustedAllocator) { |
| 176 | using AllocatorType = typename Array<TestData>::AllocatorType; |
| 177 | constexpr auto Segment = Array<TestData>::SegmentSize; |
| 178 | constexpr auto MaxElements = Array<TestData>::ElementsPerSegment; |
| 179 | AllocatorType A(Segment); |
| 180 | Array<TestData> Data(A); |
| 181 | for (auto i = MaxElements; i > 0u; --i) |
| 182 | EXPECT_NE(Data.AppendEmplace(args: static_cast<s64>(i), args: static_cast<s64>(i)), |
| 183 | nullptr); |
| 184 | EXPECT_EQ(Data.AppendEmplace(args: 0, args: 0), nullptr); |
| 185 | EXPECT_THAT(Data, SizeIs(MaxElements)); |
| 186 | |
| 187 | // Trimming more elements than there are in the container should be fine. |
| 188 | Data.trim(Elements: MaxElements + 1); |
| 189 | EXPECT_THAT(Data, SizeIs(0u)); |
| 190 | } |
| 191 | |
| 192 | struct ShadowStackEntry { |
| 193 | uint64_t EntryTSC = 0; |
| 194 | uint64_t *NodePtr = nullptr; |
| 195 | ShadowStackEntry(uint64_t T, uint64_t *N) : EntryTSC(T), NodePtr(N) {} |
| 196 | }; |
| 197 | |
| 198 | TEST(SegmentedArrayTest, SimulateStackBehaviour) { |
| 199 | using AllocatorType = typename Array<ShadowStackEntry>::AllocatorType; |
| 200 | AllocatorType A(1 << 10); |
| 201 | Array<ShadowStackEntry> Data(A); |
| 202 | static uint64_t Dummy = 0; |
| 203 | constexpr uint64_t Max = 9; |
| 204 | |
| 205 | for (uint64_t i = 0; i < Max; ++i) { |
| 206 | auto P = Data.Append(E: {i, &Dummy}); |
| 207 | ASSERT_NE(P, nullptr); |
| 208 | ASSERT_EQ(P->NodePtr, &Dummy); |
| 209 | auto &Back = Data.back(); |
| 210 | ASSERT_EQ(Back.NodePtr, &Dummy); |
| 211 | ASSERT_EQ(Back.EntryTSC, i); |
| 212 | } |
| 213 | |
| 214 | // Simulate a stack by checking the data from the end as we're trimming. |
| 215 | auto Counter = Max; |
| 216 | ASSERT_EQ(Data.size(), size_t(Max)); |
| 217 | while (!Data.empty()) { |
| 218 | const auto &Top = Data.back(); |
| 219 | uint64_t *TopNode = Top.NodePtr; |
| 220 | EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter; |
| 221 | Data.trim(Elements: 1); |
| 222 | --Counter; |
| 223 | ASSERT_EQ(Data.size(), size_t(Counter)); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | TEST(SegmentedArrayTest, PlacementNewOnAlignedStorage) { |
| 228 | using AllocatorType = typename Array<ShadowStackEntry>::AllocatorType; |
| 229 | alignas(AllocatorType) std::byte AllocatorStorage[sizeof(AllocatorType)]; |
| 230 | new (&AllocatorStorage) AllocatorType(1 << 10); |
| 231 | auto *A = reinterpret_cast<AllocatorType *>(&AllocatorStorage); |
| 232 | alignas(Array<ShadowStackEntry>) |
| 233 | std::byte ArrayStorage[sizeof(Array<ShadowStackEntry>)]; |
| 234 | new (&ArrayStorage) Array<ShadowStackEntry>(*A); |
| 235 | auto *Data = reinterpret_cast<Array<ShadowStackEntry> *>(&ArrayStorage); |
| 236 | |
| 237 | static uint64_t Dummy = 0; |
| 238 | constexpr uint64_t Max = 9; |
| 239 | |
| 240 | for (uint64_t i = 0; i < Max; ++i) { |
| 241 | auto P = Data->Append(E: {i, &Dummy}); |
| 242 | ASSERT_NE(P, nullptr); |
| 243 | ASSERT_EQ(P->NodePtr, &Dummy); |
| 244 | auto &Back = Data->back(); |
| 245 | ASSERT_EQ(Back.NodePtr, &Dummy); |
| 246 | ASSERT_EQ(Back.EntryTSC, i); |
| 247 | } |
| 248 | |
| 249 | // Simulate a stack by checking the data from the end as we're trimming. |
| 250 | auto Counter = Max; |
| 251 | ASSERT_EQ(Data->size(), size_t(Max)); |
| 252 | while (!Data->empty()) { |
| 253 | const auto &Top = Data->back(); |
| 254 | uint64_t *TopNode = Top.NodePtr; |
| 255 | EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter; |
| 256 | Data->trim(Elements: 1); |
| 257 | --Counter; |
| 258 | ASSERT_EQ(Data->size(), size_t(Counter)); |
| 259 | } |
| 260 | |
| 261 | // Once the stack is exhausted, we re-use the storage. |
| 262 | for (uint64_t i = 0; i < Max; ++i) { |
| 263 | auto P = Data->Append(E: {i, &Dummy}); |
| 264 | ASSERT_NE(P, nullptr); |
| 265 | ASSERT_EQ(P->NodePtr, &Dummy); |
| 266 | auto &Back = Data->back(); |
| 267 | ASSERT_EQ(Back.NodePtr, &Dummy); |
| 268 | ASSERT_EQ(Back.EntryTSC, i); |
| 269 | } |
| 270 | |
| 271 | // We re-initialize the storage, by calling the destructor and |
| 272 | // placement-new'ing again. |
| 273 | Data->~Array(); |
| 274 | A->~AllocatorType(); |
| 275 | new (A) AllocatorType(1 << 10); |
| 276 | new (Data) Array<ShadowStackEntry>(*A); |
| 277 | |
| 278 | // Then re-do the test. |
| 279 | for (uint64_t i = 0; i < Max; ++i) { |
| 280 | auto P = Data->Append(E: {i, &Dummy}); |
| 281 | ASSERT_NE(P, nullptr); |
| 282 | ASSERT_EQ(P->NodePtr, &Dummy); |
| 283 | auto &Back = Data->back(); |
| 284 | ASSERT_EQ(Back.NodePtr, &Dummy); |
| 285 | ASSERT_EQ(Back.EntryTSC, i); |
| 286 | } |
| 287 | |
| 288 | // Simulate a stack by checking the data from the end as we're trimming. |
| 289 | Counter = Max; |
| 290 | ASSERT_EQ(Data->size(), size_t(Max)); |
| 291 | while (!Data->empty()) { |
| 292 | const auto &Top = Data->back(); |
| 293 | uint64_t *TopNode = Top.NodePtr; |
| 294 | EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter; |
| 295 | Data->trim(Elements: 1); |
| 296 | --Counter; |
| 297 | ASSERT_EQ(Data->size(), size_t(Counter)); |
| 298 | } |
| 299 | |
| 300 | // Once the stack is exhausted, we re-use the storage. |
| 301 | for (uint64_t i = 0; i < Max; ++i) { |
| 302 | auto P = Data->Append(E: {i, &Dummy}); |
| 303 | ASSERT_NE(P, nullptr); |
| 304 | ASSERT_EQ(P->NodePtr, &Dummy); |
| 305 | auto &Back = Data->back(); |
| 306 | ASSERT_EQ(Back.NodePtr, &Dummy); |
| 307 | ASSERT_EQ(Back.EntryTSC, i); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | TEST(SegmentedArrayTest, ArrayOfPointersIteratorAccess) { |
| 312 | using PtrArray = Array<int *>; |
| 313 | PtrArray::AllocatorType Alloc(16384); |
| 314 | Array<int *> A(Alloc); |
| 315 | static constexpr size_t Count = 100; |
| 316 | std::vector<int> Integers(Count); |
| 317 | std::iota(first: Integers.begin(), last: Integers.end(), value: 0); |
| 318 | for (auto &I : Integers) |
| 319 | ASSERT_NE(A.Append(E: &I), nullptr); |
| 320 | int V = 0; |
| 321 | ASSERT_EQ(A.size(), Count); |
| 322 | for (auto P : A) { |
| 323 | ASSERT_NE(P, nullptr); |
| 324 | ASSERT_EQ(*P, V++); |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | TEST(SegmentedArrayTest, ArrayOfPointersIteratorAccessExhaustion) { |
| 329 | using PtrArray = Array<int *>; |
| 330 | PtrArray::AllocatorType Alloc(4096); |
| 331 | Array<int *> A(Alloc); |
| 332 | static constexpr size_t Count = 1000; |
| 333 | std::vector<int> Integers(Count); |
| 334 | std::iota(first: Integers.begin(), last: Integers.end(), value: 0); |
| 335 | for (auto &I : Integers) |
| 336 | if (A.Append(E: &I) == nullptr) |
| 337 | break; |
| 338 | int V = 0; |
| 339 | ASSERT_LT(A.size(), Count); |
| 340 | for (auto P : A) { |
| 341 | ASSERT_NE(P, nullptr); |
| 342 | ASSERT_EQ(*P, V++); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | } // namespace |
| 347 | } // namespace __xray |
| 348 | |