1 | // RUN: %clang_builtins %s %librt -o %t && %run %t |
2 | // REQUIRES: librt_has_divsf3 |
3 | |
4 | #include "int_lib.h" |
5 | #include <stdio.h> |
6 | |
7 | #include "fp_test.h" |
8 | |
9 | // Returns: a / b |
10 | COMPILER_RT_ABI float __divsf3(float a, float b); |
11 | |
12 | int test__divsf3(float a, float b, uint32_t expected) |
13 | { |
14 | float x = __divsf3(a, b); |
15 | int ret = compareResultF(result: x, expected); |
16 | |
17 | if (ret){ |
18 | printf(format: "error in test__divsf3(%.20e, %.20e) = %.20e, " |
19 | "expected %.20e\n" , a, b, x, |
20 | fromRep32(x: expected)); |
21 | } |
22 | return ret; |
23 | } |
24 | |
25 | int main() |
26 | { |
27 | // Returned NaNs are assumed to be qNaN by default |
28 | |
29 | // qNaN / any = qNaN |
30 | if (test__divsf3(a: makeQNaN32(), b: 3.F, UINT32_C(0x7fc00000))) |
31 | return 1; |
32 | // NaN / any = NaN |
33 | if (test__divsf3(a: makeNaN32(UINT32_C(0x123)), b: 3.F, UINT32_C(0x7fc00000))) |
34 | return 1; |
35 | // any / qNaN = qNaN |
36 | if (test__divsf3(a: 3.F, b: makeQNaN32(), UINT32_C(0x7fc00000))) |
37 | return 1; |
38 | // any / NaN = NaN |
39 | if (test__divsf3(a: 3.F, b: makeNaN32(UINT32_C(0x123)), UINT32_C(0x7fc00000))) |
40 | return 1; |
41 | |
42 | // +Inf / positive = +Inf |
43 | if (test__divsf3(a: makeInf32(), b: 3.F, UINT32_C(0x7f800000))) |
44 | return 1; |
45 | // +Inf / negative = -Inf |
46 | if (test__divsf3(a: makeInf32(), b: -3.F, UINT32_C(0xff800000))) |
47 | return 1; |
48 | // -Inf / positive = -Inf |
49 | if (test__divsf3(a: makeNegativeInf32(), b: 3.F, UINT32_C(0xff800000))) |
50 | return 1; |
51 | // -Inf / negative = +Inf |
52 | if (test__divsf3(a: makeNegativeInf32(), b: -3.F, UINT32_C(0x7f800000))) |
53 | return 1; |
54 | |
55 | // Inf / Inf = NaN |
56 | if (test__divsf3(a: makeInf32(), b: makeInf32(), UINT32_C(0x7fc00000))) |
57 | return 1; |
58 | // 0.0 / 0.0 = NaN |
59 | if (test__divsf3(a: +0x0.0p+0F, b: +0x0.0p+0F, UINT32_C(0x7fc00000))) |
60 | return 1; |
61 | // +0.0 / +Inf = +0.0 |
62 | if (test__divsf3(a: +0x0.0p+0F, b: makeInf32(), UINT32_C(0x0))) |
63 | return 1; |
64 | // +Inf / +0.0 = +Inf |
65 | if (test__divsf3(a: makeInf32(), b: +0x0.0p+0F, UINT32_C(0x7f800000))) |
66 | return 1; |
67 | |
68 | // positive / +0.0 = +Inf |
69 | if (test__divsf3(a: +1.F, b: +0x0.0p+0F, UINT32_C(0x7f800000))) |
70 | return 1; |
71 | // positive / -0.0 = -Inf |
72 | if (test__divsf3(a: +1.F, b: -0x0.0p+0F, UINT32_C(0xff800000))) |
73 | return 1; |
74 | // negative / +0.0 = -Inf |
75 | if (test__divsf3(a: -1.F, b: +0x0.0p+0F, UINT32_C(0xff800000))) |
76 | return 1; |
77 | // negative / -0.0 = +Inf |
78 | if (test__divsf3(a: -1.F, b: -0x0.0p+0F, UINT32_C(0x7f800000))) |
79 | return 1; |
80 | |
81 | // 1/3 |
82 | if (test__divsf3(a: 1.F, b: 3.F, UINT32_C(0x3eaaaaab))) |
83 | return 1; |
84 | // smallest normal result |
85 | if (test__divsf3(a: 0x1.0p-125F, b: 2.F, UINT32_C(0x00800000))) |
86 | return 1; |
87 | |
88 | // divisor is exactly 1.0 |
89 | if (test__divsf3(a: 0x1.0p+0F, b: 0x1.0p+0F, UINT32_C(0x3f800000))) |
90 | return 1; |
91 | // divisor is truncated to exactly 1.0 in UQ1.15 |
92 | if (test__divsf3(a: 0x1.0p+0F, b: 0x1.0001p+0F, UINT32_C(0x3f7fff00))) |
93 | return 1; |
94 | |
95 | // smallest normal value divided by 2.0 |
96 | if (test__divsf3(a: 0x1.0p-126F, b: 2.0F, UINT32_C(0x00400000))) |
97 | return 1; |
98 | // smallest subnormal result |
99 | if (test__divsf3(a: 0x1.0p-126F, b: 0x1p+23F, UINT32_C(0x00000001))) |
100 | return 1; |
101 | |
102 | // some misc test cases obtained by fuzzing against h/w implementation |
103 | if (test__divsf3(a: -0x1.3e75e6p-108F, b: -0x1.cf372p+38F, UINT32_C(0x00000006))) |
104 | return 1; |
105 | if (test__divsf3(a: 0x1.e77c54p+81F, b: -0x1.e77c52p-47F, UINT32_C(0xff800000))) |
106 | return 1; |
107 | if (test__divsf3(a: 0x1.fffffep-126F, b: 2.F, UINT32_C(0x00800000))) |
108 | return 1; |
109 | |
110 | return 0; |
111 | } |
112 | |