| 1 | // RUN: %clang_builtins %s %librt -lm -o %t && %run %t |
| 2 | // REQUIRES: librt_has_divtc3 |
| 3 | // REQUIRES: c99-complex |
| 4 | |
| 5 | // |
| 6 | // This test should be XFAILed on 32-bit sparc (sparc-target-arch, Issue |
| 7 | // #41838), but that is currently hidden, which caused an XPASS (Issue #72398). |
| 8 | // |
| 9 | #include <stdio.h> |
| 10 | |
| 11 | #include "int_lib.h" |
| 12 | #include "int_math.h" |
| 13 | #include <complex.h> |
| 14 | #include <math.h> |
| 15 | |
| 16 | // Returns: the quotient of (a + ib) / (c + id) |
| 17 | #if defined(CRT_HAS_TF_MODE) |
| 18 | |
| 19 | COMPILER_RT_ABI Qcomplex __divtc3(tf_float __a, tf_float __b, tf_float __c, |
| 20 | tf_float __d); |
| 21 | |
| 22 | enum {zero, non_zero, inf, NaN, non_zero_nan}; |
| 23 | |
| 24 | static int classify(Qcomplex x) { |
| 25 | tf_float real = COMPLEXTF_REAL(x); |
| 26 | tf_float imag = COMPLEXTF_IMAGINARY(x); |
| 27 | if (real == 0.0 && imag == 0.0) |
| 28 | return zero; |
| 29 | if (crt_isinf(real) || crt_isinf(imag)) |
| 30 | return inf; |
| 31 | if (crt_isnan(real) && crt_isnan(imag)) |
| 32 | return NaN; |
| 33 | if (crt_isnan(real)) { |
| 34 | if (imag == 0.0) |
| 35 | return NaN; |
| 36 | return non_zero_nan; |
| 37 | } |
| 38 | if (crt_isnan(imag)) { |
| 39 | if (real == 0.0) |
| 40 | return NaN; |
| 41 | return non_zero_nan; |
| 42 | } |
| 43 | return non_zero; |
| 44 | } |
| 45 | |
| 46 | static int test__divtc3(tf_float a, tf_float b, tf_float c, tf_float d) { |
| 47 | Qcomplex r = __divtc3(a: a, b: b, c: c, d: d); |
| 48 | Qcomplex dividend; |
| 49 | Qcomplex divisor; |
| 50 | |
| 51 | COMPLEXTF_REAL(dividend) = a; |
| 52 | COMPLEXTF_IMAGINARY(dividend) = b; |
| 53 | COMPLEXTF_REAL(divisor) = c; |
| 54 | COMPLEXTF_IMAGINARY(divisor) = d; |
| 55 | |
| 56 | switch (classify(x: dividend)) { |
| 57 | case zero: |
| 58 | switch (classify(x: divisor)) { |
| 59 | case zero: |
| 60 | if (classify(x: r) != NaN) |
| 61 | return 1; |
| 62 | break; |
| 63 | case non_zero: |
| 64 | if (classify(x: r) != zero) |
| 65 | return 1; |
| 66 | break; |
| 67 | case inf: |
| 68 | if (classify(x: r) != zero) |
| 69 | return 1; |
| 70 | break; |
| 71 | case NaN: |
| 72 | if (classify(x: r) != NaN) |
| 73 | return 1; |
| 74 | break; |
| 75 | case non_zero_nan: |
| 76 | if (classify(x: r) != NaN) |
| 77 | return 1; |
| 78 | break; |
| 79 | } |
| 80 | break; |
| 81 | case non_zero: |
| 82 | switch (classify(x: divisor)) { |
| 83 | case zero: |
| 84 | if (classify(x: r) != inf) |
| 85 | return 1; |
| 86 | break; |
| 87 | case non_zero: |
| 88 | if (classify(x: r) != non_zero) |
| 89 | return 1; |
| 90 | { |
| 91 | tf_float zReal = (a * c + b * d) / (c * c + d * d); |
| 92 | tf_float zImag = (b * c - a * d) / (c * c + d * d); |
| 93 | Qcomplex diff = |
| 94 | __divtc3(COMPLEXTF_REAL(r) - zReal, COMPLEXTF_IMAGINARY(r) - zImag, |
| 95 | COMPLEXTF_REAL(r), COMPLEXTF_IMAGINARY(r)); |
| 96 | // cabsl(z) == hypotl(creall(z), cimagl(z)) |
| 97 | #ifdef CRT_LDBL_128BIT |
| 98 | if (hypotl(COMPLEXTF_REAL(diff), COMPLEXTF_IMAGINARY(diff)) > 1.e-6) |
| 99 | #else |
| 100 | // Avoid dependency on __trunctfxf2 for ld80 platforms and use double instead. |
| 101 | if (hypot(COMPLEXTF_REAL(diff), COMPLEXTF_IMAGINARY(diff)) > 1.e-6) |
| 102 | #endif |
| 103 | return 1; |
| 104 | } |
| 105 | break; |
| 106 | case inf: |
| 107 | if (classify(x: r) != zero) |
| 108 | return 1; |
| 109 | break; |
| 110 | case NaN: |
| 111 | if (classify(x: r) != NaN) |
| 112 | return 1; |
| 113 | break; |
| 114 | case non_zero_nan: |
| 115 | if (classify(x: r) != NaN) |
| 116 | return 1; |
| 117 | break; |
| 118 | } |
| 119 | break; |
| 120 | case inf: |
| 121 | switch (classify(x: divisor)) { |
| 122 | case zero: |
| 123 | if (classify(x: r) != inf) |
| 124 | return 1; |
| 125 | break; |
| 126 | case non_zero: |
| 127 | if (classify(x: r) != inf) |
| 128 | return 1; |
| 129 | break; |
| 130 | case inf: |
| 131 | if (classify(x: r) != NaN) |
| 132 | return 1; |
| 133 | break; |
| 134 | case NaN: |
| 135 | if (classify(x: r) != NaN) |
| 136 | return 1; |
| 137 | break; |
| 138 | case non_zero_nan: |
| 139 | if (classify(x: r) != NaN) |
| 140 | return 1; |
| 141 | break; |
| 142 | } |
| 143 | break; |
| 144 | case NaN: |
| 145 | switch (classify(x: divisor)) { |
| 146 | case zero: |
| 147 | if (classify(x: r) != NaN) |
| 148 | return 1; |
| 149 | break; |
| 150 | case non_zero: |
| 151 | if (classify(x: r) != NaN) |
| 152 | return 1; |
| 153 | break; |
| 154 | case inf: |
| 155 | if (classify(x: r) != NaN) |
| 156 | return 1; |
| 157 | break; |
| 158 | case NaN: |
| 159 | if (classify(x: r) != NaN) |
| 160 | return 1; |
| 161 | break; |
| 162 | case non_zero_nan: |
| 163 | if (classify(x: r) != NaN) |
| 164 | return 1; |
| 165 | break; |
| 166 | } |
| 167 | break; |
| 168 | case non_zero_nan: |
| 169 | switch (classify(x: divisor)) { |
| 170 | case zero: |
| 171 | if (classify(x: r) != inf) |
| 172 | return 1; |
| 173 | break; |
| 174 | case non_zero: |
| 175 | if (classify(x: r) != NaN) |
| 176 | return 1; |
| 177 | break; |
| 178 | case inf: |
| 179 | if (classify(x: r) != NaN) |
| 180 | return 1; |
| 181 | break; |
| 182 | case NaN: |
| 183 | if (classify(x: r) != NaN) |
| 184 | return 1; |
| 185 | break; |
| 186 | case non_zero_nan: |
| 187 | if (classify(x: r) != NaN) |
| 188 | return 1; |
| 189 | break; |
| 190 | } |
| 191 | break; |
| 192 | } |
| 193 | |
| 194 | return 0; |
| 195 | } |
| 196 | |
| 197 | tf_float x[][2] = {{1.e-6, 1.e-6}, |
| 198 | {-1.e-6, 1.e-6}, |
| 199 | {-1.e-6, -1.e-6}, |
| 200 | {1.e-6, -1.e-6}, |
| 201 | |
| 202 | {1.e+6, 1.e-6}, |
| 203 | {-1.e+6, 1.e-6}, |
| 204 | {-1.e+6, -1.e-6}, |
| 205 | {1.e+6, -1.e-6}, |
| 206 | |
| 207 | {1.e-6, 1.e+6}, |
| 208 | {-1.e-6, 1.e+6}, |
| 209 | {-1.e-6, -1.e+6}, |
| 210 | {1.e-6, -1.e+6}, |
| 211 | |
| 212 | {1.e+6, 1.e+6}, |
| 213 | {-1.e+6, 1.e+6}, |
| 214 | {-1.e+6, -1.e+6}, |
| 215 | {1.e+6, -1.e+6}, |
| 216 | |
| 217 | {NAN, NAN}, |
| 218 | {-INFINITY, NAN}, |
| 219 | {-2, NAN}, |
| 220 | {-1, NAN}, |
| 221 | {-0.5, NAN}, |
| 222 | {-0., NAN}, |
| 223 | {+0., NAN}, |
| 224 | {0.5, NAN}, |
| 225 | {1, NAN}, |
| 226 | {2, NAN}, |
| 227 | {INFINITY, NAN}, |
| 228 | |
| 229 | {NAN, -INFINITY}, |
| 230 | {-INFINITY, -INFINITY}, |
| 231 | {-2, -INFINITY}, |
| 232 | {-1, -INFINITY}, |
| 233 | {-0.5, -INFINITY}, |
| 234 | {-0., -INFINITY}, |
| 235 | {+0., -INFINITY}, |
| 236 | {0.5, -INFINITY}, |
| 237 | {1, -INFINITY}, |
| 238 | {2, -INFINITY}, |
| 239 | {INFINITY, -INFINITY}, |
| 240 | |
| 241 | {NAN, -2}, |
| 242 | {-INFINITY, -2}, |
| 243 | {-2, -2}, |
| 244 | {-1, -2}, |
| 245 | {-0.5, -2}, |
| 246 | {-0., -2}, |
| 247 | {+0., -2}, |
| 248 | {0.5, -2}, |
| 249 | {1, -2}, |
| 250 | {2, -2}, |
| 251 | {INFINITY, -2}, |
| 252 | |
| 253 | {NAN, -1}, |
| 254 | {-INFINITY, -1}, |
| 255 | {-2, -1}, |
| 256 | {-1, -1}, |
| 257 | {-0.5, -1}, |
| 258 | {-0., -1}, |
| 259 | {+0., -1}, |
| 260 | {0.5, -1}, |
| 261 | {1, -1}, |
| 262 | {2, -1}, |
| 263 | {INFINITY, -1}, |
| 264 | |
| 265 | {NAN, -0.5}, |
| 266 | {-INFINITY, -0.5}, |
| 267 | {-2, -0.5}, |
| 268 | {-1, -0.5}, |
| 269 | {-0.5, -0.5}, |
| 270 | {-0., -0.5}, |
| 271 | {+0., -0.5}, |
| 272 | {0.5, -0.5}, |
| 273 | {1, -0.5}, |
| 274 | {2, -0.5}, |
| 275 | {INFINITY, -0.5}, |
| 276 | |
| 277 | {NAN, -0.}, |
| 278 | {-INFINITY, -0.}, |
| 279 | {-2, -0.}, |
| 280 | {-1, -0.}, |
| 281 | {-0.5, -0.}, |
| 282 | {-0., -0.}, |
| 283 | {+0., -0.}, |
| 284 | {0.5, -0.}, |
| 285 | {1, -0.}, |
| 286 | {2, -0.}, |
| 287 | {INFINITY, -0.}, |
| 288 | |
| 289 | {NAN, 0.}, |
| 290 | {-INFINITY, 0.}, |
| 291 | {-2, 0.}, |
| 292 | {-1, 0.}, |
| 293 | {-0.5, 0.}, |
| 294 | {-0., 0.}, |
| 295 | {+0., 0.}, |
| 296 | {0.5, 0.}, |
| 297 | {1, 0.}, |
| 298 | {2, 0.}, |
| 299 | {INFINITY, 0.}, |
| 300 | |
| 301 | {NAN, 0.5}, |
| 302 | {-INFINITY, 0.5}, |
| 303 | {-2, 0.5}, |
| 304 | {-1, 0.5}, |
| 305 | {-0.5, 0.5}, |
| 306 | {-0., 0.5}, |
| 307 | {+0., 0.5}, |
| 308 | {0.5, 0.5}, |
| 309 | {1, 0.5}, |
| 310 | {2, 0.5}, |
| 311 | {INFINITY, 0.5}, |
| 312 | |
| 313 | {NAN, 1}, |
| 314 | {-INFINITY, 1}, |
| 315 | {-2, 1}, |
| 316 | {-1, 1}, |
| 317 | {-0.5, 1}, |
| 318 | {-0., 1}, |
| 319 | {+0., 1}, |
| 320 | {0.5, 1}, |
| 321 | {1, 1}, |
| 322 | {2, 1}, |
| 323 | {INFINITY, 1}, |
| 324 | |
| 325 | {NAN, 2}, |
| 326 | {-INFINITY, 2}, |
| 327 | {-2, 2}, |
| 328 | {-1, 2}, |
| 329 | {-0.5, 2}, |
| 330 | {-0., 2}, |
| 331 | {+0., 2}, |
| 332 | {0.5, 2}, |
| 333 | {1, 2}, |
| 334 | {2, 2}, |
| 335 | {INFINITY, 2}, |
| 336 | |
| 337 | {NAN, INFINITY}, |
| 338 | {-INFINITY, INFINITY}, |
| 339 | {-2, INFINITY}, |
| 340 | {-1, INFINITY}, |
| 341 | {-0.5, INFINITY}, |
| 342 | {-0., INFINITY}, |
| 343 | {+0., INFINITY}, |
| 344 | {0.5, INFINITY}, |
| 345 | {1, INFINITY}, |
| 346 | {2, INFINITY}, |
| 347 | {INFINITY, INFINITY} |
| 348 | |
| 349 | }; |
| 350 | |
| 351 | int main() { |
| 352 | const unsigned N = sizeof(x) / sizeof(x[0]); |
| 353 | unsigned i, j; |
| 354 | for (i = 0; i < N; ++i) { |
| 355 | for (j = 0; j < N; ++j) { |
| 356 | if (test__divtc3(a: x[i][0], b: x[i][1], c: x[j][0], d: x[j][1])) { |
| 357 | fprintf(stderr, format: "Failed for %g, %g, %g, %g\n" , (double)x[i][0], |
| 358 | (double)x[i][1], (double)x[j][0], (double)x[j][1]); |
| 359 | return 1; |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | fprintf(stderr, format: "No errors found.\n" ); |
| 365 | return 0; |
| 366 | } |
| 367 | |
| 368 | #else |
| 369 | |
| 370 | int main() { |
| 371 | printf("skipped\n" ); |
| 372 | return 0; |
| 373 | } |
| 374 | |
| 375 | #endif // CRT_HAS_TF_MODE |
| 376 | |