1 | // RUN: %clang_builtins %s %librt -lm -o %t && %run %t |
2 | // REQUIRES: librt_has_divxc3 |
3 | // REQUIRES: x86-target-arch |
4 | // UNSUPPORTED: target=powerpc64{{.*}} |
5 | // UNSUPPORTED: target=mips{{.*}} |
6 | // REQUIRES: c99-complex |
7 | |
8 | #if !_ARCH_PPC |
9 | |
10 | #include "int_lib.h" |
11 | #include <math.h> |
12 | #include <complex.h> |
13 | #include <stdio.h> |
14 | |
15 | |
16 | // Returns: the quotient of (a + ib) / (c + id) |
17 | |
18 | COMPILER_RT_ABI long double _Complex |
19 | __divxc3(long double __a, long double __b, long double __c, long double __d); |
20 | |
21 | enum {zero, non_zero, inf, NaN, non_zero_nan}; |
22 | |
23 | int |
24 | classify(long double _Complex x) |
25 | { |
26 | if (x == 0) |
27 | return zero; |
28 | if (isinf(creall(x)) || isinf(cimagl(x))) |
29 | return inf; |
30 | if (isnan(creall(x)) && isnan(cimagl(x))) |
31 | return NaN; |
32 | if (isnan(creall(x))) |
33 | { |
34 | if (cimagl(z: x) == 0) |
35 | return NaN; |
36 | return non_zero_nan; |
37 | } |
38 | if (isnan(cimagl(x))) |
39 | { |
40 | if (creall(z: x) == 0) |
41 | return NaN; |
42 | return non_zero_nan; |
43 | } |
44 | return non_zero; |
45 | } |
46 | |
47 | int test__divxc3(long double a, long double b, long double c, long double d) |
48 | { |
49 | long double _Complex r = __divxc3(a: a, b: b, c: c, d: d); |
50 | // printf("test__divxc3(%Lf, %Lf, %Lf, %Lf) = %Lf + I%Lf\n", |
51 | // a, b, c, d, creall(r), cimagl(r)); |
52 | long double _Complex dividend; |
53 | long double _Complex divisor; |
54 | |
55 | __real__ dividend = a; |
56 | __imag__ dividend = b; |
57 | __real__ divisor = c; |
58 | __imag__ divisor = d; |
59 | |
60 | switch (classify(x: dividend)) |
61 | { |
62 | case zero: |
63 | switch (classify(x: divisor)) |
64 | { |
65 | case zero: |
66 | if (classify(x: r) != NaN) |
67 | return 1; |
68 | break; |
69 | case non_zero: |
70 | if (classify(x: r) != zero) |
71 | return 1; |
72 | break; |
73 | case inf: |
74 | if (classify(x: r) != zero) |
75 | return 1; |
76 | break; |
77 | case NaN: |
78 | if (classify(x: r) != NaN) |
79 | return 1; |
80 | break; |
81 | case non_zero_nan: |
82 | if (classify(x: r) != NaN) |
83 | return 1; |
84 | break; |
85 | } |
86 | break; |
87 | case non_zero: |
88 | switch (classify(x: divisor)) |
89 | { |
90 | case zero: |
91 | if (classify(x: r) != inf) |
92 | return 1; |
93 | break; |
94 | case non_zero: |
95 | if (classify(x: r) != non_zero) |
96 | return 1; |
97 | { |
98 | long double _Complex z = (a * c + b * d) / (c * c + d * d) |
99 | + (b * c - a * d) / (c * c + d * d) * _Complex_I; |
100 | if (cabs(z: (r - z)/r) > 1.e-6) |
101 | return 1; |
102 | } |
103 | break; |
104 | case inf: |
105 | if (classify(x: r) != zero) |
106 | return 1; |
107 | break; |
108 | case NaN: |
109 | if (classify(x: r) != NaN) |
110 | return 1; |
111 | break; |
112 | case non_zero_nan: |
113 | if (classify(x: r) != NaN) |
114 | return 1; |
115 | break; |
116 | } |
117 | break; |
118 | case inf: |
119 | switch (classify(x: divisor)) |
120 | { |
121 | case zero: |
122 | if (classify(x: r) != inf) |
123 | return 1; |
124 | break; |
125 | case non_zero: |
126 | if (classify(x: r) != inf) |
127 | return 1; |
128 | break; |
129 | case inf: |
130 | if (classify(x: r) != NaN) |
131 | return 1; |
132 | break; |
133 | case NaN: |
134 | if (classify(x: r) != NaN) |
135 | return 1; |
136 | break; |
137 | case non_zero_nan: |
138 | if (classify(x: r) != NaN) |
139 | return 1; |
140 | break; |
141 | } |
142 | break; |
143 | case NaN: |
144 | switch (classify(x: divisor)) |
145 | { |
146 | case zero: |
147 | if (classify(x: r) != NaN) |
148 | return 1; |
149 | break; |
150 | case non_zero: |
151 | if (classify(x: r) != NaN) |
152 | return 1; |
153 | break; |
154 | case inf: |
155 | if (classify(x: r) != NaN) |
156 | return 1; |
157 | break; |
158 | case NaN: |
159 | if (classify(x: r) != NaN) |
160 | return 1; |
161 | break; |
162 | case non_zero_nan: |
163 | if (classify(x: r) != NaN) |
164 | return 1; |
165 | break; |
166 | } |
167 | break; |
168 | case non_zero_nan: |
169 | switch (classify(x: divisor)) |
170 | { |
171 | case zero: |
172 | if (classify(x: r) != inf) |
173 | return 1; |
174 | break; |
175 | case non_zero: |
176 | if (classify(x: r) != NaN) |
177 | return 1; |
178 | break; |
179 | case inf: |
180 | if (classify(x: r) != NaN) |
181 | return 1; |
182 | break; |
183 | case NaN: |
184 | if (classify(x: r) != NaN) |
185 | return 1; |
186 | break; |
187 | case non_zero_nan: |
188 | if (classify(x: r) != NaN) |
189 | return 1; |
190 | break; |
191 | } |
192 | break; |
193 | } |
194 | |
195 | return 0; |
196 | } |
197 | |
198 | long double x[][2] = |
199 | { |
200 | { 1.e-6, 1.e-6}, |
201 | {-1.e-6, 1.e-6}, |
202 | {-1.e-6, -1.e-6}, |
203 | { 1.e-6, -1.e-6}, |
204 | |
205 | { 1.e+6, 1.e-6}, |
206 | {-1.e+6, 1.e-6}, |
207 | {-1.e+6, -1.e-6}, |
208 | { 1.e+6, -1.e-6}, |
209 | |
210 | { 1.e-6, 1.e+6}, |
211 | {-1.e-6, 1.e+6}, |
212 | {-1.e-6, -1.e+6}, |
213 | { 1.e-6, -1.e+6}, |
214 | |
215 | { 1.e+6, 1.e+6}, |
216 | {-1.e+6, 1.e+6}, |
217 | {-1.e+6, -1.e+6}, |
218 | { 1.e+6, -1.e+6}, |
219 | |
220 | {NAN, NAN}, |
221 | {-INFINITY, NAN}, |
222 | {-2, NAN}, |
223 | {-1, NAN}, |
224 | {-0.5, NAN}, |
225 | {-0., NAN}, |
226 | {+0., NAN}, |
227 | {0.5, NAN}, |
228 | {1, NAN}, |
229 | {2, NAN}, |
230 | {INFINITY, NAN}, |
231 | |
232 | {NAN, -INFINITY}, |
233 | {-INFINITY, -INFINITY}, |
234 | {-2, -INFINITY}, |
235 | {-1, -INFINITY}, |
236 | {-0.5, -INFINITY}, |
237 | {-0., -INFINITY}, |
238 | {+0., -INFINITY}, |
239 | {0.5, -INFINITY}, |
240 | {1, -INFINITY}, |
241 | {2, -INFINITY}, |
242 | {INFINITY, -INFINITY}, |
243 | |
244 | {NAN, -2}, |
245 | {-INFINITY, -2}, |
246 | {-2, -2}, |
247 | {-1, -2}, |
248 | {-0.5, -2}, |
249 | {-0., -2}, |
250 | {+0., -2}, |
251 | {0.5, -2}, |
252 | {1, -2}, |
253 | {2, -2}, |
254 | {INFINITY, -2}, |
255 | |
256 | {NAN, -1}, |
257 | {-INFINITY, -1}, |
258 | {-2, -1}, |
259 | {-1, -1}, |
260 | {-0.5, -1}, |
261 | {-0., -1}, |
262 | {+0., -1}, |
263 | {0.5, -1}, |
264 | {1, -1}, |
265 | {2, -1}, |
266 | {INFINITY, -1}, |
267 | |
268 | {NAN, -0.5}, |
269 | {-INFINITY, -0.5}, |
270 | {-2, -0.5}, |
271 | {-1, -0.5}, |
272 | {-0.5, -0.5}, |
273 | {-0., -0.5}, |
274 | {+0., -0.5}, |
275 | {0.5, -0.5}, |
276 | {1, -0.5}, |
277 | {2, -0.5}, |
278 | {INFINITY, -0.5}, |
279 | |
280 | {NAN, -0.}, |
281 | {-INFINITY, -0.}, |
282 | {-2, -0.}, |
283 | {-1, -0.}, |
284 | {-0.5, -0.}, |
285 | {-0., -0.}, |
286 | {+0., -0.}, |
287 | {0.5, -0.}, |
288 | {1, -0.}, |
289 | {2, -0.}, |
290 | {INFINITY, -0.}, |
291 | |
292 | {NAN, 0.}, |
293 | {-INFINITY, 0.}, |
294 | {-2, 0.}, |
295 | {-1, 0.}, |
296 | {-0.5, 0.}, |
297 | {-0., 0.}, |
298 | {+0., 0.}, |
299 | {0.5, 0.}, |
300 | {1, 0.}, |
301 | {2, 0.}, |
302 | {INFINITY, 0.}, |
303 | |
304 | {NAN, 0.5}, |
305 | {-INFINITY, 0.5}, |
306 | {-2, 0.5}, |
307 | {-1, 0.5}, |
308 | {-0.5, 0.5}, |
309 | {-0., 0.5}, |
310 | {+0., 0.5}, |
311 | {0.5, 0.5}, |
312 | {1, 0.5}, |
313 | {2, 0.5}, |
314 | {INFINITY, 0.5}, |
315 | |
316 | {NAN, 1}, |
317 | {-INFINITY, 1}, |
318 | {-2, 1}, |
319 | {-1, 1}, |
320 | {-0.5, 1}, |
321 | {-0., 1}, |
322 | {+0., 1}, |
323 | {0.5, 1}, |
324 | {1, 1}, |
325 | {2, 1}, |
326 | {INFINITY, 1}, |
327 | |
328 | {NAN, 2}, |
329 | {-INFINITY, 2}, |
330 | {-2, 2}, |
331 | {-1, 2}, |
332 | {-0.5, 2}, |
333 | {-0., 2}, |
334 | {+0., 2}, |
335 | {0.5, 2}, |
336 | {1, 2}, |
337 | {2, 2}, |
338 | {INFINITY, 2}, |
339 | |
340 | {NAN, INFINITY}, |
341 | {-INFINITY, INFINITY}, |
342 | {-2, INFINITY}, |
343 | {-1, INFINITY}, |
344 | {-0.5, INFINITY}, |
345 | {-0., INFINITY}, |
346 | {+0., INFINITY}, |
347 | {0.5, INFINITY}, |
348 | {1, INFINITY}, |
349 | {2, INFINITY}, |
350 | {INFINITY, INFINITY} |
351 | |
352 | }; |
353 | |
354 | #endif |
355 | |
356 | int main() |
357 | { |
358 | #if !_ARCH_PPC |
359 | const unsigned N = sizeof(x) / sizeof(x[0]); |
360 | unsigned i, j; |
361 | for (i = 0; i < N; ++i) |
362 | { |
363 | for (j = 0; j < N; ++j) |
364 | { |
365 | if (test__divxc3(a: x[i][0], b: x[i][1], c: x[j][0], d: x[j][1])) |
366 | return 1; |
367 | } |
368 | } |
369 | |
370 | #else |
371 | printf("skipped\n" ); |
372 | #endif |
373 | return 0; |
374 | } |
375 | |