1 | // RUN: %clang_builtins %s -ffp-contract=off %librt -lm -o %t && %run %t |
2 | // REQUIRES: librt_has_muldc3 |
3 | // REQUIRES: c99-complex |
4 | |
5 | #include "int_lib.h" |
6 | #include <math.h> |
7 | #include <complex.h> |
8 | #include <stdio.h> |
9 | |
10 | |
11 | // Returns: the product of a + ib and c + id |
12 | |
13 | COMPILER_RT_ABI double _Complex |
14 | __muldc3(double __a, double __b, double __c, double __d); |
15 | |
16 | enum {zero, non_zero, inf, NaN, non_zero_nan}; |
17 | |
18 | int |
19 | classify(double _Complex x) |
20 | { |
21 | if (x == 0) |
22 | return zero; |
23 | if (isinf(creal(x)) || isinf(cimag(x))) |
24 | return inf; |
25 | if (isnan(creal(x)) && isnan(cimag(x))) |
26 | return NaN; |
27 | if (isnan(creal(x))) |
28 | { |
29 | if (cimag(z: x) == 0) |
30 | return NaN; |
31 | return non_zero_nan; |
32 | } |
33 | if (isnan(cimag(x))) |
34 | { |
35 | if (creal(z: x) == 0) |
36 | return NaN; |
37 | return non_zero_nan; |
38 | } |
39 | return non_zero; |
40 | } |
41 | |
42 | int test__muldc3(double a, double b, double c, double d) |
43 | { |
44 | double _Complex r = __muldc3(a: a, b: b, c: c, d: d); |
45 | // printf("test__muldc3(%f, %f, %f, %f) = %f + I%f\n", |
46 | // a, b, c, d, creal(r), cimag(r)); |
47 | double _Complex dividend; |
48 | double _Complex divisor; |
49 | |
50 | __real__ dividend = a; |
51 | __imag__ dividend = b; |
52 | __real__ divisor = c; |
53 | __imag__ divisor = d; |
54 | |
55 | switch (classify(x: dividend)) |
56 | { |
57 | case zero: |
58 | switch (classify(x: divisor)) |
59 | { |
60 | case zero: |
61 | if (classify(x: r) != zero) |
62 | return 1; |
63 | break; |
64 | case non_zero: |
65 | if (classify(x: r) != zero) |
66 | return 1; |
67 | break; |
68 | case inf: |
69 | if (classify(x: r) != NaN) |
70 | return 1; |
71 | break; |
72 | case NaN: |
73 | if (classify(x: r) != NaN) |
74 | return 1; |
75 | break; |
76 | case non_zero_nan: |
77 | if (classify(x: r) != NaN) |
78 | return 1; |
79 | break; |
80 | } |
81 | break; |
82 | case non_zero: |
83 | switch (classify(x: divisor)) |
84 | { |
85 | case zero: |
86 | if (classify(x: r) != zero) |
87 | return 1; |
88 | break; |
89 | case non_zero: |
90 | if (classify(x: r) != non_zero) |
91 | return 1; |
92 | if (r != a * c - b * d + _Complex_I*(a * d + b * c)) |
93 | return 1; |
94 | break; |
95 | case inf: |
96 | if (classify(x: r) != inf) |
97 | return 1; |
98 | break; |
99 | case NaN: |
100 | if (classify(x: r) != NaN) |
101 | return 1; |
102 | break; |
103 | case non_zero_nan: |
104 | if (classify(x: r) != NaN) |
105 | return 1; |
106 | break; |
107 | } |
108 | break; |
109 | case inf: |
110 | switch (classify(x: divisor)) |
111 | { |
112 | case zero: |
113 | if (classify(x: r) != NaN) |
114 | return 1; |
115 | break; |
116 | case non_zero: |
117 | if (classify(x: r) != inf) |
118 | return 1; |
119 | break; |
120 | case inf: |
121 | if (classify(x: r) != inf) |
122 | return 1; |
123 | break; |
124 | case NaN: |
125 | if (classify(x: r) != NaN) |
126 | return 1; |
127 | break; |
128 | case non_zero_nan: |
129 | if (classify(x: r) != inf) |
130 | return 1; |
131 | break; |
132 | } |
133 | break; |
134 | case NaN: |
135 | switch (classify(x: divisor)) |
136 | { |
137 | case zero: |
138 | if (classify(x: r) != NaN) |
139 | return 1; |
140 | break; |
141 | case non_zero: |
142 | if (classify(x: r) != NaN) |
143 | return 1; |
144 | break; |
145 | case inf: |
146 | if (classify(x: r) != NaN) |
147 | return 1; |
148 | break; |
149 | case NaN: |
150 | if (classify(x: r) != NaN) |
151 | return 1; |
152 | break; |
153 | case non_zero_nan: |
154 | if (classify(x: r) != NaN) |
155 | return 1; |
156 | break; |
157 | } |
158 | break; |
159 | case non_zero_nan: |
160 | switch (classify(x: divisor)) |
161 | { |
162 | case zero: |
163 | if (classify(x: r) != NaN) |
164 | return 1; |
165 | break; |
166 | case non_zero: |
167 | if (classify(x: r) != NaN) |
168 | return 1; |
169 | break; |
170 | case inf: |
171 | if (classify(x: r) != inf) |
172 | return 1; |
173 | break; |
174 | case NaN: |
175 | if (classify(x: r) != NaN) |
176 | return 1; |
177 | break; |
178 | case non_zero_nan: |
179 | if (classify(x: r) != NaN) |
180 | return 1; |
181 | break; |
182 | } |
183 | break; |
184 | } |
185 | |
186 | return 0; |
187 | } |
188 | |
189 | double x[][2] = |
190 | { |
191 | { 1.e-6, 1.e-6}, |
192 | {-1.e-6, 1.e-6}, |
193 | {-1.e-6, -1.e-6}, |
194 | { 1.e-6, -1.e-6}, |
195 | |
196 | { 1.e+6, 1.e-6}, |
197 | {-1.e+6, 1.e-6}, |
198 | {-1.e+6, -1.e-6}, |
199 | { 1.e+6, -1.e-6}, |
200 | |
201 | { 1.e-6, 1.e+6}, |
202 | {-1.e-6, 1.e+6}, |
203 | {-1.e-6, -1.e+6}, |
204 | { 1.e-6, -1.e+6}, |
205 | |
206 | { 1.e+6, 1.e+6}, |
207 | {-1.e+6, 1.e+6}, |
208 | {-1.e+6, -1.e+6}, |
209 | { 1.e+6, -1.e+6}, |
210 | |
211 | {NAN, NAN}, |
212 | {-INFINITY, NAN}, |
213 | {-2, NAN}, |
214 | {-1, NAN}, |
215 | {-0.5, NAN}, |
216 | {-0., NAN}, |
217 | {+0., NAN}, |
218 | {0.5, NAN}, |
219 | {1, NAN}, |
220 | {2, NAN}, |
221 | {INFINITY, NAN}, |
222 | |
223 | {NAN, -INFINITY}, |
224 | {-INFINITY, -INFINITY}, |
225 | {-2, -INFINITY}, |
226 | {-1, -INFINITY}, |
227 | {-0.5, -INFINITY}, |
228 | {-0., -INFINITY}, |
229 | {+0., -INFINITY}, |
230 | {0.5, -INFINITY}, |
231 | {1, -INFINITY}, |
232 | {2, -INFINITY}, |
233 | {INFINITY, -INFINITY}, |
234 | |
235 | {NAN, -2}, |
236 | {-INFINITY, -2}, |
237 | {-2, -2}, |
238 | {-1, -2}, |
239 | {-0.5, -2}, |
240 | {-0., -2}, |
241 | {+0., -2}, |
242 | {0.5, -2}, |
243 | {1, -2}, |
244 | {2, -2}, |
245 | {INFINITY, -2}, |
246 | |
247 | {NAN, -1}, |
248 | {-INFINITY, -1}, |
249 | {-2, -1}, |
250 | {-1, -1}, |
251 | {-0.5, -1}, |
252 | {-0., -1}, |
253 | {+0., -1}, |
254 | {0.5, -1}, |
255 | {1, -1}, |
256 | {2, -1}, |
257 | {INFINITY, -1}, |
258 | |
259 | {NAN, -0.5}, |
260 | {-INFINITY, -0.5}, |
261 | {-2, -0.5}, |
262 | {-1, -0.5}, |
263 | {-0.5, -0.5}, |
264 | {-0., -0.5}, |
265 | {+0., -0.5}, |
266 | {0.5, -0.5}, |
267 | {1, -0.5}, |
268 | {2, -0.5}, |
269 | {INFINITY, -0.5}, |
270 | |
271 | {NAN, -0.}, |
272 | {-INFINITY, -0.}, |
273 | {-2, -0.}, |
274 | {-1, -0.}, |
275 | {-0.5, -0.}, |
276 | {-0., -0.}, |
277 | {+0., -0.}, |
278 | {0.5, -0.}, |
279 | {1, -0.}, |
280 | {2, -0.}, |
281 | {INFINITY, -0.}, |
282 | |
283 | {NAN, 0.}, |
284 | {-INFINITY, 0.}, |
285 | {-2, 0.}, |
286 | {-1, 0.}, |
287 | {-0.5, 0.}, |
288 | {-0., 0.}, |
289 | {+0., 0.}, |
290 | {0.5, 0.}, |
291 | {1, 0.}, |
292 | {2, 0.}, |
293 | {INFINITY, 0.}, |
294 | |
295 | {NAN, 0.5}, |
296 | {-INFINITY, 0.5}, |
297 | {-2, 0.5}, |
298 | {-1, 0.5}, |
299 | {-0.5, 0.5}, |
300 | {-0., 0.5}, |
301 | {+0., 0.5}, |
302 | {0.5, 0.5}, |
303 | {1, 0.5}, |
304 | {2, 0.5}, |
305 | {INFINITY, 0.5}, |
306 | |
307 | {NAN, 1}, |
308 | {-INFINITY, 1}, |
309 | {-2, 1}, |
310 | {-1, 1}, |
311 | {-0.5, 1}, |
312 | {-0., 1}, |
313 | {+0., 1}, |
314 | {0.5, 1}, |
315 | {1, 1}, |
316 | {2, 1}, |
317 | {INFINITY, 1}, |
318 | |
319 | {NAN, 2}, |
320 | {-INFINITY, 2}, |
321 | {-2, 2}, |
322 | {-1, 2}, |
323 | {-0.5, 2}, |
324 | {-0., 2}, |
325 | {+0., 2}, |
326 | {0.5, 2}, |
327 | {1, 2}, |
328 | {2, 2}, |
329 | {INFINITY, 2}, |
330 | |
331 | {NAN, INFINITY}, |
332 | {-INFINITY, INFINITY}, |
333 | {-2, INFINITY}, |
334 | {-1, INFINITY}, |
335 | {-0.5, INFINITY}, |
336 | {-0., INFINITY}, |
337 | {+0., INFINITY}, |
338 | {0.5, INFINITY}, |
339 | {1, INFINITY}, |
340 | {2, INFINITY}, |
341 | {INFINITY, INFINITY} |
342 | |
343 | }; |
344 | |
345 | int main() |
346 | { |
347 | const unsigned N = sizeof(x) / sizeof(x[0]); |
348 | unsigned i, j; |
349 | for (i = 0; i < N; ++i) |
350 | { |
351 | for (j = 0; j < N; ++j) |
352 | { |
353 | if (test__muldc3(a: x[i][0], b: x[i][1], c: x[j][0], d: x[j][1])) |
354 | return 1; |
355 | } |
356 | } |
357 | |
358 | return 0; |
359 | } |
360 | |