1 | // RUN: %clang_builtins %s %librt -lm -o %t && %run %t |
2 | // REQUIRES: librt_has_mulsc3 |
3 | // REQUIRES: c99-complex |
4 | |
5 | #include "int_lib.h" |
6 | #include <math.h> |
7 | #include <complex.h> |
8 | #include <stdio.h> |
9 | |
10 | |
11 | // Returns: the product of a + ib and c + id |
12 | |
13 | COMPILER_RT_ABI float _Complex |
14 | __mulsc3(float __a, float __b, float __c, float __d); |
15 | |
16 | enum {zero, non_zero, inf, NaN, non_zero_nan}; |
17 | |
18 | int |
19 | classify(float _Complex x) |
20 | { |
21 | if (x == 0) |
22 | return zero; |
23 | if (isinf(crealf(x)) || isinf(cimagf(x))) |
24 | return inf; |
25 | if (isnan(crealf(x)) && isnan(cimagf(x))) |
26 | return NaN; |
27 | if (isnan(crealf(x))) |
28 | { |
29 | if (cimagf(z: x) == 0) |
30 | return NaN; |
31 | return non_zero_nan; |
32 | } |
33 | if (isnan(cimagf(x))) |
34 | { |
35 | if (crealf(z: x) == 0) |
36 | return NaN; |
37 | return non_zero_nan; |
38 | } |
39 | return non_zero; |
40 | } |
41 | |
42 | int test__mulsc3(float a, float b, float c, float d) |
43 | { |
44 | float _Complex r = __mulsc3(a: a, b: b, c: c, d: d); |
45 | // printf("test__mulsc3(%f, %f, %f, %f) = %f + I%f\n", |
46 | // a, b, c, d, crealf(r), cimagf(r)); |
47 | float _Complex dividend; |
48 | float _Complex divisor; |
49 | |
50 | __real__ dividend = a; |
51 | __imag__ dividend = b; |
52 | __real__ divisor = c; |
53 | __imag__ divisor = d; |
54 | |
55 | switch (classify(x: dividend)) |
56 | { |
57 | case zero: |
58 | switch (classify(x: divisor)) |
59 | { |
60 | case zero: |
61 | if (classify(x: r) != zero) |
62 | return 1; |
63 | break; |
64 | case non_zero: |
65 | if (classify(x: r) != zero) |
66 | return 1; |
67 | break; |
68 | case inf: |
69 | if (classify(x: r) != NaN) |
70 | return 1; |
71 | break; |
72 | case NaN: |
73 | if (classify(x: r) != NaN) |
74 | return 1; |
75 | break; |
76 | case non_zero_nan: |
77 | if (classify(x: r) != NaN) |
78 | return 1; |
79 | break; |
80 | } |
81 | break; |
82 | case non_zero: |
83 | switch (classify(x: divisor)) |
84 | { |
85 | case zero: |
86 | if (classify(x: r) != zero) |
87 | return 1; |
88 | break; |
89 | case non_zero: |
90 | if (classify(x: r) != non_zero) |
91 | return 1; |
92 | { |
93 | float _Complex z = a * c - b * d + _Complex_I*(a * d + b * c); |
94 | // relaxed tolerance to arbitrary (1.e-6) amount. |
95 | if (cabsf(z: (r-z)/r) > 1.e-6) |
96 | return 1; |
97 | } |
98 | break; |
99 | case inf: |
100 | if (classify(x: r) != inf) |
101 | return 1; |
102 | break; |
103 | case NaN: |
104 | if (classify(x: r) != NaN) |
105 | return 1; |
106 | break; |
107 | case non_zero_nan: |
108 | if (classify(x: r) != NaN) |
109 | return 1; |
110 | break; |
111 | } |
112 | break; |
113 | case inf: |
114 | switch (classify(x: divisor)) |
115 | { |
116 | case zero: |
117 | if (classify(x: r) != NaN) |
118 | return 1; |
119 | break; |
120 | case non_zero: |
121 | if (classify(x: r) != inf) |
122 | return 1; |
123 | break; |
124 | case inf: |
125 | if (classify(x: r) != inf) |
126 | return 1; |
127 | break; |
128 | case NaN: |
129 | if (classify(x: r) != NaN) |
130 | return 1; |
131 | break; |
132 | case non_zero_nan: |
133 | if (classify(x: r) != inf) |
134 | return 1; |
135 | break; |
136 | } |
137 | break; |
138 | case NaN: |
139 | switch (classify(x: divisor)) |
140 | { |
141 | case zero: |
142 | if (classify(x: r) != NaN) |
143 | return 1; |
144 | break; |
145 | case non_zero: |
146 | if (classify(x: r) != NaN) |
147 | return 1; |
148 | break; |
149 | case inf: |
150 | if (classify(x: r) != NaN) |
151 | return 1; |
152 | break; |
153 | case NaN: |
154 | if (classify(x: r) != NaN) |
155 | return 1; |
156 | break; |
157 | case non_zero_nan: |
158 | if (classify(x: r) != NaN) |
159 | return 1; |
160 | break; |
161 | } |
162 | break; |
163 | case non_zero_nan: |
164 | switch (classify(x: divisor)) |
165 | { |
166 | case zero: |
167 | if (classify(x: r) != NaN) |
168 | return 1; |
169 | break; |
170 | case non_zero: |
171 | if (classify(x: r) != NaN) |
172 | return 1; |
173 | break; |
174 | case inf: |
175 | if (classify(x: r) != inf) |
176 | return 1; |
177 | break; |
178 | case NaN: |
179 | if (classify(x: r) != NaN) |
180 | return 1; |
181 | break; |
182 | case non_zero_nan: |
183 | if (classify(x: r) != NaN) |
184 | return 1; |
185 | break; |
186 | } |
187 | break; |
188 | } |
189 | |
190 | return 0; |
191 | } |
192 | |
193 | float x[][2] = |
194 | { |
195 | { 1.e-6, 1.e-6}, |
196 | {-1.e-6, 1.e-6}, |
197 | {-1.e-6, -1.e-6}, |
198 | { 1.e-6, -1.e-6}, |
199 | |
200 | { 1.e+6, 1.e-6}, |
201 | {-1.e+6, 1.e-6}, |
202 | {-1.e+6, -1.e-6}, |
203 | { 1.e+6, -1.e-6}, |
204 | |
205 | { 1.e-6, 1.e+6}, |
206 | {-1.e-6, 1.e+6}, |
207 | {-1.e-6, -1.e+6}, |
208 | { 1.e-6, -1.e+6}, |
209 | |
210 | { 1.e+6, 1.e+6}, |
211 | {-1.e+6, 1.e+6}, |
212 | {-1.e+6, -1.e+6}, |
213 | { 1.e+6, -1.e+6}, |
214 | |
215 | {NAN, NAN}, |
216 | {-INFINITY, NAN}, |
217 | {-2, NAN}, |
218 | {-1, NAN}, |
219 | {-0.5, NAN}, |
220 | {-0., NAN}, |
221 | {+0., NAN}, |
222 | {0.5, NAN}, |
223 | {1, NAN}, |
224 | {2, NAN}, |
225 | {INFINITY, NAN}, |
226 | |
227 | {NAN, -INFINITY}, |
228 | {-INFINITY, -INFINITY}, |
229 | {-2, -INFINITY}, |
230 | {-1, -INFINITY}, |
231 | {-0.5, -INFINITY}, |
232 | {-0., -INFINITY}, |
233 | {+0., -INFINITY}, |
234 | {0.5, -INFINITY}, |
235 | {1, -INFINITY}, |
236 | {2, -INFINITY}, |
237 | {INFINITY, -INFINITY}, |
238 | |
239 | {NAN, -2}, |
240 | {-INFINITY, -2}, |
241 | {-2, -2}, |
242 | {-1, -2}, |
243 | {-0.5, -2}, |
244 | {-0., -2}, |
245 | {+0., -2}, |
246 | {0.5, -2}, |
247 | {1, -2}, |
248 | {2, -2}, |
249 | {INFINITY, -2}, |
250 | |
251 | {NAN, -1}, |
252 | {-INFINITY, -1}, |
253 | {-2, -1}, |
254 | {-1, -1}, |
255 | {-0.5, -1}, |
256 | {-0., -1}, |
257 | {+0., -1}, |
258 | {0.5, -1}, |
259 | {1, -1}, |
260 | {2, -1}, |
261 | {INFINITY, -1}, |
262 | |
263 | {NAN, -0.5}, |
264 | {-INFINITY, -0.5}, |
265 | {-2, -0.5}, |
266 | {-1, -0.5}, |
267 | {-0.5, -0.5}, |
268 | {-0., -0.5}, |
269 | {+0., -0.5}, |
270 | {0.5, -0.5}, |
271 | {1, -0.5}, |
272 | {2, -0.5}, |
273 | {INFINITY, -0.5}, |
274 | |
275 | {NAN, -0.}, |
276 | {-INFINITY, -0.}, |
277 | {-2, -0.}, |
278 | {-1, -0.}, |
279 | {-0.5, -0.}, |
280 | {-0., -0.}, |
281 | {+0., -0.}, |
282 | {0.5, -0.}, |
283 | {1, -0.}, |
284 | {2, -0.}, |
285 | {INFINITY, -0.}, |
286 | |
287 | {NAN, 0.}, |
288 | {-INFINITY, 0.}, |
289 | {-2, 0.}, |
290 | {-1, 0.}, |
291 | {-0.5, 0.}, |
292 | {-0., 0.}, |
293 | {+0., 0.}, |
294 | {0.5, 0.}, |
295 | {1, 0.}, |
296 | {2, 0.}, |
297 | {INFINITY, 0.}, |
298 | |
299 | {NAN, 0.5}, |
300 | {-INFINITY, 0.5}, |
301 | {-2, 0.5}, |
302 | {-1, 0.5}, |
303 | {-0.5, 0.5}, |
304 | {-0., 0.5}, |
305 | {+0., 0.5}, |
306 | {0.5, 0.5}, |
307 | {1, 0.5}, |
308 | {2, 0.5}, |
309 | {INFINITY, 0.5}, |
310 | |
311 | {NAN, 1}, |
312 | {-INFINITY, 1}, |
313 | {-2, 1}, |
314 | {-1, 1}, |
315 | {-0.5, 1}, |
316 | {-0., 1}, |
317 | {+0., 1}, |
318 | {0.5, 1}, |
319 | {1, 1}, |
320 | {2, 1}, |
321 | {INFINITY, 1}, |
322 | |
323 | {NAN, 2}, |
324 | {-INFINITY, 2}, |
325 | {-2, 2}, |
326 | {-1, 2}, |
327 | {-0.5, 2}, |
328 | {-0., 2}, |
329 | {+0., 2}, |
330 | {0.5, 2}, |
331 | {1, 2}, |
332 | {2, 2}, |
333 | {INFINITY, 2}, |
334 | |
335 | {NAN, INFINITY}, |
336 | {-INFINITY, INFINITY}, |
337 | {-2, INFINITY}, |
338 | {-1, INFINITY}, |
339 | {-0.5, INFINITY}, |
340 | {-0., INFINITY}, |
341 | {+0., INFINITY}, |
342 | {0.5, INFINITY}, |
343 | {1, INFINITY}, |
344 | {2, INFINITY}, |
345 | {INFINITY, INFINITY} |
346 | |
347 | }; |
348 | |
349 | int main() |
350 | { |
351 | const unsigned N = sizeof(x) / sizeof(x[0]); |
352 | unsigned i, j; |
353 | for (i = 0; i < N; ++i) |
354 | { |
355 | for (j = 0; j < N; ++j) |
356 | { |
357 | if (test__mulsc3(a: x[i][0], b: x[i][1], c: x[j][0], d: x[j][1])) |
358 | return 1; |
359 | } |
360 | } |
361 | |
362 | return 0; |
363 | } |
364 | |