1 | // XFAIL: target=aarch64-{{.*}}-windows-{{.*}} |
2 | // RUN: %clang_builtins %s %librt -o %t && %run %t |
3 | // REQUIRES: librt_has_multc3 |
4 | |
5 | #include <stdio.h> |
6 | |
7 | #if _ARCH_PPC || __aarch64__ |
8 | |
9 | #include "int_lib.h" |
10 | #include <math.h> |
11 | #include <complex.h> |
12 | |
13 | // Returns: the product of a + ib and c + id |
14 | |
15 | COMPILER_RT_ABI long double _Complex |
16 | __multc3(long double __a, long double __b, long double __c, long double __d); |
17 | |
18 | enum {zero, non_zero, inf, NaN, non_zero_nan}; |
19 | |
20 | int |
21 | classify(long double _Complex x) |
22 | { |
23 | if (x == 0) |
24 | return zero; |
25 | if (isinf(creall(x)) || isinf(cimagl(x))) |
26 | return inf; |
27 | if (isnan(creall(x)) && isnan(cimagl(x))) |
28 | return NaN; |
29 | if (isnan(creall(x))) |
30 | { |
31 | if (cimagl(x) == 0) |
32 | return NaN; |
33 | return non_zero_nan; |
34 | } |
35 | if (isnan(cimagl(x))) |
36 | { |
37 | if (creall(x) == 0) |
38 | return NaN; |
39 | return non_zero_nan; |
40 | } |
41 | return non_zero; |
42 | } |
43 | |
44 | int test__multc3(long double a, long double b, long double c, long double d) |
45 | { |
46 | long double _Complex r = __multc3(a, b, c, d); |
47 | // printf("test__multc3(%Lf, %Lf, %Lf, %Lf) = %Lf + I%Lf\n", |
48 | // a, b, c, d, creall(r), cimagl(r)); |
49 | long double _Complex dividend; |
50 | long double _Complex divisor; |
51 | |
52 | __real__ dividend = a; |
53 | __imag__ dividend = b; |
54 | __real__ divisor = c; |
55 | __imag__ divisor = d; |
56 | |
57 | switch (classify(dividend)) |
58 | { |
59 | case zero: |
60 | switch (classify(divisor)) |
61 | { |
62 | case zero: |
63 | if (classify(r) != zero) |
64 | return 1; |
65 | break; |
66 | case non_zero: |
67 | if (classify(r) != zero) |
68 | return 1; |
69 | break; |
70 | case inf: |
71 | if (classify(r) != NaN) |
72 | return 1; |
73 | break; |
74 | case NaN: |
75 | if (classify(r) != NaN) |
76 | return 1; |
77 | break; |
78 | case non_zero_nan: |
79 | if (classify(r) != NaN) |
80 | return 1; |
81 | break; |
82 | } |
83 | break; |
84 | case non_zero: |
85 | switch (classify(divisor)) |
86 | { |
87 | case zero: |
88 | if (classify(r) != zero) |
89 | return 1; |
90 | break; |
91 | case non_zero: |
92 | if (classify(r) != non_zero) |
93 | return 1; |
94 | if (r != a * c - b * d + _Complex_I*(a * d + b * c)) |
95 | return 1; |
96 | break; |
97 | case inf: |
98 | if (classify(r) != inf) |
99 | return 1; |
100 | break; |
101 | case NaN: |
102 | if (classify(r) != NaN) |
103 | return 1; |
104 | break; |
105 | case non_zero_nan: |
106 | if (classify(r) != NaN) |
107 | return 1; |
108 | break; |
109 | } |
110 | break; |
111 | case inf: |
112 | switch (classify(divisor)) |
113 | { |
114 | case zero: |
115 | if (classify(r) != NaN) |
116 | return 1; |
117 | break; |
118 | case non_zero: |
119 | if (classify(r) != inf) |
120 | return 1; |
121 | break; |
122 | case inf: |
123 | if (classify(r) != inf) |
124 | return 1; |
125 | break; |
126 | case NaN: |
127 | if (classify(r) != NaN) |
128 | return 1; |
129 | break; |
130 | case non_zero_nan: |
131 | if (classify(r) != inf) |
132 | return 1; |
133 | break; |
134 | } |
135 | break; |
136 | case NaN: |
137 | switch (classify(divisor)) |
138 | { |
139 | case zero: |
140 | if (classify(r) != NaN) |
141 | return 1; |
142 | break; |
143 | case non_zero: |
144 | if (classify(r) != NaN) |
145 | return 1; |
146 | break; |
147 | case inf: |
148 | if (classify(r) != NaN) |
149 | return 1; |
150 | break; |
151 | case NaN: |
152 | if (classify(r) != NaN) |
153 | return 1; |
154 | break; |
155 | case non_zero_nan: |
156 | if (classify(r) != NaN) |
157 | return 1; |
158 | break; |
159 | } |
160 | break; |
161 | case non_zero_nan: |
162 | switch (classify(divisor)) |
163 | { |
164 | case zero: |
165 | if (classify(r) != NaN) |
166 | return 1; |
167 | break; |
168 | case non_zero: |
169 | if (classify(r) != NaN) |
170 | return 1; |
171 | break; |
172 | case inf: |
173 | if (classify(r) != inf) |
174 | return 1; |
175 | break; |
176 | case NaN: |
177 | if (classify(r) != NaN) |
178 | return 1; |
179 | break; |
180 | case non_zero_nan: |
181 | if (classify(r) != NaN) |
182 | return 1; |
183 | break; |
184 | } |
185 | break; |
186 | } |
187 | |
188 | return 0; |
189 | } |
190 | |
191 | long double x[][2] = |
192 | { |
193 | { 1.e-6, 1.e-6}, |
194 | {-1.e-6, 1.e-6}, |
195 | {-1.e-6, -1.e-6}, |
196 | { 1.e-6, -1.e-6}, |
197 | |
198 | { 1.e+6, 1.e-6}, |
199 | {-1.e+6, 1.e-6}, |
200 | {-1.e+6, -1.e-6}, |
201 | { 1.e+6, -1.e-6}, |
202 | |
203 | { 1.e-6, 1.e+6}, |
204 | {-1.e-6, 1.e+6}, |
205 | {-1.e-6, -1.e+6}, |
206 | { 1.e-6, -1.e+6}, |
207 | |
208 | { 1.e+6, 1.e+6}, |
209 | {-1.e+6, 1.e+6}, |
210 | {-1.e+6, -1.e+6}, |
211 | { 1.e+6, -1.e+6}, |
212 | |
213 | {NAN, NAN}, |
214 | {-INFINITY, NAN}, |
215 | {-2, NAN}, |
216 | {-1, NAN}, |
217 | {-0.5, NAN}, |
218 | {-0., NAN}, |
219 | {+0., NAN}, |
220 | {0.5, NAN}, |
221 | {1, NAN}, |
222 | {2, NAN}, |
223 | {INFINITY, NAN}, |
224 | |
225 | {NAN, -INFINITY}, |
226 | {-INFINITY, -INFINITY}, |
227 | {-2, -INFINITY}, |
228 | {-1, -INFINITY}, |
229 | {-0.5, -INFINITY}, |
230 | {-0., -INFINITY}, |
231 | {+0., -INFINITY}, |
232 | {0.5, -INFINITY}, |
233 | {1, -INFINITY}, |
234 | {2, -INFINITY}, |
235 | {INFINITY, -INFINITY}, |
236 | |
237 | {NAN, -2}, |
238 | {-INFINITY, -2}, |
239 | {-2, -2}, |
240 | {-1, -2}, |
241 | {-0.5, -2}, |
242 | {-0., -2}, |
243 | {+0., -2}, |
244 | {0.5, -2}, |
245 | {1, -2}, |
246 | {2, -2}, |
247 | {INFINITY, -2}, |
248 | |
249 | {NAN, -1}, |
250 | {-INFINITY, -1}, |
251 | {-2, -1}, |
252 | {-1, -1}, |
253 | {-0.5, -1}, |
254 | {-0., -1}, |
255 | {+0., -1}, |
256 | {0.5, -1}, |
257 | {1, -1}, |
258 | {2, -1}, |
259 | {INFINITY, -1}, |
260 | |
261 | {NAN, -0.5}, |
262 | {-INFINITY, -0.5}, |
263 | {-2, -0.5}, |
264 | {-1, -0.5}, |
265 | {-0.5, -0.5}, |
266 | {-0., -0.5}, |
267 | {+0., -0.5}, |
268 | {0.5, -0.5}, |
269 | {1, -0.5}, |
270 | {2, -0.5}, |
271 | {INFINITY, -0.5}, |
272 | |
273 | {NAN, -0.}, |
274 | {-INFINITY, -0.}, |
275 | {-2, -0.}, |
276 | {-1, -0.}, |
277 | {-0.5, -0.}, |
278 | {-0., -0.}, |
279 | {+0., -0.}, |
280 | {0.5, -0.}, |
281 | {1, -0.}, |
282 | {2, -0.}, |
283 | {INFINITY, -0.}, |
284 | |
285 | {NAN, 0.}, |
286 | {-INFINITY, 0.}, |
287 | {-2, 0.}, |
288 | {-1, 0.}, |
289 | {-0.5, 0.}, |
290 | {-0., 0.}, |
291 | {+0., 0.}, |
292 | {0.5, 0.}, |
293 | {1, 0.}, |
294 | {2, 0.}, |
295 | {INFINITY, 0.}, |
296 | |
297 | {NAN, 0.5}, |
298 | {-INFINITY, 0.5}, |
299 | {-2, 0.5}, |
300 | {-1, 0.5}, |
301 | {-0.5, 0.5}, |
302 | {-0., 0.5}, |
303 | {+0., 0.5}, |
304 | {0.5, 0.5}, |
305 | {1, 0.5}, |
306 | {2, 0.5}, |
307 | {INFINITY, 0.5}, |
308 | |
309 | {NAN, 1}, |
310 | {-INFINITY, 1}, |
311 | {-2, 1}, |
312 | {-1, 1}, |
313 | {-0.5, 1}, |
314 | {-0., 1}, |
315 | {+0., 1}, |
316 | {0.5, 1}, |
317 | {1, 1}, |
318 | {2, 1}, |
319 | {INFINITY, 1}, |
320 | |
321 | {NAN, 2}, |
322 | {-INFINITY, 2}, |
323 | {-2, 2}, |
324 | {-1, 2}, |
325 | {-0.5, 2}, |
326 | {-0., 2}, |
327 | {+0., 2}, |
328 | {0.5, 2}, |
329 | {1, 2}, |
330 | {2, 2}, |
331 | {INFINITY, 2}, |
332 | |
333 | {NAN, INFINITY}, |
334 | {-INFINITY, INFINITY}, |
335 | {-2, INFINITY}, |
336 | {-1, INFINITY}, |
337 | {-0.5, INFINITY}, |
338 | {-0., INFINITY}, |
339 | {+0., INFINITY}, |
340 | {0.5, INFINITY}, |
341 | {1, INFINITY}, |
342 | {2, INFINITY}, |
343 | {INFINITY, INFINITY} |
344 | |
345 | }; |
346 | |
347 | #endif |
348 | |
349 | int main() |
350 | { |
351 | #if _ARCH_PPC || __aarch64__ |
352 | const unsigned N = sizeof(x) / sizeof(x[0]); |
353 | unsigned i, j; |
354 | for (i = 0; i < N; ++i) |
355 | { |
356 | for (j = 0; j < N; ++j) |
357 | { |
358 | if (test__multc3(x[i][0], x[i][1], x[j][0], x[j][1])) |
359 | return 1; |
360 | } |
361 | } |
362 | #else |
363 | printf(format: "skipped\n" ); |
364 | #endif |
365 | return 0; |
366 | } |
367 | |