| 1 | // RUN: %clang_builtins %s %librt -lm -o %t && %run %t |
| 2 | // REQUIRES: librt_has_mulxc3 |
| 3 | // UNSUPPORTED: target=powerpc64{{.*}} |
| 4 | // REQUIRES: x86-target-arch |
| 5 | // UNSUPPORTED: target=mips{{.*}} |
| 6 | // REQUIRES: c99-complex |
| 7 | |
| 8 | #if !_ARCH_PPC |
| 9 | |
| 10 | #include "int_lib.h" |
| 11 | #include <math.h> |
| 12 | #include <complex.h> |
| 13 | #include <stdio.h> |
| 14 | |
| 15 | |
| 16 | // Returns: the product of a + ib and c + id |
| 17 | |
| 18 | COMPILER_RT_ABI long double _Complex |
| 19 | __mulxc3(long double __a, long double __b, long double __c, long double __d); |
| 20 | |
| 21 | enum {zero, non_zero, inf, NaN, non_zero_nan}; |
| 22 | |
| 23 | int |
| 24 | classify(long double _Complex x) |
| 25 | { |
| 26 | if (x == 0) |
| 27 | return zero; |
| 28 | if (isinf(creall(x)) || isinf(cimagl(x))) |
| 29 | return inf; |
| 30 | if (isnan(creall(x)) && isnan(cimagl(x))) |
| 31 | return NaN; |
| 32 | if (isnan(creall(x))) |
| 33 | { |
| 34 | if (cimagl(z: x) == 0) |
| 35 | return NaN; |
| 36 | return non_zero_nan; |
| 37 | } |
| 38 | if (isnan(cimagl(x))) |
| 39 | { |
| 40 | if (creall(z: x) == 0) |
| 41 | return NaN; |
| 42 | return non_zero_nan; |
| 43 | } |
| 44 | return non_zero; |
| 45 | } |
| 46 | |
| 47 | int test__mulxc3(long double a, long double b, long double c, long double d) |
| 48 | { |
| 49 | long double _Complex r = __mulxc3(a: a, b: b, c: c, d: d); |
| 50 | // printf("test__mulxc3(%Lf, %Lf, %Lf, %Lf) = %Lf + I%Lf\n", |
| 51 | // a, b, c, d, creall(r), cimagl(r)); |
| 52 | long double _Complex dividend; |
| 53 | long double _Complex divisor; |
| 54 | |
| 55 | __real__ dividend = a; |
| 56 | __imag__ dividend = b; |
| 57 | __real__ divisor = c; |
| 58 | __imag__ divisor = d; |
| 59 | |
| 60 | switch (classify(x: dividend)) |
| 61 | { |
| 62 | case zero: |
| 63 | switch (classify(x: divisor)) |
| 64 | { |
| 65 | case zero: |
| 66 | if (classify(x: r) != zero) |
| 67 | return 1; |
| 68 | break; |
| 69 | case non_zero: |
| 70 | if (classify(x: r) != zero) |
| 71 | return 1; |
| 72 | break; |
| 73 | case inf: |
| 74 | if (classify(x: r) != NaN) |
| 75 | return 1; |
| 76 | break; |
| 77 | case NaN: |
| 78 | if (classify(x: r) != NaN) |
| 79 | return 1; |
| 80 | break; |
| 81 | case non_zero_nan: |
| 82 | if (classify(x: r) != NaN) |
| 83 | return 1; |
| 84 | break; |
| 85 | } |
| 86 | break; |
| 87 | case non_zero: |
| 88 | switch (classify(x: divisor)) |
| 89 | { |
| 90 | case zero: |
| 91 | if (classify(x: r) != zero) |
| 92 | return 1; |
| 93 | break; |
| 94 | case non_zero: |
| 95 | if (classify(x: r) != non_zero) |
| 96 | return 1; |
| 97 | if (r != a * c - b * d + _Complex_I*(a * d + b * c)) |
| 98 | return 1; |
| 99 | break; |
| 100 | case inf: |
| 101 | if (classify(x: r) != inf) |
| 102 | return 1; |
| 103 | break; |
| 104 | case NaN: |
| 105 | if (classify(x: r) != NaN) |
| 106 | return 1; |
| 107 | break; |
| 108 | case non_zero_nan: |
| 109 | if (classify(x: r) != NaN) |
| 110 | return 1; |
| 111 | break; |
| 112 | } |
| 113 | break; |
| 114 | case inf: |
| 115 | switch (classify(x: divisor)) |
| 116 | { |
| 117 | case zero: |
| 118 | if (classify(x: r) != NaN) |
| 119 | return 1; |
| 120 | break; |
| 121 | case non_zero: |
| 122 | if (classify(x: r) != inf) |
| 123 | return 1; |
| 124 | break; |
| 125 | case inf: |
| 126 | if (classify(x: r) != inf) |
| 127 | return 1; |
| 128 | break; |
| 129 | case NaN: |
| 130 | if (classify(x: r) != NaN) |
| 131 | return 1; |
| 132 | break; |
| 133 | case non_zero_nan: |
| 134 | if (classify(x: r) != inf) |
| 135 | return 1; |
| 136 | break; |
| 137 | } |
| 138 | break; |
| 139 | case NaN: |
| 140 | switch (classify(x: divisor)) |
| 141 | { |
| 142 | case zero: |
| 143 | if (classify(x: r) != NaN) |
| 144 | return 1; |
| 145 | break; |
| 146 | case non_zero: |
| 147 | if (classify(x: r) != NaN) |
| 148 | return 1; |
| 149 | break; |
| 150 | case inf: |
| 151 | if (classify(x: r) != NaN) |
| 152 | return 1; |
| 153 | break; |
| 154 | case NaN: |
| 155 | if (classify(x: r) != NaN) |
| 156 | return 1; |
| 157 | break; |
| 158 | case non_zero_nan: |
| 159 | if (classify(x: r) != NaN) |
| 160 | return 1; |
| 161 | break; |
| 162 | } |
| 163 | break; |
| 164 | case non_zero_nan: |
| 165 | switch (classify(x: divisor)) |
| 166 | { |
| 167 | case zero: |
| 168 | if (classify(x: r) != NaN) |
| 169 | return 1; |
| 170 | break; |
| 171 | case non_zero: |
| 172 | if (classify(x: r) != NaN) |
| 173 | return 1; |
| 174 | break; |
| 175 | case inf: |
| 176 | if (classify(x: r) != inf) |
| 177 | return 1; |
| 178 | break; |
| 179 | case NaN: |
| 180 | if (classify(x: r) != NaN) |
| 181 | return 1; |
| 182 | break; |
| 183 | case non_zero_nan: |
| 184 | if (classify(x: r) != NaN) |
| 185 | return 1; |
| 186 | break; |
| 187 | } |
| 188 | break; |
| 189 | } |
| 190 | |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | long double x[][2] = |
| 195 | { |
| 196 | { 1.e-6, 1.e-6}, |
| 197 | {-1.e-6, 1.e-6}, |
| 198 | {-1.e-6, -1.e-6}, |
| 199 | { 1.e-6, -1.e-6}, |
| 200 | |
| 201 | { 1.e+6, 1.e-6}, |
| 202 | {-1.e+6, 1.e-6}, |
| 203 | {-1.e+6, -1.e-6}, |
| 204 | { 1.e+6, -1.e-6}, |
| 205 | |
| 206 | { 1.e-6, 1.e+6}, |
| 207 | {-1.e-6, 1.e+6}, |
| 208 | {-1.e-6, -1.e+6}, |
| 209 | { 1.e-6, -1.e+6}, |
| 210 | |
| 211 | { 1.e+6, 1.e+6}, |
| 212 | {-1.e+6, 1.e+6}, |
| 213 | {-1.e+6, -1.e+6}, |
| 214 | { 1.e+6, -1.e+6}, |
| 215 | |
| 216 | {NAN, NAN}, |
| 217 | {-INFINITY, NAN}, |
| 218 | {-2, NAN}, |
| 219 | {-1, NAN}, |
| 220 | {-0.5, NAN}, |
| 221 | {-0., NAN}, |
| 222 | {+0., NAN}, |
| 223 | {0.5, NAN}, |
| 224 | {1, NAN}, |
| 225 | {2, NAN}, |
| 226 | {INFINITY, NAN}, |
| 227 | |
| 228 | {NAN, -INFINITY}, |
| 229 | {-INFINITY, -INFINITY}, |
| 230 | {-2, -INFINITY}, |
| 231 | {-1, -INFINITY}, |
| 232 | {-0.5, -INFINITY}, |
| 233 | {-0., -INFINITY}, |
| 234 | {+0., -INFINITY}, |
| 235 | {0.5, -INFINITY}, |
| 236 | {1, -INFINITY}, |
| 237 | {2, -INFINITY}, |
| 238 | {INFINITY, -INFINITY}, |
| 239 | |
| 240 | {NAN, -2}, |
| 241 | {-INFINITY, -2}, |
| 242 | {-2, -2}, |
| 243 | {-1, -2}, |
| 244 | {-0.5, -2}, |
| 245 | {-0., -2}, |
| 246 | {+0., -2}, |
| 247 | {0.5, -2}, |
| 248 | {1, -2}, |
| 249 | {2, -2}, |
| 250 | {INFINITY, -2}, |
| 251 | |
| 252 | {NAN, -1}, |
| 253 | {-INFINITY, -1}, |
| 254 | {-2, -1}, |
| 255 | {-1, -1}, |
| 256 | {-0.5, -1}, |
| 257 | {-0., -1}, |
| 258 | {+0., -1}, |
| 259 | {0.5, -1}, |
| 260 | {1, -1}, |
| 261 | {2, -1}, |
| 262 | {INFINITY, -1}, |
| 263 | |
| 264 | {NAN, -0.5}, |
| 265 | {-INFINITY, -0.5}, |
| 266 | {-2, -0.5}, |
| 267 | {-1, -0.5}, |
| 268 | {-0.5, -0.5}, |
| 269 | {-0., -0.5}, |
| 270 | {+0., -0.5}, |
| 271 | {0.5, -0.5}, |
| 272 | {1, -0.5}, |
| 273 | {2, -0.5}, |
| 274 | {INFINITY, -0.5}, |
| 275 | |
| 276 | {NAN, -0.}, |
| 277 | {-INFINITY, -0.}, |
| 278 | {-2, -0.}, |
| 279 | {-1, -0.}, |
| 280 | {-0.5, -0.}, |
| 281 | {-0., -0.}, |
| 282 | {+0., -0.}, |
| 283 | {0.5, -0.}, |
| 284 | {1, -0.}, |
| 285 | {2, -0.}, |
| 286 | {INFINITY, -0.}, |
| 287 | |
| 288 | {NAN, 0.}, |
| 289 | {-INFINITY, 0.}, |
| 290 | {-2, 0.}, |
| 291 | {-1, 0.}, |
| 292 | {-0.5, 0.}, |
| 293 | {-0., 0.}, |
| 294 | {+0., 0.}, |
| 295 | {0.5, 0.}, |
| 296 | {1, 0.}, |
| 297 | {2, 0.}, |
| 298 | {INFINITY, 0.}, |
| 299 | |
| 300 | {NAN, 0.5}, |
| 301 | {-INFINITY, 0.5}, |
| 302 | {-2, 0.5}, |
| 303 | {-1, 0.5}, |
| 304 | {-0.5, 0.5}, |
| 305 | {-0., 0.5}, |
| 306 | {+0., 0.5}, |
| 307 | {0.5, 0.5}, |
| 308 | {1, 0.5}, |
| 309 | {2, 0.5}, |
| 310 | {INFINITY, 0.5}, |
| 311 | |
| 312 | {NAN, 1}, |
| 313 | {-INFINITY, 1}, |
| 314 | {-2, 1}, |
| 315 | {-1, 1}, |
| 316 | {-0.5, 1}, |
| 317 | {-0., 1}, |
| 318 | {+0., 1}, |
| 319 | {0.5, 1}, |
| 320 | {1, 1}, |
| 321 | {2, 1}, |
| 322 | {INFINITY, 1}, |
| 323 | |
| 324 | {NAN, 2}, |
| 325 | {-INFINITY, 2}, |
| 326 | {-2, 2}, |
| 327 | {-1, 2}, |
| 328 | {-0.5, 2}, |
| 329 | {-0., 2}, |
| 330 | {+0., 2}, |
| 331 | {0.5, 2}, |
| 332 | {1, 2}, |
| 333 | {2, 2}, |
| 334 | {INFINITY, 2}, |
| 335 | |
| 336 | {NAN, INFINITY}, |
| 337 | {-INFINITY, INFINITY}, |
| 338 | {-2, INFINITY}, |
| 339 | {-1, INFINITY}, |
| 340 | {-0.5, INFINITY}, |
| 341 | {-0., INFINITY}, |
| 342 | {+0., INFINITY}, |
| 343 | {0.5, INFINITY}, |
| 344 | {1, INFINITY}, |
| 345 | {2, INFINITY}, |
| 346 | {INFINITY, INFINITY} |
| 347 | |
| 348 | }; |
| 349 | |
| 350 | #endif |
| 351 | |
| 352 | int main() |
| 353 | { |
| 354 | #if !_ARCH_PPC |
| 355 | const unsigned N = sizeof(x) / sizeof(x[0]); |
| 356 | unsigned i, j; |
| 357 | for (i = 0; i < N; ++i) |
| 358 | { |
| 359 | for (j = 0; j < N; ++j) |
| 360 | { |
| 361 | if (test__mulxc3(a: x[i][0], b: x[i][1], c: x[j][0], d: x[j][1])) |
| 362 | return 1; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | #else |
| 367 | printf("skipped\n" ); |
| 368 | #endif |
| 369 | return 0; |
| 370 | } |
| 371 | |