| 1 | //===-- lib/runtime/matmul-transpose.cpp ------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // Implements a fused matmul-transpose operation |
| 10 | // |
| 11 | // There are two main entry points; one establishes a descriptor for the |
| 12 | // result and allocates it, and the other expects a result descriptor that |
| 13 | // points to existing storage. |
| 14 | // |
| 15 | // This implementation must handle all combinations of numeric types and |
| 16 | // kinds (100 - 165 cases depending on the target), plus all combinations |
| 17 | // of logical kinds (16). A single template undergoes many instantiations |
| 18 | // to cover all of the valid possibilities. |
| 19 | // |
| 20 | // The usefulness of this optimization should be reviewed once Matmul is swapped |
| 21 | // to use the faster BLAS routines. |
| 22 | |
| 23 | #include "flang/Runtime/matmul-transpose.h" |
| 24 | #include "flang-rt/runtime/descriptor.h" |
| 25 | #include "flang-rt/runtime/terminator.h" |
| 26 | #include "flang-rt/runtime/tools.h" |
| 27 | #include "flang/Common/optional.h" |
| 28 | #include "flang/Runtime/c-or-cpp.h" |
| 29 | #include "flang/Runtime/cpp-type.h" |
| 30 | #include <cstring> |
| 31 | |
| 32 | namespace { |
| 33 | using namespace Fortran::runtime; |
| 34 | |
| 35 | // Contiguous numeric TRANSPOSE(matrix)*matrix multiplication |
| 36 | // TRANSPOSE(matrix(n, rows)) * matrix(n,cols) -> |
| 37 | // matrix(rows, n) * matrix(n,cols) -> matrix(rows,cols) |
| 38 | // The transpose is implemented by swapping the indices of accesses into the LHS |
| 39 | // |
| 40 | // Straightforward algorithm: |
| 41 | // DO 1 I = 1, NROWS |
| 42 | // DO 1 J = 1, NCOLS |
| 43 | // RES(I,J) = 0 |
| 44 | // DO 1 K = 1, N |
| 45 | // 1 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J) |
| 46 | // |
| 47 | // With loop distribution and transposition to avoid the inner sum |
| 48 | // reduction and to avoid non-unit strides: |
| 49 | // DO 1 I = 1, NROWS |
| 50 | // DO 1 J = 1, NCOLS |
| 51 | // 1 RES(I,J) = 0 |
| 52 | // DO 2 J = 1, NCOLS |
| 53 | // DO 2 I = 1, NROWS |
| 54 | // DO 2 K = 1, N |
| 55 | // 2 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J) ! loop-invariant last term |
| 56 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT, |
| 57 | bool X_HAS_STRIDED_COLUMNS, bool Y_HAS_STRIDED_COLUMNS> |
| 58 | inline static RT_API_ATTRS void MatrixTransposedTimesMatrix( |
| 59 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
| 60 | SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y, |
| 61 | SubscriptValue n, std::size_t xColumnByteStride = 0, |
| 62 | std::size_t yColumnByteStride = 0) { |
| 63 | using ResultType = CppTypeFor<RCAT, RKIND>; |
| 64 | |
| 65 | std::memset(product, 0, rows * cols * sizeof *product); |
| 66 | for (SubscriptValue j{0}; j < cols; ++j) { |
| 67 | for (SubscriptValue i{0}; i < rows; ++i) { |
| 68 | for (SubscriptValue k{0}; k < n; ++k) { |
| 69 | ResultType x_ki; |
| 70 | if constexpr (!X_HAS_STRIDED_COLUMNS) { |
| 71 | x_ki = static_cast<ResultType>(x[i * n + k]); |
| 72 | } else { |
| 73 | x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>( |
| 74 | reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]); |
| 75 | } |
| 76 | ResultType y_kj; |
| 77 | if constexpr (!Y_HAS_STRIDED_COLUMNS) { |
| 78 | y_kj = static_cast<ResultType>(y[j * n + k]); |
| 79 | } else { |
| 80 | y_kj = static_cast<ResultType>(reinterpret_cast<const YT *>( |
| 81 | reinterpret_cast<const char *>(y) + j * yColumnByteStride)[k]); |
| 82 | } |
| 83 | product[j * rows + i] += x_ki * y_kj; |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT> |
| 90 | inline static RT_API_ATTRS void MatrixTransposedTimesMatrixHelper( |
| 91 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
| 92 | SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y, |
| 93 | SubscriptValue n, Fortran::common::optional<std::size_t> xColumnByteStride, |
| 94 | Fortran::common::optional<std::size_t> yColumnByteStride) { |
| 95 | if (!xColumnByteStride) { |
| 96 | if (!yColumnByteStride) { |
| 97 | MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, false>( |
| 98 | product, rows, cols, x, y, n); |
| 99 | } else { |
| 100 | MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, true>( |
| 101 | product, rows, cols, x, y, n, 0, *yColumnByteStride); |
| 102 | } |
| 103 | } else { |
| 104 | if (!yColumnByteStride) { |
| 105 | MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, false>( |
| 106 | product, rows, cols, x, y, n, *xColumnByteStride); |
| 107 | } else { |
| 108 | MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, true>( |
| 109 | product, rows, cols, x, y, n, *xColumnByteStride, *yColumnByteStride); |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | // Contiguous numeric matrix*vector multiplication |
| 115 | // matrix(rows,n) * column vector(n) -> column vector(rows) |
| 116 | // Straightforward algorithm: |
| 117 | // DO 1 I = 1, NROWS |
| 118 | // RES(I) = 0 |
| 119 | // DO 1 K = 1, N |
| 120 | // 1 RES(I) = RES(I) + X(K,I)*Y(K) |
| 121 | // With loop distribution and transposition to avoid the inner |
| 122 | // sum reduction and to avoid non-unit strides: |
| 123 | // DO 1 I = 1, NROWS |
| 124 | // 1 RES(I) = 0 |
| 125 | // DO 2 I = 1, NROWS |
| 126 | // DO 2 K = 1, N |
| 127 | // 2 RES(I) = RES(I) + X(K,I)*Y(K) |
| 128 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT, |
| 129 | bool X_HAS_STRIDED_COLUMNS> |
| 130 | inline static RT_API_ATTRS void MatrixTransposedTimesVector( |
| 131 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
| 132 | SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y, |
| 133 | std::size_t xColumnByteStride = 0) { |
| 134 | using ResultType = CppTypeFor<RCAT, RKIND>; |
| 135 | std::memset(product, 0, rows * sizeof *product); |
| 136 | for (SubscriptValue i{0}; i < rows; ++i) { |
| 137 | for (SubscriptValue k{0}; k < n; ++k) { |
| 138 | ResultType x_ki; |
| 139 | if constexpr (!X_HAS_STRIDED_COLUMNS) { |
| 140 | x_ki = static_cast<ResultType>(x[i * n + k]); |
| 141 | } else { |
| 142 | x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>( |
| 143 | reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]); |
| 144 | } |
| 145 | ResultType y_k = static_cast<ResultType>(y[k]); |
| 146 | product[i] += x_ki * y_k; |
| 147 | } |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT> |
| 152 | inline static RT_API_ATTRS void MatrixTransposedTimesVectorHelper( |
| 153 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
| 154 | SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y, |
| 155 | Fortran::common::optional<std::size_t> xColumnByteStride) { |
| 156 | if (!xColumnByteStride) { |
| 157 | MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, false>( |
| 158 | product, rows, n, x, y); |
| 159 | } else { |
| 160 | MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, true>( |
| 161 | product, rows, n, x, y, *xColumnByteStride); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | // Implements an instance of MATMUL for given argument types. |
| 166 | template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT, |
| 167 | typename YT> |
| 168 | inline static RT_API_ATTRS void DoMatmulTranspose( |
| 169 | std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result, |
| 170 | const Descriptor &x, const Descriptor &y, Terminator &terminator) { |
| 171 | int xRank{x.rank()}; |
| 172 | int yRank{y.rank()}; |
| 173 | int resRank{xRank + yRank - 2}; |
| 174 | if (xRank * yRank != 2 * resRank) { |
| 175 | terminator.Crash( |
| 176 | "MATMUL-TRANSPOSE: bad argument ranks (%d * %d)" , xRank, yRank); |
| 177 | } |
| 178 | SubscriptValue extent[2]{x.GetDimension(1).Extent(), |
| 179 | resRank == 2 ? y.GetDimension(1).Extent() : 0}; |
| 180 | if constexpr (IS_ALLOCATING) { |
| 181 | result.Establish( |
| 182 | RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable); |
| 183 | for (int j{0}; j < resRank; ++j) { |
| 184 | result.GetDimension(j).SetBounds(1, extent[j]); |
| 185 | } |
| 186 | if (int stat{result.Allocate(kNoAsyncObject)}) { |
| 187 | terminator.Crash( |
| 188 | "MATMUL-TRANSPOSE: could not allocate memory for result; STAT=%d" , |
| 189 | stat); |
| 190 | } |
| 191 | } else { |
| 192 | RUNTIME_CHECK(terminator, resRank == result.rank()); |
| 193 | RUNTIME_CHECK( |
| 194 | terminator, result.ElementBytes() == static_cast<std::size_t>(RKIND)); |
| 195 | RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]); |
| 196 | RUNTIME_CHECK(terminator, |
| 197 | resRank == 1 || result.GetDimension(1).Extent() == extent[1]); |
| 198 | } |
| 199 | SubscriptValue n{x.GetDimension(0).Extent()}; |
| 200 | if (n != y.GetDimension(0).Extent()) { |
| 201 | terminator.Crash( |
| 202 | "MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)" , |
| 203 | static_cast<std::intmax_t>(x.GetDimension(0).Extent()), |
| 204 | static_cast<std::intmax_t>(x.GetDimension(1).Extent()), |
| 205 | static_cast<std::intmax_t>(y.GetDimension(0).Extent()), |
| 206 | static_cast<std::intmax_t>(y.GetDimension(1).Extent())); |
| 207 | } |
| 208 | using WriteResult = |
| 209 | CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT, |
| 210 | RKIND>; |
| 211 | const SubscriptValue rows{extent[0]}; |
| 212 | const SubscriptValue cols{extent[1]}; |
| 213 | if constexpr (RCAT != TypeCategory::Logical) { |
| 214 | if (x.IsContiguous(1) && y.IsContiguous(1) && |
| 215 | (IS_ALLOCATING || result.IsContiguous())) { |
| 216 | // Contiguous numeric matrices (maybe with columns |
| 217 | // separated by a stride). |
| 218 | Fortran::common::optional<std::size_t> xColumnByteStride; |
| 219 | if (!x.IsContiguous()) { |
| 220 | // X's columns are strided. |
| 221 | SubscriptValue xAt[2]{}; |
| 222 | x.GetLowerBounds(xAt); |
| 223 | xAt[1]++; |
| 224 | xColumnByteStride = x.SubscriptsToByteOffset(xAt); |
| 225 | } |
| 226 | Fortran::common::optional<std::size_t> yColumnByteStride; |
| 227 | if (!y.IsContiguous()) { |
| 228 | // Y's columns are strided. |
| 229 | SubscriptValue yAt[2]{}; |
| 230 | y.GetLowerBounds(yAt); |
| 231 | yAt[1]++; |
| 232 | yColumnByteStride = y.SubscriptsToByteOffset(yAt); |
| 233 | } |
| 234 | if (resRank == 2) { // M*M -> M |
| 235 | // TODO: use BLAS-3 GEMM for supported types. |
| 236 | MatrixTransposedTimesMatrixHelper<RCAT, RKIND, XT, YT>( |
| 237 | result.template OffsetElement<WriteResult>(), rows, cols, |
| 238 | x.OffsetElement<XT>(), y.OffsetElement<YT>(), n, xColumnByteStride, |
| 239 | yColumnByteStride); |
| 240 | return; |
| 241 | } |
| 242 | if (xRank == 2) { // M*V -> V |
| 243 | // TODO: use BLAS-2 GEMM for supported types. |
| 244 | MatrixTransposedTimesVectorHelper<RCAT, RKIND, XT, YT>( |
| 245 | result.template OffsetElement<WriteResult>(), rows, n, |
| 246 | x.OffsetElement<XT>(), y.OffsetElement<YT>(), xColumnByteStride); |
| 247 | return; |
| 248 | } |
| 249 | // else V*M -> V (not allowed because TRANSPOSE() is only defined for rank |
| 250 | // 1 matrices |
| 251 | terminator.Crash( |
| 252 | "MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)" , |
| 253 | static_cast<std::intmax_t>(x.GetDimension(0).Extent()), |
| 254 | static_cast<std::intmax_t>(n), |
| 255 | static_cast<std::intmax_t>(y.GetDimension(0).Extent()), |
| 256 | static_cast<std::intmax_t>(y.GetDimension(1).Extent())); |
| 257 | return; |
| 258 | } |
| 259 | } |
| 260 | // General algorithms for LOGICAL and noncontiguity |
| 261 | SubscriptValue xLB[2], yLB[2], resLB[2]; |
| 262 | x.GetLowerBounds(xLB); |
| 263 | y.GetLowerBounds(yLB); |
| 264 | result.GetLowerBounds(resLB); |
| 265 | using ResultType = CppTypeFor<RCAT, RKIND>; |
| 266 | if (resRank == 2) { // M*M -> M |
| 267 | for (SubscriptValue i{0}; i < rows; ++i) { |
| 268 | for (SubscriptValue j{0}; j < cols; ++j) { |
| 269 | ResultType res_ij; |
| 270 | if constexpr (RCAT == TypeCategory::Logical) { |
| 271 | res_ij = false; |
| 272 | } else { |
| 273 | res_ij = 0; |
| 274 | } |
| 275 | |
| 276 | for (SubscriptValue k{0}; k < n; ++k) { |
| 277 | SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]}; |
| 278 | SubscriptValue yAt[2]{k + yLB[0], j + yLB[1]}; |
| 279 | if constexpr (RCAT == TypeCategory::Logical) { |
| 280 | ResultType x_ki = IsLogicalElementTrue(x, xAt); |
| 281 | ResultType y_kj = IsLogicalElementTrue(y, yAt); |
| 282 | res_ij = res_ij || (x_ki && y_kj); |
| 283 | } else { |
| 284 | ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt)); |
| 285 | ResultType y_kj = static_cast<ResultType>(*y.Element<YT>(yAt)); |
| 286 | res_ij += x_ki * y_kj; |
| 287 | } |
| 288 | } |
| 289 | SubscriptValue resAt[2]{i + resLB[0], j + resLB[1]}; |
| 290 | *result.template Element<WriteResult>(resAt) = res_ij; |
| 291 | } |
| 292 | } |
| 293 | } else if (xRank == 2) { // M*V -> V |
| 294 | for (SubscriptValue i{0}; i < rows; ++i) { |
| 295 | ResultType res_i; |
| 296 | if constexpr (RCAT == TypeCategory::Logical) { |
| 297 | res_i = false; |
| 298 | } else { |
| 299 | res_i = 0; |
| 300 | } |
| 301 | |
| 302 | for (SubscriptValue k{0}; k < n; ++k) { |
| 303 | SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]}; |
| 304 | SubscriptValue yAt[1]{k + yLB[0]}; |
| 305 | if constexpr (RCAT == TypeCategory::Logical) { |
| 306 | ResultType x_ki = IsLogicalElementTrue(x, xAt); |
| 307 | ResultType y_k = IsLogicalElementTrue(y, yAt); |
| 308 | res_i = res_i || (x_ki && y_k); |
| 309 | } else { |
| 310 | ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt)); |
| 311 | ResultType y_k = static_cast<ResultType>(*y.Element<YT>(yAt)); |
| 312 | res_i += x_ki * y_k; |
| 313 | } |
| 314 | } |
| 315 | SubscriptValue resAt[1]{i + resLB[0]}; |
| 316 | *result.template Element<WriteResult>(resAt) = res_i; |
| 317 | } |
| 318 | } else { // V*M -> V |
| 319 | // TRANSPOSE(V) not allowed by fortran standard |
| 320 | terminator.Crash( |
| 321 | "MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)" , |
| 322 | static_cast<std::intmax_t>(x.GetDimension(0).Extent()), |
| 323 | static_cast<std::intmax_t>(n), |
| 324 | static_cast<std::intmax_t>(y.GetDimension(0).Extent()), |
| 325 | static_cast<std::intmax_t>(y.GetDimension(1).Extent())); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | template <bool IS_ALLOCATING, TypeCategory XCAT, int XKIND, TypeCategory YCAT, |
| 330 | int YKIND> |
| 331 | struct MatmulTransposeHelper { |
| 332 | using ResultDescriptor = |
| 333 | std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>; |
| 334 | using ResultTy = Fortran::common::optional<std::pair<TypeCategory, int>>; |
| 335 | RT_API_ATTRS void operator()(ResultDescriptor &result, const Descriptor &x, |
| 336 | const Descriptor &y, const char *sourceFile, int line) const { |
| 337 | Terminator terminator{sourceFile, line}; |
| 338 | auto xCatKind{x.type().GetCategoryAndKind()}; |
| 339 | auto yCatKind{y.type().GetCategoryAndKind()}; |
| 340 | RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value()); |
| 341 | RUNTIME_CHECK(terminator, xCatKind->first == XCAT); |
| 342 | RUNTIME_CHECK(terminator, yCatKind->first == YCAT); |
| 343 | if constexpr (constexpr ResultTy resultType{ |
| 344 | GetResultType(XCAT, XKIND, YCAT, YKIND)}) { |
| 345 | return DoMatmulTranspose<IS_ALLOCATING, resultType->first, |
| 346 | resultType->second, CppTypeFor<XCAT, XKIND>, CppTypeFor<YCAT, YKIND>>( |
| 347 | result, x, y, terminator); |
| 348 | } |
| 349 | terminator.Crash("MATMUL-TRANSPOSE: bad operand types (%d(%d), %d(%d))" , |
| 350 | static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND); |
| 351 | } |
| 352 | }; |
| 353 | } // namespace |
| 354 | |
| 355 | namespace Fortran::runtime { |
| 356 | extern "C" { |
| 357 | RT_EXT_API_GROUP_BEGIN |
| 358 | |
| 359 | #define MATMUL_INSTANCE(XCAT, XKIND, YCAT, YKIND) \ |
| 360 | void RTDEF(MatmulTranspose##XCAT##XKIND##YCAT##YKIND)(Descriptor & result, \ |
| 361 | const Descriptor &x, const Descriptor &y, const char *sourceFile, \ |
| 362 | int line) { \ |
| 363 | MatmulTransposeHelper<true, TypeCategory::XCAT, XKIND, TypeCategory::YCAT, \ |
| 364 | YKIND>{}(result, x, y, sourceFile, line); \ |
| 365 | } |
| 366 | |
| 367 | #define MATMUL_DIRECT_INSTANCE(XCAT, XKIND, YCAT, YKIND) \ |
| 368 | void RTDEF(MatmulTransposeDirect##XCAT##XKIND##YCAT##YKIND)( \ |
| 369 | Descriptor & result, const Descriptor &x, const Descriptor &y, \ |
| 370 | const char *sourceFile, int line) { \ |
| 371 | MatmulTransposeHelper<false, TypeCategory::XCAT, XKIND, \ |
| 372 | TypeCategory::YCAT, YKIND>{}(result, x, y, sourceFile, line); \ |
| 373 | } |
| 374 | |
| 375 | #define MATMUL_FORCE_ALL_TYPES 0 |
| 376 | |
| 377 | #include "flang/Runtime/matmul-instances.inc" |
| 378 | |
| 379 | RT_EXT_API_GROUP_END |
| 380 | } // extern "C" |
| 381 | } // namespace Fortran::runtime |
| 382 | |