1 | //===-- lib/runtime/matmul-transpose.cpp ------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // Implements a fused matmul-transpose operation |
10 | // |
11 | // There are two main entry points; one establishes a descriptor for the |
12 | // result and allocates it, and the other expects a result descriptor that |
13 | // points to existing storage. |
14 | // |
15 | // This implementation must handle all combinations of numeric types and |
16 | // kinds (100 - 165 cases depending on the target), plus all combinations |
17 | // of logical kinds (16). A single template undergoes many instantiations |
18 | // to cover all of the valid possibilities. |
19 | // |
20 | // The usefulness of this optimization should be reviewed once Matmul is swapped |
21 | // to use the faster BLAS routines. |
22 | |
23 | #include "flang/Runtime/matmul-transpose.h" |
24 | #include "flang-rt/runtime/descriptor.h" |
25 | #include "flang-rt/runtime/terminator.h" |
26 | #include "flang-rt/runtime/tools.h" |
27 | #include "flang/Common/optional.h" |
28 | #include "flang/Runtime/c-or-cpp.h" |
29 | #include "flang/Runtime/cpp-type.h" |
30 | #include <cstring> |
31 | |
32 | namespace { |
33 | using namespace Fortran::runtime; |
34 | |
35 | // Contiguous numeric TRANSPOSE(matrix)*matrix multiplication |
36 | // TRANSPOSE(matrix(n, rows)) * matrix(n,cols) -> |
37 | // matrix(rows, n) * matrix(n,cols) -> matrix(rows,cols) |
38 | // The transpose is implemented by swapping the indices of accesses into the LHS |
39 | // |
40 | // Straightforward algorithm: |
41 | // DO 1 I = 1, NROWS |
42 | // DO 1 J = 1, NCOLS |
43 | // RES(I,J) = 0 |
44 | // DO 1 K = 1, N |
45 | // 1 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J) |
46 | // |
47 | // With loop distribution and transposition to avoid the inner sum |
48 | // reduction and to avoid non-unit strides: |
49 | // DO 1 I = 1, NROWS |
50 | // DO 1 J = 1, NCOLS |
51 | // 1 RES(I,J) = 0 |
52 | // DO 2 J = 1, NCOLS |
53 | // DO 2 I = 1, NROWS |
54 | // DO 2 K = 1, N |
55 | // 2 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J) ! loop-invariant last term |
56 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT, |
57 | bool X_HAS_STRIDED_COLUMNS, bool Y_HAS_STRIDED_COLUMNS> |
58 | inline static RT_API_ATTRS void MatrixTransposedTimesMatrix( |
59 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
60 | SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y, |
61 | SubscriptValue n, std::size_t xColumnByteStride = 0, |
62 | std::size_t yColumnByteStride = 0) { |
63 | using ResultType = CppTypeFor<RCAT, RKIND>; |
64 | |
65 | std::memset(product, 0, rows * cols * sizeof *product); |
66 | for (SubscriptValue j{0}; j < cols; ++j) { |
67 | for (SubscriptValue i{0}; i < rows; ++i) { |
68 | for (SubscriptValue k{0}; k < n; ++k) { |
69 | ResultType x_ki; |
70 | if constexpr (!X_HAS_STRIDED_COLUMNS) { |
71 | x_ki = static_cast<ResultType>(x[i * n + k]); |
72 | } else { |
73 | x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>( |
74 | reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]); |
75 | } |
76 | ResultType y_kj; |
77 | if constexpr (!Y_HAS_STRIDED_COLUMNS) { |
78 | y_kj = static_cast<ResultType>(y[j * n + k]); |
79 | } else { |
80 | y_kj = static_cast<ResultType>(reinterpret_cast<const YT *>( |
81 | reinterpret_cast<const char *>(y) + j * yColumnByteStride)[k]); |
82 | } |
83 | product[j * rows + i] += x_ki * y_kj; |
84 | } |
85 | } |
86 | } |
87 | } |
88 | |
89 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT> |
90 | inline static RT_API_ATTRS void MatrixTransposedTimesMatrixHelper( |
91 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
92 | SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y, |
93 | SubscriptValue n, Fortran::common::optional<std::size_t> xColumnByteStride, |
94 | Fortran::common::optional<std::size_t> yColumnByteStride) { |
95 | if (!xColumnByteStride) { |
96 | if (!yColumnByteStride) { |
97 | MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, false>( |
98 | product, rows, cols, x, y, n); |
99 | } else { |
100 | MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, true>( |
101 | product, rows, cols, x, y, n, 0, *yColumnByteStride); |
102 | } |
103 | } else { |
104 | if (!yColumnByteStride) { |
105 | MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, false>( |
106 | product, rows, cols, x, y, n, *xColumnByteStride); |
107 | } else { |
108 | MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, true>( |
109 | product, rows, cols, x, y, n, *xColumnByteStride, *yColumnByteStride); |
110 | } |
111 | } |
112 | } |
113 | |
114 | // Contiguous numeric matrix*vector multiplication |
115 | // matrix(rows,n) * column vector(n) -> column vector(rows) |
116 | // Straightforward algorithm: |
117 | // DO 1 I = 1, NROWS |
118 | // RES(I) = 0 |
119 | // DO 1 K = 1, N |
120 | // 1 RES(I) = RES(I) + X(K,I)*Y(K) |
121 | // With loop distribution and transposition to avoid the inner |
122 | // sum reduction and to avoid non-unit strides: |
123 | // DO 1 I = 1, NROWS |
124 | // 1 RES(I) = 0 |
125 | // DO 2 I = 1, NROWS |
126 | // DO 2 K = 1, N |
127 | // 2 RES(I) = RES(I) + X(K,I)*Y(K) |
128 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT, |
129 | bool X_HAS_STRIDED_COLUMNS> |
130 | inline static RT_API_ATTRS void MatrixTransposedTimesVector( |
131 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
132 | SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y, |
133 | std::size_t xColumnByteStride = 0) { |
134 | using ResultType = CppTypeFor<RCAT, RKIND>; |
135 | std::memset(product, 0, rows * sizeof *product); |
136 | for (SubscriptValue i{0}; i < rows; ++i) { |
137 | for (SubscriptValue k{0}; k < n; ++k) { |
138 | ResultType x_ki; |
139 | if constexpr (!X_HAS_STRIDED_COLUMNS) { |
140 | x_ki = static_cast<ResultType>(x[i * n + k]); |
141 | } else { |
142 | x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>( |
143 | reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]); |
144 | } |
145 | ResultType y_k = static_cast<ResultType>(y[k]); |
146 | product[i] += x_ki * y_k; |
147 | } |
148 | } |
149 | } |
150 | |
151 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT> |
152 | inline static RT_API_ATTRS void MatrixTransposedTimesVectorHelper( |
153 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
154 | SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y, |
155 | Fortran::common::optional<std::size_t> xColumnByteStride) { |
156 | if (!xColumnByteStride) { |
157 | MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, false>( |
158 | product, rows, n, x, y); |
159 | } else { |
160 | MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, true>( |
161 | product, rows, n, x, y, *xColumnByteStride); |
162 | } |
163 | } |
164 | |
165 | // Implements an instance of MATMUL for given argument types. |
166 | template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT, |
167 | typename YT> |
168 | inline static RT_API_ATTRS void DoMatmulTranspose( |
169 | std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result, |
170 | const Descriptor &x, const Descriptor &y, Terminator &terminator) { |
171 | int xRank{x.rank()}; |
172 | int yRank{y.rank()}; |
173 | int resRank{xRank + yRank - 2}; |
174 | if (xRank * yRank != 2 * resRank) { |
175 | terminator.Crash( |
176 | "MATMUL-TRANSPOSE: bad argument ranks (%d * %d)" , xRank, yRank); |
177 | } |
178 | SubscriptValue extent[2]{x.GetDimension(1).Extent(), |
179 | resRank == 2 ? y.GetDimension(1).Extent() : 0}; |
180 | if constexpr (IS_ALLOCATING) { |
181 | result.Establish( |
182 | RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable); |
183 | for (int j{0}; j < resRank; ++j) { |
184 | result.GetDimension(j).SetBounds(1, extent[j]); |
185 | } |
186 | if (int stat{result.Allocate(kNoAsyncObject)}) { |
187 | terminator.Crash( |
188 | "MATMUL-TRANSPOSE: could not allocate memory for result; STAT=%d" , |
189 | stat); |
190 | } |
191 | } else { |
192 | RUNTIME_CHECK(terminator, resRank == result.rank()); |
193 | RUNTIME_CHECK( |
194 | terminator, result.ElementBytes() == static_cast<std::size_t>(RKIND)); |
195 | RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]); |
196 | RUNTIME_CHECK(terminator, |
197 | resRank == 1 || result.GetDimension(1).Extent() == extent[1]); |
198 | } |
199 | SubscriptValue n{x.GetDimension(0).Extent()}; |
200 | if (n != y.GetDimension(0).Extent()) { |
201 | terminator.Crash( |
202 | "MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)" , |
203 | static_cast<std::intmax_t>(x.GetDimension(0).Extent()), |
204 | static_cast<std::intmax_t>(x.GetDimension(1).Extent()), |
205 | static_cast<std::intmax_t>(y.GetDimension(0).Extent()), |
206 | static_cast<std::intmax_t>(y.GetDimension(1).Extent())); |
207 | } |
208 | using WriteResult = |
209 | CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT, |
210 | RKIND>; |
211 | const SubscriptValue rows{extent[0]}; |
212 | const SubscriptValue cols{extent[1]}; |
213 | if constexpr (RCAT != TypeCategory::Logical) { |
214 | if (x.IsContiguous(1) && y.IsContiguous(1) && |
215 | (IS_ALLOCATING || result.IsContiguous())) { |
216 | // Contiguous numeric matrices (maybe with columns |
217 | // separated by a stride). |
218 | Fortran::common::optional<std::size_t> xColumnByteStride; |
219 | if (!x.IsContiguous()) { |
220 | // X's columns are strided. |
221 | SubscriptValue xAt[2]{}; |
222 | x.GetLowerBounds(xAt); |
223 | xAt[1]++; |
224 | xColumnByteStride = x.SubscriptsToByteOffset(xAt); |
225 | } |
226 | Fortran::common::optional<std::size_t> yColumnByteStride; |
227 | if (!y.IsContiguous()) { |
228 | // Y's columns are strided. |
229 | SubscriptValue yAt[2]{}; |
230 | y.GetLowerBounds(yAt); |
231 | yAt[1]++; |
232 | yColumnByteStride = y.SubscriptsToByteOffset(yAt); |
233 | } |
234 | if (resRank == 2) { // M*M -> M |
235 | // TODO: use BLAS-3 GEMM for supported types. |
236 | MatrixTransposedTimesMatrixHelper<RCAT, RKIND, XT, YT>( |
237 | result.template OffsetElement<WriteResult>(), rows, cols, |
238 | x.OffsetElement<XT>(), y.OffsetElement<YT>(), n, xColumnByteStride, |
239 | yColumnByteStride); |
240 | return; |
241 | } |
242 | if (xRank == 2) { // M*V -> V |
243 | // TODO: use BLAS-2 GEMM for supported types. |
244 | MatrixTransposedTimesVectorHelper<RCAT, RKIND, XT, YT>( |
245 | result.template OffsetElement<WriteResult>(), rows, n, |
246 | x.OffsetElement<XT>(), y.OffsetElement<YT>(), xColumnByteStride); |
247 | return; |
248 | } |
249 | // else V*M -> V (not allowed because TRANSPOSE() is only defined for rank |
250 | // 1 matrices |
251 | terminator.Crash( |
252 | "MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)" , |
253 | static_cast<std::intmax_t>(x.GetDimension(0).Extent()), |
254 | static_cast<std::intmax_t>(n), |
255 | static_cast<std::intmax_t>(y.GetDimension(0).Extent()), |
256 | static_cast<std::intmax_t>(y.GetDimension(1).Extent())); |
257 | return; |
258 | } |
259 | } |
260 | // General algorithms for LOGICAL and noncontiguity |
261 | SubscriptValue xLB[2], yLB[2], resLB[2]; |
262 | x.GetLowerBounds(xLB); |
263 | y.GetLowerBounds(yLB); |
264 | result.GetLowerBounds(resLB); |
265 | using ResultType = CppTypeFor<RCAT, RKIND>; |
266 | if (resRank == 2) { // M*M -> M |
267 | for (SubscriptValue i{0}; i < rows; ++i) { |
268 | for (SubscriptValue j{0}; j < cols; ++j) { |
269 | ResultType res_ij; |
270 | if constexpr (RCAT == TypeCategory::Logical) { |
271 | res_ij = false; |
272 | } else { |
273 | res_ij = 0; |
274 | } |
275 | |
276 | for (SubscriptValue k{0}; k < n; ++k) { |
277 | SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]}; |
278 | SubscriptValue yAt[2]{k + yLB[0], j + yLB[1]}; |
279 | if constexpr (RCAT == TypeCategory::Logical) { |
280 | ResultType x_ki = IsLogicalElementTrue(x, xAt); |
281 | ResultType y_kj = IsLogicalElementTrue(y, yAt); |
282 | res_ij = res_ij || (x_ki && y_kj); |
283 | } else { |
284 | ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt)); |
285 | ResultType y_kj = static_cast<ResultType>(*y.Element<YT>(yAt)); |
286 | res_ij += x_ki * y_kj; |
287 | } |
288 | } |
289 | SubscriptValue resAt[2]{i + resLB[0], j + resLB[1]}; |
290 | *result.template Element<WriteResult>(resAt) = res_ij; |
291 | } |
292 | } |
293 | } else if (xRank == 2) { // M*V -> V |
294 | for (SubscriptValue i{0}; i < rows; ++i) { |
295 | ResultType res_i; |
296 | if constexpr (RCAT == TypeCategory::Logical) { |
297 | res_i = false; |
298 | } else { |
299 | res_i = 0; |
300 | } |
301 | |
302 | for (SubscriptValue k{0}; k < n; ++k) { |
303 | SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]}; |
304 | SubscriptValue yAt[1]{k + yLB[0]}; |
305 | if constexpr (RCAT == TypeCategory::Logical) { |
306 | ResultType x_ki = IsLogicalElementTrue(x, xAt); |
307 | ResultType y_k = IsLogicalElementTrue(y, yAt); |
308 | res_i = res_i || (x_ki && y_k); |
309 | } else { |
310 | ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt)); |
311 | ResultType y_k = static_cast<ResultType>(*y.Element<YT>(yAt)); |
312 | res_i += x_ki * y_k; |
313 | } |
314 | } |
315 | SubscriptValue resAt[1]{i + resLB[0]}; |
316 | *result.template Element<WriteResult>(resAt) = res_i; |
317 | } |
318 | } else { // V*M -> V |
319 | // TRANSPOSE(V) not allowed by fortran standard |
320 | terminator.Crash( |
321 | "MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)" , |
322 | static_cast<std::intmax_t>(x.GetDimension(0).Extent()), |
323 | static_cast<std::intmax_t>(n), |
324 | static_cast<std::intmax_t>(y.GetDimension(0).Extent()), |
325 | static_cast<std::intmax_t>(y.GetDimension(1).Extent())); |
326 | } |
327 | } |
328 | |
329 | template <bool IS_ALLOCATING, TypeCategory XCAT, int XKIND, TypeCategory YCAT, |
330 | int YKIND> |
331 | struct MatmulTransposeHelper { |
332 | using ResultDescriptor = |
333 | std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>; |
334 | using ResultTy = Fortran::common::optional<std::pair<TypeCategory, int>>; |
335 | RT_API_ATTRS void operator()(ResultDescriptor &result, const Descriptor &x, |
336 | const Descriptor &y, const char *sourceFile, int line) const { |
337 | Terminator terminator{sourceFile, line}; |
338 | auto xCatKind{x.type().GetCategoryAndKind()}; |
339 | auto yCatKind{y.type().GetCategoryAndKind()}; |
340 | RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value()); |
341 | RUNTIME_CHECK(terminator, xCatKind->first == XCAT); |
342 | RUNTIME_CHECK(terminator, yCatKind->first == YCAT); |
343 | if constexpr (constexpr ResultTy resultType{ |
344 | GetResultType(XCAT, XKIND, YCAT, YKIND)}) { |
345 | return DoMatmulTranspose<IS_ALLOCATING, resultType->first, |
346 | resultType->second, CppTypeFor<XCAT, XKIND>, CppTypeFor<YCAT, YKIND>>( |
347 | result, x, y, terminator); |
348 | } |
349 | terminator.Crash("MATMUL-TRANSPOSE: bad operand types (%d(%d), %d(%d))" , |
350 | static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND); |
351 | } |
352 | }; |
353 | } // namespace |
354 | |
355 | namespace Fortran::runtime { |
356 | extern "C" { |
357 | RT_EXT_API_GROUP_BEGIN |
358 | |
359 | #define MATMUL_INSTANCE(XCAT, XKIND, YCAT, YKIND) \ |
360 | void RTDEF(MatmulTranspose##XCAT##XKIND##YCAT##YKIND)(Descriptor & result, \ |
361 | const Descriptor &x, const Descriptor &y, const char *sourceFile, \ |
362 | int line) { \ |
363 | MatmulTransposeHelper<true, TypeCategory::XCAT, XKIND, TypeCategory::YCAT, \ |
364 | YKIND>{}(result, x, y, sourceFile, line); \ |
365 | } |
366 | |
367 | #define MATMUL_DIRECT_INSTANCE(XCAT, XKIND, YCAT, YKIND) \ |
368 | void RTDEF(MatmulTransposeDirect##XCAT##XKIND##YCAT##YKIND)( \ |
369 | Descriptor & result, const Descriptor &x, const Descriptor &y, \ |
370 | const char *sourceFile, int line) { \ |
371 | MatmulTransposeHelper<false, TypeCategory::XCAT, XKIND, \ |
372 | TypeCategory::YCAT, YKIND>{}(result, x, y, sourceFile, line); \ |
373 | } |
374 | |
375 | #define MATMUL_FORCE_ALL_TYPES 0 |
376 | |
377 | #include "flang/Runtime/matmul-instances.inc" |
378 | |
379 | RT_EXT_API_GROUP_END |
380 | } // extern "C" |
381 | } // namespace Fortran::runtime |
382 | |