1 | //===-- lib/runtime/matmul.cpp ----------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // Implements all forms of MATMUL (Fortran 2018 16.9.124) |
10 | // |
11 | // There are two main entry points; one establishes a descriptor for the |
12 | // result and allocates it, and the other expects a result descriptor that |
13 | // points to existing storage. |
14 | // |
15 | // This implementation must handle all combinations of numeric types and |
16 | // kinds (100 - 165 cases depending on the target), plus all combinations |
17 | // of logical kinds (16). A single template undergoes many instantiations |
18 | // to cover all of the valid possibilities. |
19 | // |
20 | // Places where BLAS routines could be called are marked as TODO items. |
21 | |
22 | #include "flang/Runtime/matmul.h" |
23 | #include "flang-rt/runtime/descriptor.h" |
24 | #include "flang-rt/runtime/terminator.h" |
25 | #include "flang-rt/runtime/tools.h" |
26 | #include "flang/Common/optional.h" |
27 | #include "flang/Runtime/c-or-cpp.h" |
28 | #include "flang/Runtime/cpp-type.h" |
29 | #include <cstring> |
30 | |
31 | namespace { |
32 | using namespace Fortran::runtime; |
33 | |
34 | // General accumulator for any type and stride; this is not used for |
35 | // contiguous numeric cases. |
36 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT> |
37 | class Accumulator { |
38 | public: |
39 | using Result = AccumulationType<RCAT, RKIND>; |
40 | RT_API_ATTRS Accumulator(const Descriptor &x, const Descriptor &y) |
41 | : x_{x}, y_{y} {} |
42 | RT_API_ATTRS void Accumulate( |
43 | const SubscriptValue xAt[], const SubscriptValue yAt[]) { |
44 | if constexpr (RCAT == TypeCategory::Logical) { |
45 | sum_ = sum_ || |
46 | (IsLogicalElementTrue(x_, xAt) && IsLogicalElementTrue(y_, yAt)); |
47 | } else { |
48 | sum_ += static_cast<Result>(*x_.Element<XT>(xAt)) * |
49 | static_cast<Result>(*y_.Element<YT>(yAt)); |
50 | } |
51 | } |
52 | RT_API_ATTRS Result GetResult() const { return sum_; } |
53 | |
54 | private: |
55 | const Descriptor &x_, &y_; |
56 | Result sum_{}; |
57 | }; |
58 | |
59 | // Contiguous numeric matrix*matrix multiplication |
60 | // matrix(rows,n) * matrix(n,cols) -> matrix(rows,cols) |
61 | // Straightforward algorithm: |
62 | // DO 1 I = 1, NROWS |
63 | // DO 1 J = 1, NCOLS |
64 | // RES(I,J) = 0 |
65 | // DO 1 K = 1, N |
66 | // 1 RES(I,J) = RES(I,J) + X(I,K)*Y(K,J) |
67 | // With loop distribution and transposition to avoid the inner sum |
68 | // reduction and to avoid non-unit strides: |
69 | // DO 1 I = 1, NROWS |
70 | // DO 1 J = 1, NCOLS |
71 | // 1 RES(I,J) = 0 |
72 | // DO 2 K = 1, N |
73 | // DO 2 J = 1, NCOLS |
74 | // DO 2 I = 1, NROWS |
75 | // 2 RES(I,J) = RES(I,J) + X(I,K)*Y(K,J) ! loop-invariant last term |
76 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT, |
77 | bool X_HAS_STRIDED_COLUMNS, bool Y_HAS_STRIDED_COLUMNS> |
78 | inline RT_API_ATTRS void MatrixTimesMatrix( |
79 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
80 | SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y, |
81 | SubscriptValue n, std::size_t xColumnByteStride = 0, |
82 | std::size_t yColumnByteStride = 0) { |
83 | using ResultType = CppTypeFor<RCAT, RKIND>; |
84 | std::memset(product, 0, rows * cols * sizeof *product); |
85 | const XT *RESTRICT xp0{x}; |
86 | for (SubscriptValue k{0}; k < n; ++k) { |
87 | ResultType *RESTRICT p{product}; |
88 | for (SubscriptValue j{0}; j < cols; ++j) { |
89 | const XT *RESTRICT xp{xp0}; |
90 | ResultType yv; |
91 | if constexpr (!Y_HAS_STRIDED_COLUMNS) { |
92 | yv = static_cast<ResultType>(y[k + j * n]); |
93 | } else { |
94 | yv = static_cast<ResultType>(reinterpret_cast<const YT *>( |
95 | reinterpret_cast<const char *>(y) + j * yColumnByteStride)[k]); |
96 | } |
97 | for (SubscriptValue i{0}; i < rows; ++i) { |
98 | *p++ += static_cast<ResultType>(*xp++) * yv; |
99 | } |
100 | } |
101 | if constexpr (!X_HAS_STRIDED_COLUMNS) { |
102 | xp0 += rows; |
103 | } else { |
104 | xp0 = reinterpret_cast<const XT *>( |
105 | reinterpret_cast<const char *>(xp0) + xColumnByteStride); |
106 | } |
107 | } |
108 | } |
109 | |
110 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT> |
111 | inline RT_API_ATTRS void MatrixTimesMatrixHelper( |
112 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
113 | SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y, |
114 | SubscriptValue n, Fortran::common::optional<std::size_t> xColumnByteStride, |
115 | Fortran::common::optional<std::size_t> yColumnByteStride) { |
116 | if (!xColumnByteStride) { |
117 | if (!yColumnByteStride) { |
118 | MatrixTimesMatrix<RCAT, RKIND, XT, YT, false, false>( |
119 | product, rows, cols, x, y, n); |
120 | } else { |
121 | MatrixTimesMatrix<RCAT, RKIND, XT, YT, false, true>( |
122 | product, rows, cols, x, y, n, 0, *yColumnByteStride); |
123 | } |
124 | } else { |
125 | if (!yColumnByteStride) { |
126 | MatrixTimesMatrix<RCAT, RKIND, XT, YT, true, false>( |
127 | product, rows, cols, x, y, n, *xColumnByteStride); |
128 | } else { |
129 | MatrixTimesMatrix<RCAT, RKIND, XT, YT, true, true>( |
130 | product, rows, cols, x, y, n, *xColumnByteStride, *yColumnByteStride); |
131 | } |
132 | } |
133 | } |
134 | |
135 | // Contiguous numeric matrix*vector multiplication |
136 | // matrix(rows,n) * column vector(n) -> column vector(rows) |
137 | // Straightforward algorithm: |
138 | // DO 1 J = 1, NROWS |
139 | // RES(J) = 0 |
140 | // DO 1 K = 1, N |
141 | // 1 RES(J) = RES(J) + X(J,K)*Y(K) |
142 | // With loop distribution and transposition to avoid the inner |
143 | // sum reduction and to avoid non-unit strides: |
144 | // DO 1 J = 1, NROWS |
145 | // 1 RES(J) = 0 |
146 | // DO 2 K = 1, N |
147 | // DO 2 J = 1, NROWS |
148 | // 2 RES(J) = RES(J) + X(J,K)*Y(K) |
149 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT, |
150 | bool X_HAS_STRIDED_COLUMNS> |
151 | inline RT_API_ATTRS void MatrixTimesVector( |
152 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
153 | SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y, |
154 | std::size_t xColumnByteStride = 0) { |
155 | using ResultType = CppTypeFor<RCAT, RKIND>; |
156 | std::memset(product, 0, rows * sizeof *product); |
157 | [[maybe_unused]] const XT *RESTRICT xp0{x}; |
158 | for (SubscriptValue k{0}; k < n; ++k) { |
159 | ResultType *RESTRICT p{product}; |
160 | auto yv{static_cast<ResultType>(*y++)}; |
161 | for (SubscriptValue j{0}; j < rows; ++j) { |
162 | *p++ += static_cast<ResultType>(*x++) * yv; |
163 | } |
164 | if constexpr (X_HAS_STRIDED_COLUMNS) { |
165 | xp0 = reinterpret_cast<const XT *>( |
166 | reinterpret_cast<const char *>(xp0) + xColumnByteStride); |
167 | x = xp0; |
168 | } |
169 | } |
170 | } |
171 | |
172 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT> |
173 | inline RT_API_ATTRS void MatrixTimesVectorHelper( |
174 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows, |
175 | SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y, |
176 | Fortran::common::optional<std::size_t> xColumnByteStride) { |
177 | if (!xColumnByteStride) { |
178 | MatrixTimesVector<RCAT, RKIND, XT, YT, false>(product, rows, n, x, y); |
179 | } else { |
180 | MatrixTimesVector<RCAT, RKIND, XT, YT, true>( |
181 | product, rows, n, x, y, *xColumnByteStride); |
182 | } |
183 | } |
184 | |
185 | // Contiguous numeric vector*matrix multiplication |
186 | // row vector(n) * matrix(n,cols) -> row vector(cols) |
187 | // Straightforward algorithm: |
188 | // DO 1 J = 1, NCOLS |
189 | // RES(J) = 0 |
190 | // DO 1 K = 1, N |
191 | // 1 RES(J) = RES(J) + X(K)*Y(K,J) |
192 | // With loop distribution and transposition to avoid the inner |
193 | // sum reduction and one non-unit stride (the other remains): |
194 | // DO 1 J = 1, NCOLS |
195 | // 1 RES(J) = 0 |
196 | // DO 2 K = 1, N |
197 | // DO 2 J = 1, NCOLS |
198 | // 2 RES(J) = RES(J) + X(K)*Y(K,J) |
199 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT, |
200 | bool Y_HAS_STRIDED_COLUMNS> |
201 | inline RT_API_ATTRS void VectorTimesMatrix( |
202 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue n, |
203 | SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y, |
204 | std::size_t yColumnByteStride = 0) { |
205 | using ResultType = CppTypeFor<RCAT, RKIND>; |
206 | std::memset(product, 0, cols * sizeof *product); |
207 | for (SubscriptValue k{0}; k < n; ++k) { |
208 | ResultType *RESTRICT p{product}; |
209 | auto xv{static_cast<ResultType>(*x++)}; |
210 | const YT *RESTRICT yp{&y[k]}; |
211 | for (SubscriptValue j{0}; j < cols; ++j) { |
212 | *p++ += xv * static_cast<ResultType>(*yp); |
213 | if constexpr (!Y_HAS_STRIDED_COLUMNS) { |
214 | yp += n; |
215 | } else { |
216 | yp = reinterpret_cast<const YT *>( |
217 | reinterpret_cast<const char *>(yp) + yColumnByteStride); |
218 | } |
219 | } |
220 | } |
221 | } |
222 | |
223 | template <TypeCategory RCAT, int RKIND, typename XT, typename YT, |
224 | bool SPARSE_COLUMNS = false> |
225 | inline RT_API_ATTRS void VectorTimesMatrixHelper( |
226 | CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue n, |
227 | SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y, |
228 | Fortran::common::optional<std::size_t> yColumnByteStride) { |
229 | if (!yColumnByteStride) { |
230 | VectorTimesMatrix<RCAT, RKIND, XT, YT, false>(product, n, cols, x, y); |
231 | } else { |
232 | VectorTimesMatrix<RCAT, RKIND, XT, YT, true>( |
233 | product, n, cols, x, y, *yColumnByteStride); |
234 | } |
235 | } |
236 | |
237 | // Implements an instance of MATMUL for given argument types. |
238 | template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT, |
239 | typename YT> |
240 | static inline RT_API_ATTRS void DoMatmul( |
241 | std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result, |
242 | const Descriptor &x, const Descriptor &y, Terminator &terminator) { |
243 | int xRank{x.rank()}; |
244 | int yRank{y.rank()}; |
245 | int resRank{xRank + yRank - 2}; |
246 | if (xRank * yRank != 2 * resRank) { |
247 | terminator.Crash("MATMUL: bad argument ranks (%d * %d)" , xRank, yRank); |
248 | } |
249 | SubscriptValue extent[2]{ |
250 | xRank == 2 ? x.GetDimension(0).Extent() : y.GetDimension(1).Extent(), |
251 | resRank == 2 ? y.GetDimension(1).Extent() : 0}; |
252 | if constexpr (IS_ALLOCATING) { |
253 | result.Establish( |
254 | RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable); |
255 | for (int j{0}; j < resRank; ++j) { |
256 | result.GetDimension(j).SetBounds(1, extent[j]); |
257 | } |
258 | if (int stat{result.Allocate(kNoAsyncObject)}) { |
259 | terminator.Crash( |
260 | "MATMUL: could not allocate memory for result; STAT=%d" , stat); |
261 | } |
262 | } else { |
263 | RUNTIME_CHECK(terminator, resRank == result.rank()); |
264 | RUNTIME_CHECK( |
265 | terminator, result.ElementBytes() == static_cast<std::size_t>(RKIND)); |
266 | RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]); |
267 | RUNTIME_CHECK(terminator, |
268 | resRank == 1 || result.GetDimension(1).Extent() == extent[1]); |
269 | } |
270 | SubscriptValue n{x.GetDimension(xRank - 1).Extent()}; |
271 | if (n != y.GetDimension(0).Extent()) { |
272 | // At this point, we know that there's a shape error. There are three |
273 | // possibilities, x is rank 1, y is rank 1, or both are rank 2. |
274 | if (xRank == 1) { |
275 | terminator.Crash("MATMUL: unacceptable operand shapes (%jd, %jdx%jd)" , |
276 | static_cast<std::intmax_t>(n), |
277 | static_cast<std::intmax_t>(y.GetDimension(0).Extent()), |
278 | static_cast<std::intmax_t>(y.GetDimension(1).Extent())); |
279 | } else if (yRank == 1) { |
280 | terminator.Crash("MATMUL: unacceptable operand shapes (%jdx%jd, %jd)" , |
281 | static_cast<std::intmax_t>(x.GetDimension(0).Extent()), |
282 | static_cast<std::intmax_t>(n), |
283 | static_cast<std::intmax_t>(y.GetDimension(0).Extent())); |
284 | } else { |
285 | terminator.Crash("MATMUL: unacceptable operand shapes (%jdx%jd, %jdx%jd)" , |
286 | static_cast<std::intmax_t>(x.GetDimension(0).Extent()), |
287 | static_cast<std::intmax_t>(n), |
288 | static_cast<std::intmax_t>(y.GetDimension(0).Extent()), |
289 | static_cast<std::intmax_t>(y.GetDimension(1).Extent())); |
290 | } |
291 | } |
292 | using WriteResult = |
293 | CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT, |
294 | RKIND>; |
295 | if constexpr (RCAT != TypeCategory::Logical) { |
296 | if (x.IsContiguous(1) && y.IsContiguous(1) && |
297 | (IS_ALLOCATING || result.IsContiguous())) { |
298 | // Contiguous numeric matrices (maybe with columns |
299 | // separated by a stride). |
300 | Fortran::common::optional<std::size_t> xColumnByteStride; |
301 | if (!x.IsContiguous()) { |
302 | // X's columns are strided. |
303 | SubscriptValue xAt[2]{}; |
304 | x.GetLowerBounds(xAt); |
305 | xAt[1]++; |
306 | xColumnByteStride = x.SubscriptsToByteOffset(xAt); |
307 | } |
308 | Fortran::common::optional<std::size_t> yColumnByteStride; |
309 | if (!y.IsContiguous()) { |
310 | // Y's columns are strided. |
311 | SubscriptValue yAt[2]{}; |
312 | y.GetLowerBounds(yAt); |
313 | yAt[1]++; |
314 | yColumnByteStride = y.SubscriptsToByteOffset(yAt); |
315 | } |
316 | // Note that BLAS GEMM can be used for the strided |
317 | // columns by setting proper leading dimension size. |
318 | // This implies that the column stride is divisible |
319 | // by the element size, which is usually true. |
320 | if (resRank == 2) { // M*M -> M |
321 | if (std::is_same_v<XT, YT>) { |
322 | if constexpr (std::is_same_v<XT, float>) { |
323 | // TODO: call BLAS-3 SGEMM |
324 | // TODO: try using CUTLASS for device. |
325 | } else if constexpr (std::is_same_v<XT, double>) { |
326 | // TODO: call BLAS-3 DGEMM |
327 | } else if constexpr (std::is_same_v<XT, rtcmplx::complex<float>>) { |
328 | // TODO: call BLAS-3 CGEMM |
329 | } else if constexpr (std::is_same_v<XT, rtcmplx::complex<double>>) { |
330 | // TODO: call BLAS-3 ZGEMM |
331 | } |
332 | } |
333 | MatrixTimesMatrixHelper<RCAT, RKIND, XT, YT>( |
334 | result.template OffsetElement<WriteResult>(), extent[0], extent[1], |
335 | x.OffsetElement<XT>(), y.OffsetElement<YT>(), n, xColumnByteStride, |
336 | yColumnByteStride); |
337 | return; |
338 | } else if (xRank == 2) { // M*V -> V |
339 | if (std::is_same_v<XT, YT>) { |
340 | if constexpr (std::is_same_v<XT, float>) { |
341 | // TODO: call BLAS-2 SGEMV(x,y) |
342 | } else if constexpr (std::is_same_v<XT, double>) { |
343 | // TODO: call BLAS-2 DGEMV(x,y) |
344 | } else if constexpr (std::is_same_v<XT, rtcmplx::complex<float>>) { |
345 | // TODO: call BLAS-2 CGEMV(x,y) |
346 | } else if constexpr (std::is_same_v<XT, rtcmplx::complex<double>>) { |
347 | // TODO: call BLAS-2 ZGEMV(x,y) |
348 | } |
349 | } |
350 | MatrixTimesVectorHelper<RCAT, RKIND, XT, YT>( |
351 | result.template OffsetElement<WriteResult>(), extent[0], n, |
352 | x.OffsetElement<XT>(), y.OffsetElement<YT>(), xColumnByteStride); |
353 | return; |
354 | } else { // V*M -> V |
355 | if (std::is_same_v<XT, YT>) { |
356 | if constexpr (std::is_same_v<XT, float>) { |
357 | // TODO: call BLAS-2 SGEMV(y,x) |
358 | } else if constexpr (std::is_same_v<XT, double>) { |
359 | // TODO: call BLAS-2 DGEMV(y,x) |
360 | } else if constexpr (std::is_same_v<XT, rtcmplx::complex<float>>) { |
361 | // TODO: call BLAS-2 CGEMV(y,x) |
362 | } else if constexpr (std::is_same_v<XT, rtcmplx::complex<double>>) { |
363 | // TODO: call BLAS-2 ZGEMV(y,x) |
364 | } |
365 | } |
366 | VectorTimesMatrixHelper<RCAT, RKIND, XT, YT>( |
367 | result.template OffsetElement<WriteResult>(), n, extent[0], |
368 | x.OffsetElement<XT>(), y.OffsetElement<YT>(), yColumnByteStride); |
369 | return; |
370 | } |
371 | } |
372 | } |
373 | // General algorithms for LOGICAL and noncontiguity |
374 | SubscriptValue xAt[2], yAt[2], resAt[2]; |
375 | x.GetLowerBounds(xAt); |
376 | y.GetLowerBounds(yAt); |
377 | result.GetLowerBounds(resAt); |
378 | if (resRank == 2) { // M*M -> M |
379 | SubscriptValue x1{xAt[1]}, y0{yAt[0]}, y1{yAt[1]}, res1{resAt[1]}; |
380 | for (SubscriptValue i{0}; i < extent[0]; ++i) { |
381 | for (SubscriptValue j{0}; j < extent[1]; ++j) { |
382 | Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y}; |
383 | yAt[1] = y1 + j; |
384 | for (SubscriptValue k{0}; k < n; ++k) { |
385 | xAt[1] = x1 + k; |
386 | yAt[0] = y0 + k; |
387 | accumulator.Accumulate(xAt, yAt); |
388 | } |
389 | resAt[1] = res1 + j; |
390 | *result.template Element<WriteResult>(resAt) = accumulator.GetResult(); |
391 | } |
392 | ++resAt[0]; |
393 | ++xAt[0]; |
394 | } |
395 | } else if (xRank == 2) { // M*V -> V |
396 | SubscriptValue x1{xAt[1]}, y0{yAt[0]}; |
397 | for (SubscriptValue j{0}; j < extent[0]; ++j) { |
398 | Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y}; |
399 | for (SubscriptValue k{0}; k < n; ++k) { |
400 | xAt[1] = x1 + k; |
401 | yAt[0] = y0 + k; |
402 | accumulator.Accumulate(xAt, yAt); |
403 | } |
404 | *result.template Element<WriteResult>(resAt) = accumulator.GetResult(); |
405 | ++resAt[0]; |
406 | ++xAt[0]; |
407 | } |
408 | } else { // V*M -> V |
409 | SubscriptValue x0{xAt[0]}, y0{yAt[0]}; |
410 | for (SubscriptValue j{0}; j < extent[0]; ++j) { |
411 | Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y}; |
412 | for (SubscriptValue k{0}; k < n; ++k) { |
413 | xAt[0] = x0 + k; |
414 | yAt[0] = y0 + k; |
415 | accumulator.Accumulate(xAt, yAt); |
416 | } |
417 | *result.template Element<WriteResult>(resAt) = accumulator.GetResult(); |
418 | ++resAt[0]; |
419 | ++yAt[1]; |
420 | } |
421 | } |
422 | } |
423 | |
424 | template <bool IS_ALLOCATING, TypeCategory XCAT, int XKIND, TypeCategory YCAT, |
425 | int YKIND> |
426 | struct MatmulHelper { |
427 | using ResultTy = Fortran::common::optional<std::pair<TypeCategory, int>>; |
428 | using ResultDescriptor = |
429 | std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>; |
430 | RT_API_ATTRS void operator()(ResultDescriptor &result, const Descriptor &x, |
431 | const Descriptor &y, const char *sourceFile, int line) const { |
432 | Terminator terminator{sourceFile, line}; |
433 | auto xCatKind{x.type().GetCategoryAndKind()}; |
434 | auto yCatKind{y.type().GetCategoryAndKind()}; |
435 | RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value()); |
436 | RUNTIME_CHECK(terminator, |
437 | (xCatKind->first == XCAT && yCatKind->first == YCAT) || |
438 | (XCAT == TypeCategory::Integer && YCAT == TypeCategory::Integer && |
439 | ((xCatKind->first == TypeCategory::Integer || |
440 | xCatKind->first == TypeCategory::Unsigned) && |
441 | (yCatKind->first == TypeCategory::Integer || |
442 | yCatKind->first == TypeCategory::Unsigned)))); |
443 | if constexpr (constexpr ResultTy resultType{ |
444 | GetResultType(XCAT, XKIND, YCAT, YKIND)}) { |
445 | return DoMatmul<IS_ALLOCATING, resultType->first, resultType->second, |
446 | CppTypeFor<XCAT, XKIND>, CppTypeFor<YCAT, YKIND>>( |
447 | result, x, y, terminator); |
448 | } |
449 | terminator.Crash("MATMUL: bad operand types (%d(%d), %d(%d))" , |
450 | static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND); |
451 | } |
452 | }; |
453 | } // namespace |
454 | |
455 | namespace Fortran::runtime { |
456 | extern "C" { |
457 | RT_EXT_API_GROUP_BEGIN |
458 | |
459 | #define MATMUL_INSTANCE(XCAT, XKIND, YCAT, YKIND) \ |
460 | void RTDEF(Matmul##XCAT##XKIND##YCAT##YKIND)(Descriptor & result, \ |
461 | const Descriptor &x, const Descriptor &y, const char *sourceFile, \ |
462 | int line) { \ |
463 | MatmulHelper<true, TypeCategory::XCAT, XKIND, TypeCategory::YCAT, \ |
464 | YKIND>{}(result, x, y, sourceFile, line); \ |
465 | } |
466 | |
467 | #define MATMUL_DIRECT_INSTANCE(XCAT, XKIND, YCAT, YKIND) \ |
468 | void RTDEF(MatmulDirect##XCAT##XKIND##YCAT##YKIND)(Descriptor & result, \ |
469 | const Descriptor &x, const Descriptor &y, const char *sourceFile, \ |
470 | int line) { \ |
471 | MatmulHelper<false, TypeCategory::XCAT, XKIND, TypeCategory::YCAT, \ |
472 | YKIND>{}(result, x, y, sourceFile, line); \ |
473 | } |
474 | |
475 | #define MATMUL_FORCE_ALL_TYPES 0 |
476 | |
477 | #include "flang/Runtime/matmul-instances.inc" |
478 | |
479 | RT_EXT_API_GROUP_END |
480 | } // extern "C" |
481 | } // namespace Fortran::runtime |
482 | |