Warning: This file is not a C or C++ file. It does not have highlighting.
| 1 | //===-- Optimizer/Dialect/FIRType.h -- FIR types ----------------*- C++ -*-===// |
|---|---|
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef FORTRAN_OPTIMIZER_DIALECT_FIRTYPE_H |
| 14 | #define FORTRAN_OPTIMIZER_DIALECT_FIRTYPE_H |
| 15 | |
| 16 | #include "mlir/IR/BuiltinAttributes.h" |
| 17 | #include "mlir/IR/BuiltinTypes.h" |
| 18 | #include "mlir/Interfaces/DataLayoutInterfaces.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/IR/Type.h" |
| 21 | |
| 22 | namespace fir { |
| 23 | class FIROpsDialect; |
| 24 | class KindMapping; |
| 25 | using KindTy = unsigned; |
| 26 | |
| 27 | namespace detail { |
| 28 | struct RecordTypeStorage; |
| 29 | } // namespace detail |
| 30 | |
| 31 | } // namespace fir |
| 32 | |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | // BaseBoxType |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | |
| 37 | namespace fir { |
| 38 | |
| 39 | /// This class provides a shared interface for box and class types. |
| 40 | class BaseBoxType : public mlir::Type { |
| 41 | public: |
| 42 | using mlir::Type::Type; |
| 43 | |
| 44 | /// Box attributes. |
| 45 | enum class Attribute { None, Allocatable, Pointer }; |
| 46 | |
| 47 | /// Returns the element type of this box type. |
| 48 | mlir::Type getEleTy() const; |
| 49 | |
| 50 | /// Get the raw address type of the memory described by the box. |
| 51 | mlir::Type getBaseAddressType() const; |
| 52 | |
| 53 | /// Unwrap element type from fir.heap, fir.ptr and fir.array. |
| 54 | mlir::Type unwrapInnerType() const; |
| 55 | |
| 56 | /// Is this the box for an assumed rank? |
| 57 | bool isAssumedRank() const; |
| 58 | |
| 59 | /// Is this a box for a pointer? |
| 60 | bool isPointer() const; |
| 61 | |
| 62 | /// Does this box for a pointer or allocatable? |
| 63 | bool isPointerOrAllocatable() const; |
| 64 | |
| 65 | /// Is this a box describing volatile memory? |
| 66 | bool isVolatile() const; |
| 67 | |
| 68 | /// Return the same type, except for the shape, that is taken the shape |
| 69 | /// of shapeMold. |
| 70 | BaseBoxType getBoxTypeWithNewShape(mlir::Type shapeMold) const; |
| 71 | BaseBoxType getBoxTypeWithNewShape(int rank) const; |
| 72 | |
| 73 | /// Return the same type, except for the attribute (fir.heap/fir.ptr). |
| 74 | BaseBoxType getBoxTypeWithNewAttr(Attribute attr) const; |
| 75 | |
| 76 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 77 | static bool classof(mlir::Type type); |
| 78 | }; |
| 79 | |
| 80 | } // namespace fir |
| 81 | |
| 82 | #define GET_TYPEDEF_CLASSES |
| 83 | #include "flang/Optimizer/Dialect/FIROpsTypes.h.inc" |
| 84 | |
| 85 | namespace llvm { |
| 86 | class raw_ostream; |
| 87 | class StringRef; |
| 88 | template <typename> |
| 89 | class ArrayRef; |
| 90 | class hash_code; |
| 91 | } // namespace llvm |
| 92 | |
| 93 | namespace mlir { |
| 94 | class DialectAsmParser; |
| 95 | class DialectAsmPrinter; |
| 96 | class ComplexType; |
| 97 | class FloatType; |
| 98 | class ValueRange; |
| 99 | } // namespace mlir |
| 100 | |
| 101 | namespace fir { |
| 102 | namespace detail { |
| 103 | struct RecordTypeStorage; |
| 104 | } // namespace detail |
| 105 | |
| 106 | // These isa_ routines follow the precedent of llvm::isa_or_null<> |
| 107 | |
| 108 | /// Is `t` any of the FIR dialect types? |
| 109 | bool isa_fir_type(mlir::Type t); |
| 110 | |
| 111 | /// Is `t` any of the Standard dialect types? |
| 112 | bool isa_std_type(mlir::Type t); |
| 113 | |
| 114 | /// Is `t` any of the FIR dialect or Standard dialect types? |
| 115 | bool isa_fir_or_std_type(mlir::Type t); |
| 116 | |
| 117 | /// Is `t` a FIR dialect type that implies a memory (de)reference? |
| 118 | inline bool isa_ref_type(mlir::Type t) { |
| 119 | return mlir::isa<fir::ReferenceType, fir::PointerType, fir::HeapType, |
| 120 | fir::LLVMPointerType>(t); |
| 121 | } |
| 122 | |
| 123 | /// Is `t` a boxed type? |
| 124 | inline bool isa_box_type(mlir::Type t) { |
| 125 | return mlir::isa<fir::BaseBoxType, fir::BoxCharType, fir::BoxProcType>(t); |
| 126 | } |
| 127 | |
| 128 | /// Is `t` a type that is always trivially pass-by-reference? Specifically, this |
| 129 | /// is testing if `t` is a ReferenceType or any box type. Compare this to |
| 130 | /// conformsWithPassByRef(), which includes pointers and allocatables. |
| 131 | inline bool isa_passbyref_type(mlir::Type t) { |
| 132 | return mlir::isa<fir::ReferenceType, mlir::FunctionType>(t) || |
| 133 | isa_box_type(t); |
| 134 | } |
| 135 | |
| 136 | /// Is `t` a type that can conform to be pass-by-reference? Depending on the |
| 137 | /// context, these types may simply demote to pass-by-reference or a reference |
| 138 | /// to them may have to be passed instead. Functions are always referent. |
| 139 | inline bool conformsWithPassByRef(mlir::Type t) { |
| 140 | return isa_ref_type(t) || isa_box_type(t) || mlir::isa<mlir::FunctionType>(t); |
| 141 | } |
| 142 | |
| 143 | /// Is `t` a derived (record) type? |
| 144 | inline bool isa_derived(mlir::Type t) { return mlir::isa<fir::RecordType>(t); } |
| 145 | |
| 146 | /// Is `t` type(c_ptr) or type(c_funptr)? |
| 147 | inline bool isa_builtin_cptr_type(mlir::Type t) { |
| 148 | if (auto recTy = mlir::dyn_cast_or_null<fir::RecordType>(t)) |
| 149 | return recTy.getName().ends_with("T__builtin_c_ptr") || |
| 150 | recTy.getName().ends_with("T__builtin_c_funptr"); |
| 151 | return false; |
| 152 | } |
| 153 | |
| 154 | // Is `t` type(c_devptr)? |
| 155 | inline bool isa_builtin_c_devptr_type(mlir::Type t) { |
| 156 | if (auto recTy = mlir::dyn_cast_or_null<fir::RecordType>(t)) |
| 157 | return recTy.getName().ends_with("T__builtin_c_devptr"); |
| 158 | return false; |
| 159 | } |
| 160 | |
| 161 | /// Is `t` type(c_devptr)? |
| 162 | inline bool isa_builtin_cdevptr_type(mlir::Type t) { |
| 163 | if (auto recTy = mlir::dyn_cast_or_null<fir::RecordType>(t)) |
| 164 | return recTy.getName().ends_with("T__builtin_c_devptr"); |
| 165 | return false; |
| 166 | } |
| 167 | |
| 168 | /// Is `t` a FIR dialect aggregate type? |
| 169 | inline bool isa_aggregate(mlir::Type t) { |
| 170 | return mlir::isa<SequenceType, mlir::TupleType>(t) || fir::isa_derived(t); |
| 171 | } |
| 172 | |
| 173 | /// Extract the `Type` pointed to from a FIR memory reference type. If `t` is |
| 174 | /// not a memory reference type, then returns a null `Type`. |
| 175 | mlir::Type dyn_cast_ptrEleTy(mlir::Type t); |
| 176 | |
| 177 | /// Extract the `Type` pointed to from a FIR memory reference or box type. If |
| 178 | /// `t` is not a memory reference or box type, then returns a null `Type`. |
| 179 | mlir::Type dyn_cast_ptrOrBoxEleTy(mlir::Type t); |
| 180 | |
| 181 | /// Is `t` a real type? |
| 182 | inline bool isa_real(mlir::Type t) { return mlir::isa<mlir::FloatType>(t); } |
| 183 | |
| 184 | /// Is `t` an integral type? |
| 185 | inline bool isa_integer(mlir::Type t) { |
| 186 | return mlir::isa<mlir::IndexType, mlir::IntegerType, fir::IntegerType>(t); |
| 187 | } |
| 188 | |
| 189 | /// Is `t` a vector type? |
| 190 | inline bool isa_vector(mlir::Type t) { |
| 191 | return mlir::isa<mlir::VectorType, fir::VectorType>(t); |
| 192 | } |
| 193 | |
| 194 | mlir::Type parseFirType(FIROpsDialect *, mlir::DialectAsmParser &parser); |
| 195 | |
| 196 | void printFirType(FIROpsDialect *, mlir::Type ty, mlir::DialectAsmPrinter &p); |
| 197 | |
| 198 | /// Guarantee `type` is a scalar integral type (standard Integer, standard |
| 199 | /// Index, or FIR Int). Aborts execution if condition is false. |
| 200 | void verifyIntegralType(mlir::Type type); |
| 201 | |
| 202 | /// Is `t` a floating point complex type? |
| 203 | inline bool isa_complex(mlir::Type t) { |
| 204 | return mlir::isa<mlir::ComplexType>(t) && |
| 205 | mlir::isa<mlir::FloatType>( |
| 206 | mlir::cast<mlir::ComplexType>(t).getElementType()); |
| 207 | } |
| 208 | |
| 209 | /// Is `t` a CHARACTER type? Does not check the length. |
| 210 | inline bool isa_char(mlir::Type t) { return mlir::isa<fir::CharacterType>(t); } |
| 211 | |
| 212 | /// Is `t` a trivial intrinsic type? CHARACTER is <em>excluded</em> because it |
| 213 | /// is a dependent type. |
| 214 | inline bool isa_trivial(mlir::Type t) { |
| 215 | return isa_integer(t) || isa_real(t) || isa_complex(t) || isa_vector(t) || |
| 216 | mlir::isa<fir::LogicalType>(t); |
| 217 | } |
| 218 | |
| 219 | /// Is `t` a CHARACTER type with a LEN other than 1? |
| 220 | inline bool isa_char_string(mlir::Type t) { |
| 221 | if (auto ct = mlir::dyn_cast_or_null<fir::CharacterType>(t)) |
| 222 | return ct.getLen() != fir::CharacterType::singleton(); |
| 223 | return false; |
| 224 | } |
| 225 | |
| 226 | /// Is `t` a box type for which it is not possible to deduce the box size? |
| 227 | /// It is not possible to deduce the size of a box that describes an entity |
| 228 | /// of unknown rank. |
| 229 | /// Unknown type are always considered to have the size of derived type box |
| 230 | /// (since they may hold one), and are not considered to be unknown size. |
| 231 | bool isa_unknown_size_box(mlir::Type t); |
| 232 | |
| 233 | /// Returns true iff `t` is a type capable of representing volatility and has |
| 234 | /// the volatile attribute set. |
| 235 | bool isa_volatile_type(mlir::Type t); |
| 236 | |
| 237 | /// Returns true iff `t` is a fir.char type and has an unknown length. |
| 238 | inline bool characterWithDynamicLen(mlir::Type t) { |
| 239 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(t)) |
| 240 | return charTy.hasDynamicLen(); |
| 241 | return false; |
| 242 | } |
| 243 | |
| 244 | /// Returns true iff `seqTy` has either an unknown shape or a non-constant shape |
| 245 | /// (where rank > 0). |
| 246 | inline bool sequenceWithNonConstantShape(fir::SequenceType seqTy) { |
| 247 | return seqTy.hasUnknownShape() || seqTy.hasDynamicExtents(); |
| 248 | } |
| 249 | |
| 250 | /// Returns true iff the type `t` does not have a constant size. |
| 251 | bool hasDynamicSize(mlir::Type t); |
| 252 | |
| 253 | inline unsigned getRankOfShapeType(mlir::Type t) { |
| 254 | if (auto shTy = mlir::dyn_cast<fir::ShapeType>(t)) |
| 255 | return shTy.getRank(); |
| 256 | if (auto shTy = mlir::dyn_cast<fir::ShapeShiftType>(t)) |
| 257 | return shTy.getRank(); |
| 258 | if (auto shTy = mlir::dyn_cast<fir::ShiftType>(t)) |
| 259 | return shTy.getRank(); |
| 260 | return 0; |
| 261 | } |
| 262 | |
| 263 | /// Get the memory reference type of the data pointer from the box type, |
| 264 | inline mlir::Type boxMemRefType(fir::BaseBoxType t) { |
| 265 | auto eleTy = t.getEleTy(); |
| 266 | if (!mlir::isa<fir::PointerType, fir::HeapType>(eleTy)) |
| 267 | eleTy = fir::ReferenceType::get(t); |
| 268 | return eleTy; |
| 269 | } |
| 270 | |
| 271 | /// If `t` is a SequenceType return its element type, otherwise return `t`. |
| 272 | inline mlir::Type unwrapSequenceType(mlir::Type t) { |
| 273 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(t)) |
| 274 | return seqTy.getEleTy(); |
| 275 | return t; |
| 276 | } |
| 277 | |
| 278 | /// Return the nested sequence type if any. |
| 279 | mlir::Type extractSequenceType(mlir::Type ty); |
| 280 | |
| 281 | inline mlir::Type unwrapRefType(mlir::Type t) { |
| 282 | if (auto eleTy = dyn_cast_ptrEleTy(t)) |
| 283 | return eleTy; |
| 284 | return t; |
| 285 | } |
| 286 | |
| 287 | /// If `t` conforms with a pass-by-reference type (box, ref, ptr, etc.) then |
| 288 | /// return the element type of `t`. Otherwise, return `t`. |
| 289 | inline mlir::Type unwrapPassByRefType(mlir::Type t) { |
| 290 | if (auto eleTy = dyn_cast_ptrOrBoxEleTy(t)) |
| 291 | return eleTy; |
| 292 | return t; |
| 293 | } |
| 294 | |
| 295 | /// Extracts the innermost type, T, **potentially** wrapped inside: |
| 296 | /// <fir.[ref|ptr|heap] <fir.[ref|ptr|heap|box] <fir.array<T>>> |
| 297 | /// |
| 298 | /// Any element absent from the above pattern does not affect the returned |
| 299 | /// value: T. |
| 300 | mlir::Type getFortranElementType(mlir::Type ty); |
| 301 | |
| 302 | /// Unwrap either a sequence or a boxed sequence type, returning the element |
| 303 | /// type of the sequence type. |
| 304 | /// e.g., |
| 305 | /// !fir.array<...xT> -> T |
| 306 | /// !fir.box<!fir.ptr<!fir.array<...xT>>> -> T |
| 307 | /// otherwise |
| 308 | /// T -> T |
| 309 | mlir::Type unwrapSeqOrBoxedSeqType(mlir::Type ty); |
| 310 | |
| 311 | /// Unwrap all referential and sequential outer types (if any). Returns the |
| 312 | /// element type. This is useful for determining the element type of any object |
| 313 | /// memory reference, whether it is a single instance or a series of instances. |
| 314 | mlir::Type unwrapAllRefAndSeqType(mlir::Type ty); |
| 315 | |
| 316 | /// Unwrap all pointer and box types and return the element type if it is a |
| 317 | /// sequence type, otherwise return null. |
| 318 | inline fir::SequenceType unwrapUntilSeqType(mlir::Type t) { |
| 319 | while (true) { |
| 320 | if (!t) |
| 321 | return {}; |
| 322 | if (auto ty = dyn_cast_ptrOrBoxEleTy(t)) { |
| 323 | t = ty; |
| 324 | continue; |
| 325 | } |
| 326 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(t)) |
| 327 | return seqTy; |
| 328 | return {}; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | /// Unwrap the referential and sequential outer types (if any). Returns the |
| 333 | /// the element if type is fir::RecordType |
| 334 | inline fir::RecordType unwrapIfDerived(fir::BaseBoxType boxTy) { |
| 335 | return mlir::dyn_cast<fir::RecordType>( |
| 336 | fir::unwrapSequenceType(fir::unwrapRefType(boxTy.getEleTy()))); |
| 337 | } |
| 338 | |
| 339 | /// Return true iff `boxTy` wraps a fir::RecordType with length parameters |
| 340 | inline bool isDerivedTypeWithLenParams(fir::BaseBoxType boxTy) { |
| 341 | auto recTy = unwrapIfDerived(boxTy); |
| 342 | return recTy && recTy.getNumLenParams() > 0; |
| 343 | } |
| 344 | |
| 345 | /// Return true iff `boxTy` wraps a fir::RecordType |
| 346 | inline bool isDerivedType(fir::BaseBoxType boxTy) { |
| 347 | return static_cast<bool>(unwrapIfDerived(boxTy)); |
| 348 | } |
| 349 | |
| 350 | #ifndef NDEBUG |
| 351 | // !fir.ptr<X> and !fir.heap<X> where X is !fir.ptr, !fir.heap, or !fir.ref |
| 352 | // is undefined and disallowed. |
| 353 | inline bool singleIndirectionLevel(mlir::Type ty) { |
| 354 | return !fir::isa_ref_type(ty); |
| 355 | } |
| 356 | #endif |
| 357 | |
| 358 | /// Return true iff `ty` is the type of a POINTER entity or value. |
| 359 | /// `isa_ref_type()` can be used to distinguish. |
| 360 | bool isPointerType(mlir::Type ty); |
| 361 | |
| 362 | /// Return true iff `ty` is the type of an ALLOCATABLE entity or value. |
| 363 | bool isAllocatableType(mlir::Type ty); |
| 364 | |
| 365 | /// Return true iff `ty` is !fir.box<none>. |
| 366 | bool isBoxNone(mlir::Type ty); |
| 367 | |
| 368 | /// Return true iff `ty` is the type of a boxed record type. |
| 369 | /// e.g. !fir.box<!fir.type<derived>> |
| 370 | bool isBoxedRecordType(mlir::Type ty); |
| 371 | |
| 372 | /// Return true iff `ty` is a type that contains descriptor information. |
| 373 | bool isTypeWithDescriptor(mlir::Type ty); |
| 374 | |
| 375 | /// Return true iff `ty` is a scalar boxed record type. |
| 376 | /// e.g. !fir.box<!fir.type<derived>> |
| 377 | /// !fir.box<!fir.heap<!fir.type<derived>>> |
| 378 | /// !fir.class<!fir.type<derived>> |
| 379 | bool isScalarBoxedRecordType(mlir::Type ty); |
| 380 | |
| 381 | /// Return the nested RecordType if one if found. Return ty otherwise. |
| 382 | mlir::Type getDerivedType(mlir::Type ty); |
| 383 | |
| 384 | /// Return true iff `ty` is the type of an polymorphic entity or |
| 385 | /// value. |
| 386 | bool isPolymorphicType(mlir::Type ty); |
| 387 | |
| 388 | /// Return true iff `ty` is the type of an unlimited polymorphic entity or |
| 389 | /// value. |
| 390 | bool isUnlimitedPolymorphicType(mlir::Type ty); |
| 391 | |
| 392 | /// Return true iff `ty` is the type of an assumed type. In FIR, |
| 393 | /// assumed types are of the form `[fir.ref|ptr|heap]fir.box<[fir.array]none>`, |
| 394 | /// or `fir.ref|ptr|heap<[fir.array]none>`. |
| 395 | bool isAssumedType(mlir::Type ty); |
| 396 | |
| 397 | /// Return true iff `ty` is the type of an assumed shape array. |
| 398 | bool isAssumedShape(mlir::Type ty); |
| 399 | |
| 400 | /// Return true iff `ty` is the type of an allocatable array. |
| 401 | bool isAllocatableOrPointerArray(mlir::Type ty); |
| 402 | |
| 403 | /// Return true iff `boxTy` wraps a record type or an unlimited polymorphic |
| 404 | /// entity. Polymorphic entities with intrinsic type spec do not have addendum |
| 405 | inline bool boxHasAddendum(fir::BaseBoxType boxTy) { |
| 406 | return static_cast<bool>(unwrapIfDerived(boxTy)) || |
| 407 | fir::isUnlimitedPolymorphicType(boxTy); |
| 408 | } |
| 409 | |
| 410 | /// Get the rank from a !fir.box type. |
| 411 | unsigned getBoxRank(mlir::Type boxTy); |
| 412 | |
| 413 | /// Return the inner type of the given type. |
| 414 | mlir::Type unwrapInnerType(mlir::Type ty); |
| 415 | |
| 416 | /// Return true iff `ty` is a RecordType with members that are allocatable. |
| 417 | bool isRecordWithAllocatableMember(mlir::Type ty); |
| 418 | |
| 419 | /// Return true iff `ty` is a scalar/array of RecordType |
| 420 | /// with members that are descriptors. |
| 421 | bool isRecordWithDescriptorMember(mlir::Type ty); |
| 422 | |
| 423 | /// Return true iff `ty` is a RecordType with type parameters. |
| 424 | inline bool isRecordWithTypeParameters(mlir::Type ty) { |
| 425 | if (auto recTy = mlir::dyn_cast_or_null<fir::RecordType>(ty)) |
| 426 | return recTy.isDependentType(); |
| 427 | return false; |
| 428 | } |
| 429 | |
| 430 | /// Is this tuple type holding a character function and its result length? |
| 431 | bool isCharacterProcedureTuple(mlir::Type type, bool acceptRawFunc = true); |
| 432 | |
| 433 | /// Apply the components specified by `path` to `rootTy` to determine the type |
| 434 | /// of the resulting component element. `rootTy` should be an aggregate type. |
| 435 | /// Returns null on error. |
| 436 | mlir::Type applyPathToType(mlir::Type rootTy, mlir::ValueRange path); |
| 437 | |
| 438 | /// Does this function type has a result that requires binding the result value |
| 439 | /// with a storage in a fir.save_result operation in order to use the result? |
| 440 | bool hasAbstractResult(mlir::FunctionType ty); |
| 441 | |
| 442 | /// Convert llvm::Type::TypeID to mlir::Type |
| 443 | mlir::Type fromRealTypeID(mlir::MLIRContext *context, llvm::Type::TypeID typeID, |
| 444 | fir::KindTy kind); |
| 445 | |
| 446 | int getTypeCode(mlir::Type ty, const KindMapping &kindMap); |
| 447 | |
| 448 | inline bool BaseBoxType::classof(mlir::Type type) { |
| 449 | return mlir::isa<fir::BoxType, fir::ClassType>(type); |
| 450 | } |
| 451 | |
| 452 | /// Return true iff `ty` is none or fir.array<none>. |
| 453 | inline bool isNoneOrSeqNone(mlir::Type type) { |
| 454 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(type)) |
| 455 | return mlir::isa<mlir::NoneType>(seqTy.getEleTy()); |
| 456 | return mlir::isa<mlir::NoneType>(type); |
| 457 | } |
| 458 | |
| 459 | /// Return a fir.box<T> or fir.class<T> if the type is polymorphic. If the type |
| 460 | /// is polymorphic and assumed shape return fir.box<T>. |
| 461 | inline mlir::Type wrapInClassOrBoxType(mlir::Type eleTy, |
| 462 | bool isPolymorphic = false, |
| 463 | bool isAssumedType = false) { |
| 464 | if (isPolymorphic && !isAssumedType) |
| 465 | return fir::ClassType::get(eleTy); |
| 466 | return fir::BoxType::get(eleTy); |
| 467 | } |
| 468 | |
| 469 | /// Re-create the given type with the given volatility, if this is a type |
| 470 | /// that can represent volatility. |
| 471 | mlir::Type updateTypeWithVolatility(mlir::Type type, bool isVolatile); |
| 472 | |
| 473 | /// Return the elementType where intrinsic types are replaced with none for |
| 474 | /// unlimited polymorphic entities. |
| 475 | /// |
| 476 | /// i32 -> () |
| 477 | /// !fir.array<2xf32> -> !fir.array<2xnone> |
| 478 | /// !fir.heap<!fir.array<2xf32>> -> !fir.heap<!fir.array<2xnone>> |
| 479 | inline mlir::Type updateTypeForUnlimitedPolymorphic(mlir::Type ty) { |
| 480 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty)) |
| 481 | return fir::SequenceType::get( |
| 482 | seqTy.getShape(), updateTypeForUnlimitedPolymorphic(seqTy.getEleTy())); |
| 483 | if (auto heapTy = mlir::dyn_cast<fir::HeapType>(ty)) |
| 484 | return fir::HeapType::get( |
| 485 | updateTypeForUnlimitedPolymorphic(heapTy.getEleTy())); |
| 486 | if (auto pointerTy = mlir::dyn_cast<fir::PointerType>(ty)) |
| 487 | return fir::PointerType::get( |
| 488 | updateTypeForUnlimitedPolymorphic(pointerTy.getEleTy())); |
| 489 | if (!mlir::isa<mlir::NoneType, fir::RecordType>(ty)) |
| 490 | return mlir::NoneType::get(ty.getContext()); |
| 491 | return ty; |
| 492 | } |
| 493 | |
| 494 | /// Re-create the given type with the given volatility, if this is a type |
| 495 | /// that can represent volatility. |
| 496 | mlir::Type updateTypeWithVolatility(mlir::Type type, bool isVolatile); |
| 497 | |
| 498 | /// Replace the element type of \p type by \p newElementType, preserving |
| 499 | /// all other layers of the type (fir.ref/ptr/heap/array/box/class). |
| 500 | /// If \p turnBoxIntoClass and the input is a fir.box, it will be turned into |
| 501 | /// a fir.class in the result. |
| 502 | mlir::Type changeElementType(mlir::Type type, mlir::Type newElementType, |
| 503 | bool turnBoxIntoClass); |
| 504 | |
| 505 | /// Is `t` an address to fir.box or class type? |
| 506 | inline bool isBoxAddress(mlir::Type t) { |
| 507 | return fir::isa_ref_type(t) && |
| 508 | mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(t)); |
| 509 | } |
| 510 | |
| 511 | /// Is `t` a fir.box or class address or value type? |
| 512 | inline bool isBoxAddressOrValue(mlir::Type t) { |
| 513 | return mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(t)); |
| 514 | } |
| 515 | |
| 516 | /// Is this a fir.boxproc address type? |
| 517 | inline bool isBoxProcAddressType(mlir::Type t) { |
| 518 | t = fir::dyn_cast_ptrEleTy(t); |
| 519 | return t && mlir::isa<fir::BoxProcType>(t); |
| 520 | } |
| 521 | |
| 522 | inline bool isRefOfConstantSizeAggregateType(mlir::Type t) { |
| 523 | t = fir::dyn_cast_ptrEleTy(t); |
| 524 | return t && |
| 525 | mlir::isa<fir::CharacterType, fir::RecordType, fir::SequenceType>(t) && |
| 526 | !hasDynamicSize(t); |
| 527 | } |
| 528 | |
| 529 | /// Return a string representation of `ty`. |
| 530 | /// |
| 531 | /// fir.array<10x10xf32> -> prefix_10x10xf32 |
| 532 | /// fir.ref<i32> -> prefix_ref_i32 |
| 533 | std::string getTypeAsString(mlir::Type ty, const KindMapping &kindMap, |
| 534 | llvm::StringRef prefix = ""); |
| 535 | |
| 536 | /// Return the size and alignment of FIR types. |
| 537 | /// TODO: consider moving this to a DataLayoutTypeInterface implementation |
| 538 | /// for FIR types. It should first be ensured that it is OK to open the gate of |
| 539 | /// target dependent type size inquiries in lowering. It would also not be |
| 540 | /// straightforward given the need for a kind map that would need to be |
| 541 | /// converted in terms of mlir::DataLayoutEntryKey. |
| 542 | |
| 543 | /// This variant terminates the compilation if an unsupported type is passed. |
| 544 | std::pair<std::uint64_t, unsigned short> |
| 545 | getTypeSizeAndAlignmentOrCrash(mlir::Location loc, mlir::Type ty, |
| 546 | const mlir::DataLayout &dl, |
| 547 | const fir::KindMapping &kindMap); |
| 548 | |
| 549 | /// This variant returns std::nullopt if an unsupported type is passed. |
| 550 | std::optional<std::pair<uint64_t, unsigned short>> |
| 551 | getTypeSizeAndAlignment(mlir::Location loc, mlir::Type ty, |
| 552 | const mlir::DataLayout &dl, |
| 553 | const fir::KindMapping &kindMap); |
| 554 | } // namespace fir |
| 555 | |
| 556 | #endif // FORTRAN_OPTIMIZER_DIALECT_FIRTYPE_H |
| 557 |
Warning: This file is not a C or C++ file. It does not have highlighting.
