1 | //===-- lib/Decimal/decimal-to-binary.cpp ---------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "big-radix-floating-point.h" |
10 | #include "flang/Common/bit-population-count.h" |
11 | #include "flang/Common/leading-zero-bit-count.h" |
12 | #include "flang/Decimal/binary-floating-point.h" |
13 | #include "flang/Decimal/decimal.h" |
14 | #include "flang/Runtime/freestanding-tools.h" |
15 | #include <cinttypes> |
16 | #include <cstring> |
17 | #include <utility> |
18 | |
19 | // Some environments, viz. glibc 2.17 and *BSD, allow the macro HUGE |
20 | // to leak out of <math.h>. |
21 | #undef HUGE |
22 | |
23 | namespace Fortran::decimal { |
24 | |
25 | template <int PREC, int LOG10RADIX> |
26 | bool BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ParseNumber( |
27 | const char *&p, bool &inexact, const char *end) { |
28 | SetToZero(); |
29 | if (end && p >= end) { |
30 | return false; |
31 | } |
32 | // Skip leading spaces |
33 | for (; p != end && *p == ' '; ++p) { |
34 | } |
35 | if (p == end) { |
36 | return false; |
37 | } |
38 | const char *q{p}; |
39 | isNegative_ = *q == '-'; |
40 | if (*q == '-' || *q == '+') { |
41 | ++q; |
42 | } |
43 | const char *start{q}; |
44 | for (; q != end && *q == '0'; ++q) { |
45 | } |
46 | const char *firstDigit{q}; |
47 | for (; q != end && *q >= '0' && *q <= '9'; ++q) { |
48 | } |
49 | const char *point{nullptr}; |
50 | if (q != end && *q == '.') { |
51 | point = q; |
52 | for (++q; q != end && *q >= '0' && *q <= '9'; ++q) { |
53 | } |
54 | } |
55 | if (q == start || (q == start + 1 && start == point)) { |
56 | return false; // require at least one digit |
57 | } |
58 | // There's a valid number here; set the reference argument to point to |
59 | // the first character afterward, which might be an exponent part. |
60 | p = q; |
61 | // Strip off trailing zeroes |
62 | if (point) { |
63 | while (q[-1] == '0') { |
64 | --q; |
65 | } |
66 | if (q[-1] == '.') { |
67 | point = nullptr; |
68 | --q; |
69 | } |
70 | } |
71 | if (!point) { |
72 | while (q > firstDigit && q[-1] == '0') { |
73 | --q; |
74 | ++exponent_; |
75 | } |
76 | } |
77 | // Trim any excess digits |
78 | const char *limit{firstDigit + maxDigits * log10Radix + (point != nullptr)}; |
79 | if (q > limit) { |
80 | inexact = true; |
81 | if (point >= limit) { |
82 | q = point; |
83 | point = nullptr; |
84 | } |
85 | if (!point) { |
86 | exponent_ += q - limit; |
87 | } |
88 | q = limit; |
89 | } |
90 | if (point) { |
91 | exponent_ -= static_cast<int>(q - point - 1); |
92 | } |
93 | if (q == firstDigit) { |
94 | exponent_ = 0; // all zeros |
95 | } |
96 | // Rack the decimal digits up into big Digits. |
97 | for (auto times{radix}; q-- > firstDigit;) { |
98 | if (*q != '.') { |
99 | if (times == radix) { |
100 | digit_[digits_++] = *q - '0'; |
101 | times = 10; |
102 | } else { |
103 | digit_[digits_ - 1] += times * (*q - '0'); |
104 | times *= 10; |
105 | } |
106 | } |
107 | } |
108 | // Look for an optional exponent field. |
109 | if (p == end) { |
110 | return true; |
111 | } |
112 | q = p; |
113 | switch (*q) { |
114 | case 'e': |
115 | case 'E': |
116 | case 'd': |
117 | case 'D': |
118 | case 'q': |
119 | case 'Q': { |
120 | if (++q == end) { |
121 | break; |
122 | } |
123 | bool negExpo{*q == '-'}; |
124 | if (*q == '-' || *q == '+') { |
125 | ++q; |
126 | } |
127 | if (q != end && *q >= '0' && *q <= '9') { |
128 | int expo{0}; |
129 | for (; q != end && *q == '0'; ++q) { |
130 | } |
131 | const char *expDig{q}; |
132 | for (; q != end && *q >= '0' && *q <= '9'; ++q) { |
133 | expo = 10 * expo + *q - '0'; |
134 | } |
135 | if (q >= expDig + 8) { |
136 | // There's a ridiculous number of nonzero exponent digits. |
137 | // The decimal->binary conversion routine will cope with |
138 | // returning 0 or Inf, but we must ensure that "expo" didn't |
139 | // overflow back around to something legal. |
140 | expo = 10 * Real::decimalRange; |
141 | exponent_ = 0; |
142 | } |
143 | p = q; // exponent is valid; advance the termination pointer |
144 | if (negExpo) { |
145 | exponent_ -= expo; |
146 | } else { |
147 | exponent_ += expo; |
148 | } |
149 | } |
150 | } break; |
151 | default: |
152 | break; |
153 | } |
154 | return true; |
155 | } |
156 | |
157 | template <int PREC, int LOG10RADIX> |
158 | void BigRadixFloatingPointNumber<PREC, |
159 | LOG10RADIX>::LoseLeastSignificantDigit() { |
160 | Digit LSD{digit_[0]}; |
161 | for (int j{0}; j < digits_ - 1; ++j) { |
162 | digit_[j] = digit_[j + 1]; |
163 | } |
164 | digit_[digits_ - 1] = 0; |
165 | bool incr{false}; |
166 | switch (rounding_) { |
167 | case RoundNearest: |
168 | incr = LSD > radix / 2 || (LSD == radix / 2 && digit_[0] % 2 != 0); |
169 | break; |
170 | case RoundUp: |
171 | incr = LSD > 0 && !isNegative_; |
172 | break; |
173 | case RoundDown: |
174 | incr = LSD > 0 && isNegative_; |
175 | break; |
176 | case RoundToZero: |
177 | break; |
178 | case RoundCompatible: |
179 | incr = LSD >= radix / 2; |
180 | break; |
181 | } |
182 | for (int j{0}; (digit_[j] += incr) == radix; ++j) { |
183 | digit_[j] = 0; |
184 | } |
185 | } |
186 | |
187 | // This local utility class represents an unrounded nonnegative |
188 | // binary floating-point value with an unbiased (i.e., signed) |
189 | // binary exponent, an integer value (not a fraction) with an implied |
190 | // binary point to its *right*, and some guard bits for rounding. |
191 | template <int PREC> class IntermediateFloat { |
192 | public: |
193 | static constexpr int precision{PREC}; |
194 | using IntType = common::HostUnsignedIntType<precision>; |
195 | static constexpr IntType topBit{IntType{1} << (precision - 1)}; |
196 | static constexpr IntType mask{topBit + (topBit - 1)}; |
197 | |
198 | RT_API_ATTRS IntermediateFloat() {} |
199 | IntermediateFloat(const IntermediateFloat &) = default; |
200 | |
201 | // Assumes that exponent_ is valid on entry, and may increment it. |
202 | // Returns the number of guard_ bits that have been determined. |
203 | template <typename UINT> RT_API_ATTRS bool SetTo(UINT n) { |
204 | static constexpr int nBits{CHAR_BIT * sizeof n}; |
205 | if constexpr (precision >= nBits) { |
206 | value_ = n; |
207 | guard_ = 0; |
208 | return 0; |
209 | } else { |
210 | int shift{common::BitsNeededFor(n) - precision}; |
211 | if (shift <= 0) { |
212 | value_ = n; |
213 | guard_ = 0; |
214 | return 0; |
215 | } else { |
216 | value_ = n >> shift; |
217 | exponent_ += shift; |
218 | n <<= nBits - shift; |
219 | guard_ = (n >> (nBits - guardBits)) | ((n << guardBits) != 0); |
220 | return shift; |
221 | } |
222 | } |
223 | } |
224 | |
225 | RT_API_ATTRS void ShiftIn(int bit = 0) { value_ = value_ + value_ + bit; } |
226 | RT_API_ATTRS bool IsFull() const { return value_ >= topBit; } |
227 | RT_API_ATTRS void AdjustExponent(int by) { exponent_ += by; } |
228 | RT_API_ATTRS void SetGuard(int g) { |
229 | guard_ |= (static_cast<GuardType>(g & 6) << (guardBits - 3)) | (g & 1); |
230 | } |
231 | |
232 | RT_API_ATTRS ConversionToBinaryResult<PREC> ToBinary( |
233 | bool isNegative, FortranRounding) const; |
234 | |
235 | private: |
236 | static constexpr int guardBits{3}; // guard, round, sticky |
237 | using GuardType = int; |
238 | static constexpr GuardType oneHalf{GuardType{1} << (guardBits - 1)}; |
239 | |
240 | IntType value_{0}; |
241 | GuardType guard_{0}; |
242 | int exponent_{0}; |
243 | }; |
244 | |
245 | // The standard says that these overflow cases round to "representable" |
246 | // numbers, and some popular compilers interpret that to mean +/-HUGE() |
247 | // rather than +/-Inf. |
248 | static inline RT_API_ATTRS constexpr bool RoundOverflowToHuge( |
249 | enum FortranRounding rounding, bool isNegative) { |
250 | return rounding == RoundToZero || (!isNegative && rounding == RoundDown) || |
251 | (isNegative && rounding == RoundUp); |
252 | } |
253 | |
254 | template <int PREC> |
255 | ConversionToBinaryResult<PREC> IntermediateFloat<PREC>::ToBinary( |
256 | bool isNegative, FortranRounding rounding) const { |
257 | using Binary = BinaryFloatingPointNumber<PREC>; |
258 | // Create a fraction with a binary point to the left of the integer |
259 | // value_, and bias the exponent. |
260 | IntType fraction{value_}; |
261 | GuardType guard{guard_}; |
262 | int expo{exponent_ + Binary::exponentBias + (precision - 1)}; |
263 | while (expo < 1 && (fraction > 0 || guard > oneHalf)) { |
264 | guard = (guard & 1) | (guard >> 1) | |
265 | ((static_cast<GuardType>(fraction) & 1) << (guardBits - 1)); |
266 | fraction >>= 1; |
267 | ++expo; |
268 | } |
269 | int flags{Exact}; |
270 | if (guard != 0) { |
271 | flags |= Inexact; |
272 | } |
273 | if (fraction == 0) { |
274 | if (guard <= oneHalf) { |
275 | if ((!isNegative && rounding == RoundUp) || |
276 | (isNegative && rounding == RoundDown)) { |
277 | // round to least nonzero value |
278 | expo = 0; |
279 | } else { // round to zero |
280 | if (guard != 0) { |
281 | flags |= Underflow; |
282 | } |
283 | Binary zero; |
284 | if (isNegative) { |
285 | zero.Negate(); |
286 | } |
287 | return { |
288 | std::move(zero), static_cast<enum ConversionResultFlags>(flags)}; |
289 | } |
290 | } |
291 | } else { |
292 | // The value is nonzero; normalize it. |
293 | while (fraction < topBit && expo > 1) { |
294 | --expo; |
295 | fraction = fraction * 2 + (guard >> (guardBits - 2)); |
296 | guard = |
297 | (((guard >> (guardBits - 2)) & 1) << (guardBits - 1)) | (guard & 1); |
298 | } |
299 | } |
300 | // Apply rounding |
301 | bool incr{false}; |
302 | switch (rounding) { |
303 | case RoundNearest: |
304 | incr = guard > oneHalf || (guard == oneHalf && (fraction & 1)); |
305 | break; |
306 | case RoundUp: |
307 | incr = guard != 0 && !isNegative; |
308 | break; |
309 | case RoundDown: |
310 | incr = guard != 0 && isNegative; |
311 | break; |
312 | case RoundToZero: |
313 | break; |
314 | case RoundCompatible: |
315 | incr = guard >= oneHalf; |
316 | break; |
317 | } |
318 | if (incr) { |
319 | if (fraction == mask) { |
320 | // rounding causes a carry |
321 | ++expo; |
322 | fraction = topBit; |
323 | } else { |
324 | ++fraction; |
325 | } |
326 | } |
327 | if (expo == 1 && fraction < topBit) { |
328 | expo = 0; // subnormal |
329 | flags |= Underflow; |
330 | } else if (expo == 0) { |
331 | flags |= Underflow; |
332 | } else if (expo >= Binary::maxExponent) { |
333 | if (RoundOverflowToHuge(rounding, isNegative)) { |
334 | expo = Binary::maxExponent - 1; |
335 | fraction = mask; |
336 | } else { // Inf |
337 | expo = Binary::maxExponent; |
338 | flags |= Overflow; |
339 | if constexpr (Binary::bits == 80) { // x87 |
340 | fraction = IntType{1} << 63; |
341 | } else { |
342 | fraction = 0; |
343 | } |
344 | } |
345 | } |
346 | using Raw = typename Binary::RawType; |
347 | Raw raw = static_cast<Raw>(isNegative) << (Binary::bits - 1); |
348 | raw |= static_cast<Raw>(expo) << Binary::significandBits; |
349 | if constexpr (Binary::isImplicitMSB) { |
350 | fraction &= ~topBit; |
351 | } |
352 | raw |= fraction; |
353 | return {Binary(raw), static_cast<enum ConversionResultFlags>(flags)}; |
354 | } |
355 | |
356 | template <int PREC, int LOG10RADIX> |
357 | ConversionToBinaryResult<PREC> |
358 | BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary() { |
359 | // On entry, *this holds a multi-precision integer value in a radix of a |
360 | // large power of ten. Its radix point is defined to be to the right of its |
361 | // digits, and "exponent_" is the power of ten by which it is to be scaled. |
362 | Normalize(); |
363 | if (digits_ == 0) { // zero value |
364 | return {Real{SignBit()}}; |
365 | } |
366 | // The value is not zero: x = D. * 10.**E |
367 | // Shift our perspective on the radix (& decimal) point so that |
368 | // it sits to the *left* of the digits: i.e., x = .D * 10.**E |
369 | exponent_ += digits_ * log10Radix; |
370 | // Sanity checks for ridiculous exponents |
371 | static constexpr int crazy{2 * Real::decimalRange + log10Radix}; |
372 | if (exponent_ < -crazy) { |
373 | enum ConversionResultFlags flags { |
374 | static_cast<enum ConversionResultFlags>(Inexact | Underflow) |
375 | }; |
376 | if ((!isNegative_ && rounding_ == RoundUp) || |
377 | (isNegative_ && rounding_ == RoundDown)) { |
378 | // return least nonzero value |
379 | return {Real{Raw{1} | SignBit()}, flags}; |
380 | } else { // underflow to +/-0. |
381 | return {Real{SignBit()}, flags}; |
382 | } |
383 | } else if (exponent_ > crazy) { // overflow to +/-HUGE() or +/-Inf |
384 | if (RoundOverflowToHuge(rounding_, isNegative_)) { |
385 | return {Real{HUGE()}}; |
386 | } else { |
387 | return {Real{Infinity()}, Overflow}; |
388 | } |
389 | } |
390 | // Apply any negative decimal exponent by multiplication |
391 | // by a power of two, adjusting the binary exponent to compensate. |
392 | IntermediateFloat<PREC> f; |
393 | while (exponent_ < log10Radix) { |
394 | // x = 0.D * 10.**E * 2.**(f.ex) -> 512 * 0.D * 10.**E * 2.**(f.ex-9) |
395 | f.AdjustExponent(-9); |
396 | digitLimit_ = digits_; |
397 | if (int carry{MultiplyWithoutNormalization<512>()}) { |
398 | // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex) |
399 | PushCarry(carry); |
400 | exponent_ += log10Radix; |
401 | } |
402 | } |
403 | // Apply any positive decimal exponent greater than |
404 | // is needed to treat the topmost digit as an integer |
405 | // part by multiplying by 10 or 10000 repeatedly. |
406 | while (exponent_ > log10Radix) { |
407 | digitLimit_ = digits_; |
408 | int carry; |
409 | if (exponent_ >= log10Radix + 4) { |
410 | // x = 0.D * 10.**E * 2.**(f.ex) -> 625 * .D * 10.**(E-4) * 2.**(f.ex+4) |
411 | exponent_ -= 4; |
412 | carry = MultiplyWithoutNormalization<(5 * 5 * 5 * 5)>(); |
413 | f.AdjustExponent(4); |
414 | } else { |
415 | // x = 0.D * 10.**E * 2.**(f.ex) -> 5 * .D * 10.**(E-1) * 2.**(f.ex+1) |
416 | --exponent_; |
417 | carry = MultiplyWithoutNormalization<5>(); |
418 | f.AdjustExponent(1); |
419 | } |
420 | if (carry != 0) { |
421 | // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex) |
422 | PushCarry(carry); |
423 | exponent_ += log10Radix; |
424 | } |
425 | } |
426 | // So exponent_ is now log10Radix, meaning that the |
427 | // MSD can be taken as an integer part and transferred |
428 | // to the binary result. |
429 | // x = .jD * 10.**16 * 2.**(f.ex) -> .D * j * 2.**(f.ex) |
430 | int guardShift{f.SetTo(digit_[--digits_])}; |
431 | // Transfer additional bits until the result is normal. |
432 | digitLimit_ = digits_; |
433 | while (!f.IsFull()) { |
434 | // x = ((b.D)/2) * j * 2.**(f.ex) -> .D * (2j + b) * 2.**(f.ex-1) |
435 | f.AdjustExponent(-1); |
436 | std::uint32_t carry = MultiplyWithoutNormalization<2>(); |
437 | f.ShiftIn(carry); |
438 | } |
439 | // Get the next few bits for rounding. Allow for some guard bits |
440 | // that may have already been set in f.SetTo() above. |
441 | int guard{0}; |
442 | if (guardShift == 0) { |
443 | guard = MultiplyWithoutNormalization<4>(); |
444 | } else if (guardShift == 1) { |
445 | guard = MultiplyWithoutNormalization<2>(); |
446 | } |
447 | guard = guard + guard + !IsZero(); |
448 | f.SetGuard(guard); |
449 | return f.ToBinary(isNegative_, rounding_); |
450 | } |
451 | |
452 | template <int PREC, int LOG10RADIX> |
453 | ConversionToBinaryResult<PREC> |
454 | BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary( |
455 | const char *&p, const char *limit) { |
456 | bool inexact{false}; |
457 | if (ParseNumber(p, inexact, limit)) { |
458 | auto result{ConvertToBinary()}; |
459 | if (inexact) { |
460 | result.flags = |
461 | static_cast<enum ConversionResultFlags>(result.flags | Inexact); |
462 | } |
463 | return result; |
464 | } else { |
465 | // Could not parse a decimal floating-point number. p has been |
466 | // advanced over any leading spaces. Most Fortran compilers set |
467 | // the sign bit for -NaN. |
468 | const char *q{p}; |
469 | if (!limit || q < limit) { |
470 | isNegative_ = *q == '-'; |
471 | if (isNegative_ || *q == '+') { |
472 | ++q; |
473 | } |
474 | } |
475 | if ((!limit || limit >= q + 3) && runtime::toupper(q[0]) == 'N' && |
476 | runtime::toupper(q[1]) == 'A' && runtime::toupper(q[2]) == 'N') { |
477 | // NaN |
478 | p = q + 3; |
479 | bool isQuiet{true}; |
480 | if ((!limit || p < limit) && *p == '(') { |
481 | int depth{1}; |
482 | do { |
483 | ++p; |
484 | if (limit && p >= limit) { |
485 | // Invalid input |
486 | return {Real{NaN(false)}, Invalid}; |
487 | } else if (*p == '(') { |
488 | ++depth; |
489 | } else if (*p == ')') { |
490 | --depth; |
491 | } else if (*p != ' ') { |
492 | // Implementation dependent, but other compilers |
493 | // all return quiet NaNs. |
494 | } |
495 | } while (depth > 0); |
496 | ++p; |
497 | } |
498 | return {Real{NaN(isQuiet)}}; |
499 | } else { // Inf? |
500 | if ((!limit || limit >= q + 3) && runtime::toupper(q[0]) == 'I' && |
501 | runtime::toupper(q[1]) == 'N' && runtime::toupper(q[2]) == 'F') { |
502 | if ((!limit || limit >= q + 8) && runtime::toupper(q[3]) == 'I' && |
503 | runtime::toupper(q[4]) == 'N' && runtime::toupper(q[5]) == 'I' && |
504 | runtime::toupper(q[6]) == 'T' && runtime::toupper(q[7]) == 'Y') { |
505 | p = q + 8; |
506 | } else { |
507 | p = q + 3; |
508 | } |
509 | return {Real{Infinity()}}; |
510 | } else { |
511 | // Invalid input |
512 | return {Real{NaN()}, Invalid}; |
513 | } |
514 | } |
515 | } |
516 | } |
517 | |
518 | template <int PREC> |
519 | ConversionToBinaryResult<PREC> ConvertToBinary( |
520 | const char *&p, enum FortranRounding rounding, const char *end) { |
521 | return BigRadixFloatingPointNumber<PREC>{rounding}.ConvertToBinary(p, end); |
522 | } |
523 | |
524 | template ConversionToBinaryResult<8> ConvertToBinary<8>( |
525 | const char *&, enum FortranRounding, const char *end); |
526 | template ConversionToBinaryResult<11> ConvertToBinary<11>( |
527 | const char *&, enum FortranRounding, const char *end); |
528 | template ConversionToBinaryResult<24> ConvertToBinary<24>( |
529 | const char *&, enum FortranRounding, const char *end); |
530 | template ConversionToBinaryResult<53> ConvertToBinary<53>( |
531 | const char *&, enum FortranRounding, const char *end); |
532 | template ConversionToBinaryResult<64> ConvertToBinary<64>( |
533 | const char *&, enum FortranRounding, const char *end); |
534 | template ConversionToBinaryResult<113> ConvertToBinary<113>( |
535 | const char *&, enum FortranRounding, const char *end); |
536 | |
537 | extern "C" { |
538 | RT_EXT_API_GROUP_BEGIN |
539 | |
540 | enum ConversionResultFlags ConvertDecimalToFloat( |
541 | const char **p, float *f, enum FortranRounding rounding) { |
542 | auto result{Fortran::decimal::ConvertToBinary<24>(*p, rounding)}; |
543 | std::memcpy(dest: reinterpret_cast<void *>(f), |
544 | src: reinterpret_cast<const void *>(&result.binary), n: sizeof *f); |
545 | return result.flags; |
546 | } |
547 | enum ConversionResultFlags ConvertDecimalToDouble( |
548 | const char **p, double *d, enum FortranRounding rounding) { |
549 | auto result{Fortran::decimal::ConvertToBinary<53>(*p, rounding)}; |
550 | std::memcpy(dest: reinterpret_cast<void *>(d), |
551 | src: reinterpret_cast<const void *>(&result.binary), n: sizeof *d); |
552 | return result.flags; |
553 | } |
554 | enum ConversionResultFlags ConvertDecimalToLongDouble( |
555 | const char **p, long double *ld, enum FortranRounding rounding) { |
556 | auto result{Fortran::decimal::ConvertToBinary<64>(*p, rounding)}; |
557 | std::memcpy(dest: reinterpret_cast<void *>(ld), |
558 | src: reinterpret_cast<const void *>(&result.binary), n: sizeof *ld); |
559 | return result.flags; |
560 | } |
561 | |
562 | RT_EXT_API_GROUP_END |
563 | } // extern "C" |
564 | } // namespace Fortran::decimal |
565 | |