| 1 | //===-- lib/Decimal/decimal-to-binary.cpp ---------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "big-radix-floating-point.h" |
| 10 | #include "flang/Common/bit-population-count.h" |
| 11 | #include "flang/Common/leading-zero-bit-count.h" |
| 12 | #include "flang/Decimal/binary-floating-point.h" |
| 13 | #include "flang/Decimal/decimal.h" |
| 14 | #include "flang/Runtime/freestanding-tools.h" |
| 15 | #include <cinttypes> |
| 16 | #include <cstring> |
| 17 | #include <utility> |
| 18 | |
| 19 | // Some environments, viz. glibc 2.17 and *BSD, allow the macro HUGE |
| 20 | // to leak out of <math.h>. |
| 21 | #undef HUGE |
| 22 | |
| 23 | namespace Fortran::decimal { |
| 24 | |
| 25 | template <int PREC, int LOG10RADIX> |
| 26 | bool BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ParseNumber( |
| 27 | const char *&p, bool &inexact, const char *end) { |
| 28 | SetToZero(); |
| 29 | if (end && p >= end) { |
| 30 | return false; |
| 31 | } |
| 32 | // Skip leading spaces |
| 33 | for (; p != end && *p == ' '; ++p) { |
| 34 | } |
| 35 | if (p == end) { |
| 36 | return false; |
| 37 | } |
| 38 | const char *q{p}; |
| 39 | isNegative_ = *q == '-'; |
| 40 | if (*q == '-' || *q == '+') { |
| 41 | ++q; |
| 42 | } |
| 43 | const char *start{q}; |
| 44 | for (; q != end && *q == '0'; ++q) { |
| 45 | } |
| 46 | const char *firstDigit{q}; |
| 47 | for (; q != end && *q >= '0' && *q <= '9'; ++q) { |
| 48 | } |
| 49 | const char *point{nullptr}; |
| 50 | if (q != end && *q == '.') { |
| 51 | point = q; |
| 52 | for (++q; q != end && *q >= '0' && *q <= '9'; ++q) { |
| 53 | } |
| 54 | } |
| 55 | if (q == start || (q == start + 1 && start == point)) { |
| 56 | return false; // require at least one digit |
| 57 | } |
| 58 | // There's a valid number here; set the reference argument to point to |
| 59 | // the first character afterward, which might be an exponent part. |
| 60 | p = q; |
| 61 | // Strip off trailing zeroes |
| 62 | if (point) { |
| 63 | while (q[-1] == '0') { |
| 64 | --q; |
| 65 | } |
| 66 | if (q[-1] == '.') { |
| 67 | point = nullptr; |
| 68 | --q; |
| 69 | } |
| 70 | } |
| 71 | if (!point) { |
| 72 | while (q > firstDigit && q[-1] == '0') { |
| 73 | --q; |
| 74 | ++exponent_; |
| 75 | } |
| 76 | } |
| 77 | // Trim any excess digits |
| 78 | const char *limit{firstDigit + maxDigits * log10Radix + (point != nullptr)}; |
| 79 | if (q > limit) { |
| 80 | inexact = true; |
| 81 | if (point >= limit) { |
| 82 | q = point; |
| 83 | point = nullptr; |
| 84 | } |
| 85 | if (!point) { |
| 86 | exponent_ += q - limit; |
| 87 | } |
| 88 | q = limit; |
| 89 | } |
| 90 | if (point) { |
| 91 | exponent_ -= static_cast<int>(q - point - 1); |
| 92 | } |
| 93 | if (q == firstDigit) { |
| 94 | exponent_ = 0; // all zeros |
| 95 | } |
| 96 | // Rack the decimal digits up into big Digits. |
| 97 | for (auto times{radix}; q-- > firstDigit;) { |
| 98 | if (*q != '.') { |
| 99 | if (times == radix) { |
| 100 | digit_[digits_++] = *q - '0'; |
| 101 | times = 10; |
| 102 | } else { |
| 103 | digit_[digits_ - 1] += times * (*q - '0'); |
| 104 | times *= 10; |
| 105 | } |
| 106 | } |
| 107 | } |
| 108 | // Look for an optional exponent field. |
| 109 | if (p == end) { |
| 110 | return true; |
| 111 | } |
| 112 | q = p; |
| 113 | switch (*q) { |
| 114 | case 'e': |
| 115 | case 'E': |
| 116 | case 'd': |
| 117 | case 'D': |
| 118 | case 'q': |
| 119 | case 'Q': { |
| 120 | if (++q == end) { |
| 121 | break; |
| 122 | } |
| 123 | bool negExpo{*q == '-'}; |
| 124 | if (*q == '-' || *q == '+') { |
| 125 | ++q; |
| 126 | } |
| 127 | if (q != end && *q >= '0' && *q <= '9') { |
| 128 | int expo{0}; |
| 129 | for (; q != end && *q == '0'; ++q) { |
| 130 | } |
| 131 | const char *expDig{q}; |
| 132 | for (; q != end && *q >= '0' && *q <= '9'; ++q) { |
| 133 | expo = 10 * expo + *q - '0'; |
| 134 | } |
| 135 | if (q >= expDig + 8) { |
| 136 | // There's a ridiculous number of nonzero exponent digits. |
| 137 | // The decimal->binary conversion routine will cope with |
| 138 | // returning 0 or Inf, but we must ensure that "expo" didn't |
| 139 | // overflow back around to something legal. |
| 140 | expo = 10 * Real::decimalRange; |
| 141 | exponent_ = 0; |
| 142 | } |
| 143 | p = q; // exponent is valid; advance the termination pointer |
| 144 | if (negExpo) { |
| 145 | exponent_ -= expo; |
| 146 | } else { |
| 147 | exponent_ += expo; |
| 148 | } |
| 149 | } |
| 150 | } break; |
| 151 | default: |
| 152 | break; |
| 153 | } |
| 154 | return true; |
| 155 | } |
| 156 | |
| 157 | template <int PREC, int LOG10RADIX> |
| 158 | void BigRadixFloatingPointNumber<PREC, |
| 159 | LOG10RADIX>::LoseLeastSignificantDigit() { |
| 160 | Digit LSD{digit_[0]}; |
| 161 | for (int j{0}; j < digits_ - 1; ++j) { |
| 162 | digit_[j] = digit_[j + 1]; |
| 163 | } |
| 164 | digit_[digits_ - 1] = 0; |
| 165 | bool incr{false}; |
| 166 | switch (rounding_) { |
| 167 | case RoundNearest: |
| 168 | incr = LSD > radix / 2 || (LSD == radix / 2 && digit_[0] % 2 != 0); |
| 169 | break; |
| 170 | case RoundUp: |
| 171 | incr = LSD > 0 && !isNegative_; |
| 172 | break; |
| 173 | case RoundDown: |
| 174 | incr = LSD > 0 && isNegative_; |
| 175 | break; |
| 176 | case RoundToZero: |
| 177 | break; |
| 178 | case RoundCompatible: |
| 179 | incr = LSD >= radix / 2; |
| 180 | break; |
| 181 | } |
| 182 | for (int j{0}; (digit_[j] += incr) == radix; ++j) { |
| 183 | digit_[j] = 0; |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | // This local utility class represents an unrounded nonnegative |
| 188 | // binary floating-point value with an unbiased (i.e., signed) |
| 189 | // binary exponent, an integer value (not a fraction) with an implied |
| 190 | // binary point to its *right*, and some guard bits for rounding. |
| 191 | template <int PREC> class IntermediateFloat { |
| 192 | public: |
| 193 | static constexpr int precision{PREC}; |
| 194 | using IntType = common::HostUnsignedIntType<precision>; |
| 195 | static constexpr IntType topBit{IntType{1} << (precision - 1)}; |
| 196 | static constexpr IntType mask{topBit + (topBit - 1)}; |
| 197 | |
| 198 | RT_API_ATTRS IntermediateFloat() {} |
| 199 | IntermediateFloat(const IntermediateFloat &) = default; |
| 200 | |
| 201 | // Assumes that exponent_ is valid on entry, and may increment it. |
| 202 | // Returns the number of guard_ bits that have been determined. |
| 203 | template <typename UINT> RT_API_ATTRS bool SetTo(UINT n) { |
| 204 | static constexpr int nBits{CHAR_BIT * sizeof n}; |
| 205 | if constexpr (precision >= nBits) { |
| 206 | value_ = n; |
| 207 | guard_ = 0; |
| 208 | return 0; |
| 209 | } else { |
| 210 | int shift{common::BitsNeededFor(n) - precision}; |
| 211 | if (shift <= 0) { |
| 212 | value_ = n; |
| 213 | guard_ = 0; |
| 214 | return 0; |
| 215 | } else { |
| 216 | value_ = n >> shift; |
| 217 | exponent_ += shift; |
| 218 | n <<= nBits - shift; |
| 219 | guard_ = (n >> (nBits - guardBits)) | ((n << guardBits) != 0); |
| 220 | return shift; |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | RT_API_ATTRS void ShiftIn(int bit = 0) { value_ = value_ + value_ + bit; } |
| 226 | RT_API_ATTRS bool IsFull() const { return value_ >= topBit; } |
| 227 | RT_API_ATTRS void AdjustExponent(int by) { exponent_ += by; } |
| 228 | RT_API_ATTRS void SetGuard(int g) { |
| 229 | guard_ |= (static_cast<GuardType>(g & 6) << (guardBits - 3)) | (g & 1); |
| 230 | } |
| 231 | |
| 232 | RT_API_ATTRS ConversionToBinaryResult<PREC> ToBinary( |
| 233 | bool isNegative, FortranRounding) const; |
| 234 | |
| 235 | private: |
| 236 | static constexpr int guardBits{3}; // guard, round, sticky |
| 237 | using GuardType = int; |
| 238 | static constexpr GuardType oneHalf{GuardType{1} << (guardBits - 1)}; |
| 239 | |
| 240 | IntType value_{0}; |
| 241 | GuardType guard_{0}; |
| 242 | int exponent_{0}; |
| 243 | }; |
| 244 | |
| 245 | // The standard says that these overflow cases round to "representable" |
| 246 | // numbers, and some popular compilers interpret that to mean +/-HUGE() |
| 247 | // rather than +/-Inf. |
| 248 | static inline RT_API_ATTRS constexpr bool RoundOverflowToHuge( |
| 249 | enum FortranRounding rounding, bool isNegative) { |
| 250 | return rounding == RoundToZero || (!isNegative && rounding == RoundDown) || |
| 251 | (isNegative && rounding == RoundUp); |
| 252 | } |
| 253 | |
| 254 | template <int PREC> |
| 255 | ConversionToBinaryResult<PREC> IntermediateFloat<PREC>::ToBinary( |
| 256 | bool isNegative, FortranRounding rounding) const { |
| 257 | using Binary = BinaryFloatingPointNumber<PREC>; |
| 258 | // Create a fraction with a binary point to the left of the integer |
| 259 | // value_, and bias the exponent. |
| 260 | IntType fraction{value_}; |
| 261 | GuardType guard{guard_}; |
| 262 | int expo{exponent_ + Binary::exponentBias + (precision - 1)}; |
| 263 | while (expo < 1 && (fraction > 0 || guard > oneHalf)) { |
| 264 | guard = (guard & 1) | (guard >> 1) | |
| 265 | ((static_cast<GuardType>(fraction) & 1) << (guardBits - 1)); |
| 266 | fraction >>= 1; |
| 267 | ++expo; |
| 268 | } |
| 269 | int flags{Exact}; |
| 270 | if (guard != 0) { |
| 271 | flags |= Inexact; |
| 272 | } |
| 273 | if (fraction == 0) { |
| 274 | if (guard <= oneHalf) { |
| 275 | if ((!isNegative && rounding == RoundUp) || |
| 276 | (isNegative && rounding == RoundDown)) { |
| 277 | // round to least nonzero value |
| 278 | expo = 0; |
| 279 | } else { // round to zero |
| 280 | if (guard != 0) { |
| 281 | flags |= Underflow; |
| 282 | } |
| 283 | Binary zero; |
| 284 | if (isNegative) { |
| 285 | zero.Negate(); |
| 286 | } |
| 287 | return { |
| 288 | std::move(zero), static_cast<enum ConversionResultFlags>(flags)}; |
| 289 | } |
| 290 | } |
| 291 | } else { |
| 292 | // The value is nonzero; normalize it. |
| 293 | while (fraction < topBit && expo > 1) { |
| 294 | --expo; |
| 295 | fraction = fraction * 2 + (guard >> (guardBits - 2)); |
| 296 | guard = |
| 297 | (((guard >> (guardBits - 2)) & 1) << (guardBits - 1)) | (guard & 1); |
| 298 | } |
| 299 | } |
| 300 | // Apply rounding |
| 301 | bool incr{false}; |
| 302 | switch (rounding) { |
| 303 | case RoundNearest: |
| 304 | incr = guard > oneHalf || (guard == oneHalf && (fraction & 1)); |
| 305 | break; |
| 306 | case RoundUp: |
| 307 | incr = guard != 0 && !isNegative; |
| 308 | break; |
| 309 | case RoundDown: |
| 310 | incr = guard != 0 && isNegative; |
| 311 | break; |
| 312 | case RoundToZero: |
| 313 | break; |
| 314 | case RoundCompatible: |
| 315 | incr = guard >= oneHalf; |
| 316 | break; |
| 317 | } |
| 318 | if (incr) { |
| 319 | if (fraction == mask) { |
| 320 | // rounding causes a carry |
| 321 | ++expo; |
| 322 | fraction = topBit; |
| 323 | } else { |
| 324 | ++fraction; |
| 325 | } |
| 326 | } |
| 327 | if (expo == 1 && fraction < topBit) { |
| 328 | expo = 0; // subnormal |
| 329 | flags |= Underflow; |
| 330 | } else if (expo == 0) { |
| 331 | flags |= Underflow; |
| 332 | } else if (expo >= Binary::maxExponent) { |
| 333 | if (RoundOverflowToHuge(rounding, isNegative)) { |
| 334 | expo = Binary::maxExponent - 1; |
| 335 | fraction = mask; |
| 336 | } else { // Inf |
| 337 | expo = Binary::maxExponent; |
| 338 | flags |= Overflow; |
| 339 | if constexpr (Binary::bits == 80) { // x87 |
| 340 | fraction = IntType{1} << 63; |
| 341 | } else { |
| 342 | fraction = 0; |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | using Raw = typename Binary::RawType; |
| 347 | Raw raw = static_cast<Raw>(isNegative) << (Binary::bits - 1); |
| 348 | raw |= static_cast<Raw>(expo) << Binary::significandBits; |
| 349 | if constexpr (Binary::isImplicitMSB) { |
| 350 | fraction &= ~topBit; |
| 351 | } |
| 352 | raw |= fraction; |
| 353 | return {Binary(raw), static_cast<enum ConversionResultFlags>(flags)}; |
| 354 | } |
| 355 | |
| 356 | template <int PREC, int LOG10RADIX> |
| 357 | ConversionToBinaryResult<PREC> |
| 358 | BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary() { |
| 359 | // On entry, *this holds a multi-precision integer value in a radix of a |
| 360 | // large power of ten. Its radix point is defined to be to the right of its |
| 361 | // digits, and "exponent_" is the power of ten by which it is to be scaled. |
| 362 | Normalize(); |
| 363 | if (digits_ == 0) { // zero value |
| 364 | return {Real{SignBit()}}; |
| 365 | } |
| 366 | // The value is not zero: x = D. * 10.**E |
| 367 | // Shift our perspective on the radix (& decimal) point so that |
| 368 | // it sits to the *left* of the digits: i.e., x = .D * 10.**E |
| 369 | exponent_ += digits_ * log10Radix; |
| 370 | // Sanity checks for ridiculous exponents |
| 371 | static constexpr int crazy{2 * Real::decimalRange + log10Radix}; |
| 372 | if (exponent_ < -crazy) { |
| 373 | enum ConversionResultFlags flags { |
| 374 | static_cast<enum ConversionResultFlags>(Inexact | Underflow) |
| 375 | }; |
| 376 | if ((!isNegative_ && rounding_ == RoundUp) || |
| 377 | (isNegative_ && rounding_ == RoundDown)) { |
| 378 | // return least nonzero value |
| 379 | return {Real{Raw{1} | SignBit()}, flags}; |
| 380 | } else { // underflow to +/-0. |
| 381 | return {Real{SignBit()}, flags}; |
| 382 | } |
| 383 | } else if (exponent_ > crazy) { // overflow to +/-HUGE() or +/-Inf |
| 384 | if (RoundOverflowToHuge(rounding_, isNegative_)) { |
| 385 | return {Real{HUGE()}}; |
| 386 | } else { |
| 387 | return {Real{Infinity()}, Overflow}; |
| 388 | } |
| 389 | } |
| 390 | // Apply any negative decimal exponent by multiplication |
| 391 | // by a power of two, adjusting the binary exponent to compensate. |
| 392 | IntermediateFloat<PREC> f; |
| 393 | while (exponent_ < log10Radix) { |
| 394 | // x = 0.D * 10.**E * 2.**(f.ex) -> 512 * 0.D * 10.**E * 2.**(f.ex-9) |
| 395 | f.AdjustExponent(-9); |
| 396 | digitLimit_ = digits_; |
| 397 | if (int carry{MultiplyWithoutNormalization<512>()}) { |
| 398 | // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex) |
| 399 | PushCarry(carry); |
| 400 | exponent_ += log10Radix; |
| 401 | } |
| 402 | } |
| 403 | // Apply any positive decimal exponent greater than |
| 404 | // is needed to treat the topmost digit as an integer |
| 405 | // part by multiplying by 10 or 10000 repeatedly. |
| 406 | while (exponent_ > log10Radix) { |
| 407 | digitLimit_ = digits_; |
| 408 | int carry; |
| 409 | if (exponent_ >= log10Radix + 4) { |
| 410 | // x = 0.D * 10.**E * 2.**(f.ex) -> 625 * .D * 10.**(E-4) * 2.**(f.ex+4) |
| 411 | exponent_ -= 4; |
| 412 | carry = MultiplyWithoutNormalization<(5 * 5 * 5 * 5)>(); |
| 413 | f.AdjustExponent(4); |
| 414 | } else { |
| 415 | // x = 0.D * 10.**E * 2.**(f.ex) -> 5 * .D * 10.**(E-1) * 2.**(f.ex+1) |
| 416 | --exponent_; |
| 417 | carry = MultiplyWithoutNormalization<5>(); |
| 418 | f.AdjustExponent(1); |
| 419 | } |
| 420 | if (carry != 0) { |
| 421 | // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex) |
| 422 | PushCarry(carry); |
| 423 | exponent_ += log10Radix; |
| 424 | } |
| 425 | } |
| 426 | // So exponent_ is now log10Radix, meaning that the |
| 427 | // MSD can be taken as an integer part and transferred |
| 428 | // to the binary result. |
| 429 | // x = .jD * 10.**16 * 2.**(f.ex) -> .D * j * 2.**(f.ex) |
| 430 | int guardShift{f.SetTo(digit_[--digits_])}; |
| 431 | // Transfer additional bits until the result is normal. |
| 432 | digitLimit_ = digits_; |
| 433 | while (!f.IsFull()) { |
| 434 | // x = ((b.D)/2) * j * 2.**(f.ex) -> .D * (2j + b) * 2.**(f.ex-1) |
| 435 | f.AdjustExponent(-1); |
| 436 | std::uint32_t carry = MultiplyWithoutNormalization<2>(); |
| 437 | f.ShiftIn(carry); |
| 438 | } |
| 439 | // Get the next few bits for rounding. Allow for some guard bits |
| 440 | // that may have already been set in f.SetTo() above. |
| 441 | int guard{0}; |
| 442 | if (guardShift == 0) { |
| 443 | guard = MultiplyWithoutNormalization<4>(); |
| 444 | } else if (guardShift == 1) { |
| 445 | guard = MultiplyWithoutNormalization<2>(); |
| 446 | } |
| 447 | guard = guard + guard + !IsZero(); |
| 448 | f.SetGuard(guard); |
| 449 | return f.ToBinary(isNegative_, rounding_); |
| 450 | } |
| 451 | |
| 452 | template <int PREC, int LOG10RADIX> |
| 453 | ConversionToBinaryResult<PREC> |
| 454 | BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary( |
| 455 | const char *&p, const char *limit) { |
| 456 | bool inexact{false}; |
| 457 | if (ParseNumber(p, inexact, limit)) { |
| 458 | auto result{ConvertToBinary()}; |
| 459 | if (inexact) { |
| 460 | result.flags = |
| 461 | static_cast<enum ConversionResultFlags>(result.flags | Inexact); |
| 462 | } |
| 463 | return result; |
| 464 | } else { |
| 465 | // Could not parse a decimal floating-point number. p has been |
| 466 | // advanced over any leading spaces. Most Fortran compilers set |
| 467 | // the sign bit for -NaN. |
| 468 | const char *q{p}; |
| 469 | if (!limit || q < limit) { |
| 470 | isNegative_ = *q == '-'; |
| 471 | if (isNegative_ || *q == '+') { |
| 472 | ++q; |
| 473 | } |
| 474 | } |
| 475 | if ((!limit || limit >= q + 3) && runtime::toupper(q[0]) == 'N' && |
| 476 | runtime::toupper(q[1]) == 'A' && runtime::toupper(q[2]) == 'N') { |
| 477 | // NaN |
| 478 | p = q + 3; |
| 479 | bool isQuiet{true}; |
| 480 | if ((!limit || p < limit) && *p == '(') { |
| 481 | int depth{1}; |
| 482 | do { |
| 483 | ++p; |
| 484 | if (limit && p >= limit) { |
| 485 | // Invalid input |
| 486 | return {Real{NaN(false)}, Invalid}; |
| 487 | } else if (*p == '(') { |
| 488 | ++depth; |
| 489 | } else if (*p == ')') { |
| 490 | --depth; |
| 491 | } else if (*p != ' ') { |
| 492 | // Implementation dependent, but other compilers |
| 493 | // all return quiet NaNs. |
| 494 | } |
| 495 | } while (depth > 0); |
| 496 | ++p; |
| 497 | } |
| 498 | return {Real{NaN(isQuiet)}}; |
| 499 | } else { // Inf? |
| 500 | if ((!limit || limit >= q + 3) && runtime::toupper(q[0]) == 'I' && |
| 501 | runtime::toupper(q[1]) == 'N' && runtime::toupper(q[2]) == 'F') { |
| 502 | if ((!limit || limit >= q + 8) && runtime::toupper(q[3]) == 'I' && |
| 503 | runtime::toupper(q[4]) == 'N' && runtime::toupper(q[5]) == 'I' && |
| 504 | runtime::toupper(q[6]) == 'T' && runtime::toupper(q[7]) == 'Y') { |
| 505 | p = q + 8; |
| 506 | } else { |
| 507 | p = q + 3; |
| 508 | } |
| 509 | return {Real{Infinity()}}; |
| 510 | } else { |
| 511 | // Invalid input |
| 512 | return {Real{NaN()}, Invalid}; |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | template <int PREC> |
| 519 | ConversionToBinaryResult<PREC> ConvertToBinary( |
| 520 | const char *&p, enum FortranRounding rounding, const char *end) { |
| 521 | return BigRadixFloatingPointNumber<PREC>{rounding}.ConvertToBinary(p, end); |
| 522 | } |
| 523 | |
| 524 | template ConversionToBinaryResult<8> ConvertToBinary<8>( |
| 525 | const char *&, enum FortranRounding, const char *end); |
| 526 | template ConversionToBinaryResult<11> ConvertToBinary<11>( |
| 527 | const char *&, enum FortranRounding, const char *end); |
| 528 | template ConversionToBinaryResult<24> ConvertToBinary<24>( |
| 529 | const char *&, enum FortranRounding, const char *end); |
| 530 | template ConversionToBinaryResult<53> ConvertToBinary<53>( |
| 531 | const char *&, enum FortranRounding, const char *end); |
| 532 | template ConversionToBinaryResult<64> ConvertToBinary<64>( |
| 533 | const char *&, enum FortranRounding, const char *end); |
| 534 | template ConversionToBinaryResult<113> ConvertToBinary<113>( |
| 535 | const char *&, enum FortranRounding, const char *end); |
| 536 | |
| 537 | extern "C" { |
| 538 | RT_EXT_API_GROUP_BEGIN |
| 539 | |
| 540 | enum ConversionResultFlags ConvertDecimalToFloat( |
| 541 | const char **p, float *f, enum FortranRounding rounding) { |
| 542 | auto result{Fortran::decimal::ConvertToBinary<24>(*p, rounding)}; |
| 543 | std::memcpy(dest: reinterpret_cast<void *>(f), |
| 544 | src: reinterpret_cast<const void *>(&result.binary), n: sizeof *f); |
| 545 | return result.flags; |
| 546 | } |
| 547 | enum ConversionResultFlags ConvertDecimalToDouble( |
| 548 | const char **p, double *d, enum FortranRounding rounding) { |
| 549 | auto result{Fortran::decimal::ConvertToBinary<53>(*p, rounding)}; |
| 550 | std::memcpy(dest: reinterpret_cast<void *>(d), |
| 551 | src: reinterpret_cast<const void *>(&result.binary), n: sizeof *d); |
| 552 | return result.flags; |
| 553 | } |
| 554 | enum ConversionResultFlags ConvertDecimalToLongDouble( |
| 555 | const char **p, long double *ld, enum FortranRounding rounding) { |
| 556 | auto result{Fortran::decimal::ConvertToBinary<64>(*p, rounding)}; |
| 557 | std::memcpy(dest: reinterpret_cast<void *>(ld), |
| 558 | src: reinterpret_cast<const void *>(&result.binary), n: sizeof *ld); |
| 559 | return result.flags; |
| 560 | } |
| 561 | |
| 562 | RT_EXT_API_GROUP_END |
| 563 | } // extern "C" |
| 564 | } // namespace Fortran::decimal |
| 565 | |